JPH04267097A - Sealing method for organic light emitting element - Google Patents

Sealing method for organic light emitting element

Info

Publication number
JPH04267097A
JPH04267097A JP3028219A JP2821991A JPH04267097A JP H04267097 A JPH04267097 A JP H04267097A JP 3028219 A JP3028219 A JP 3028219A JP 2821991 A JP2821991 A JP 2821991A JP H04267097 A JPH04267097 A JP H04267097A
Authority
JP
Japan
Prior art keywords
layer
sealing
film
light emitting
organic light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3028219A
Other languages
Japanese (ja)
Other versions
JP2793048B2 (en
Inventor
Shigeru Takahara
茂 高原
Yutaka Ohashi
豊 大橋
Nobuhiro Fukuda
福田 信弘
Hiroyuki Kamio
浩行 神尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP3028219A priority Critical patent/JP2793048B2/en
Publication of JPH04267097A publication Critical patent/JPH04267097A/en
Application granted granted Critical
Publication of JP2793048B2 publication Critical patent/JP2793048B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)

Abstract

PURPOSE:To carry out sealing of an organic light emitting element which is easily subject to a damage caused by heating or an organic solvent without damaging the element, mechanically protecting the element, and restraining deterioration of light emitting intensity. CONSTITUTION:In a sealing method where a film consisted of at least two layers is formed on an organic light emitting element, a thin film 401 of a first layer is formed by a vapor phase method such as a deposition method or a chemical vapor phase epitaxial method, and a photocuring resin is deposited on the first layer, followed by curing by light irradiation, thus obtaining a second layer 402.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、例えば、液晶ディスプ
レイのバックライトや各種デコレーションなどの各種照
明、ディスプレイや表示、光通信の光源などに用いられ
る電気的発光素子であるいわゆるエレクトロルミネッセ
ンス素子(EL素子)の封止方法に関する。
[Industrial Application Field] The present invention is directed to so-called electroluminescent elements (EL), which are electrical light-emitting elements used in various illuminations such as backlights of liquid crystal displays and various decorations, displays, displays, and light sources for optical communication. This invention relates to a method for sealing an element.

【0002】さらに詳しくは、発光層や、電子又は正孔
の移動層などに有機化合物や有機金属錯体化合物を含む
有機発光素子の封止方法に関する。
More specifically, the present invention relates to a method for sealing an organic light-emitting device containing an organic compound or an organometallic complex compound in a light-emitting layer, an electron or hole transfer layer, or the like.

【0003】0003

【従来の技術】従来、エレクトロルミネッセンス素子と
して高輝度の有機発光素子が知られている。例えば、こ
の有機発光素子については、アプライド  フィジック
ス  レター(Appl. Phys. Let.)5
1 913 (1987) やジャパニーズ  ジャー
ナル  オブ  アプライド  フィジックス(Jpn
. J. Appl. Phys. )271269 
(1988)などに発表されている。
2. Description of the Related Art Hitherto, high-brightness organic light-emitting devices have been known as electroluminescent devices. For example, regarding this organic light emitting device, Applied Physics Letter (Appl. Phys. Let.) 5
1 913 (1987) and Japanese Journal of Applied Physics (Jpn
.. J. Appl. Phys. )271269
(1988), etc.

【0004】これらに発表されているデバイスは、ガラ
スなどの透明基板上に透明電極を作成し、その上に正孔
輸送層、発光層、場合によっては電子輸送層、電極を重
ねた構造からなり、全体の厚さが数μm以下の薄膜の面
発光素子となっている。このため、マトリックス可動型
ディスプレイなどへの応用が期待されている。
The devices announced in these publications have a structure in which a transparent electrode is formed on a transparent substrate such as glass, and a hole transport layer, a light emitting layer, and in some cases an electron transport layer and an electrode are layered on top of the transparent electrode. , it is a thin film surface emitting device with a total thickness of several μm or less. Therefore, it is expected to be applied to matrix movable displays.

【0005】この有機発光素子では、正孔輸送層や電子
輸送層、または発光層にジアミンやアルミニウム錯体な
ど有機化合物や有機金属錯体が用いられ、これらの蒸着
膜で層を構成する場合が典型的な例として知られている
[0005] In this organic light emitting device, an organic compound or an organometallic complex such as a diamine or an aluminum complex is used in the hole transport layer, electron transport layer, or light emitting layer, and the layer is typically composed of vapor-deposited films of these. It is known as an example.

【0006】このような有機発光素子は、有機薄膜また
は有機化合物を構成要素とし、μmレベルの薄膜である
ことから、機械的強度が低く、さらには大気中の酸素や
水が発光強度の低下をもたらすことが知られている。
[0006] Such organic light-emitting devices are composed of organic thin films or organic compounds, and because they are thin films on the μm level, they have low mechanical strength, and furthermore, oxygen and water in the atmosphere can reduce the luminescence intensity. known to bring about

【0007】例えば、日本化学会第59春季年会講演要
旨集III   2409、2特 606(1990)
には、 100cd/m2以上の実用輝度では、輝度及
び効率が急速に低下していくことが記載されている。こ
れらの劣化の原因は明確にはなっていないが、大気中の
酸素及び水が原因のひとつであることが推定され、例え
ば、春季第36回応用物理学関係連合講演会  講演集
  29p−ZP−4(1990)には、酸素が有機発
光層の発光の劣化の原因となることが明らかにされてい
る。
For example, the 59th Spring Annual Meeting of the Chemical Society of Japan Abstracts III 2409, 2 Special 606 (1990)
describes that at a practical luminance of 100 cd/m2 or more, the luminance and efficiency rapidly decrease. Although the cause of these deteriorations is not clear, it is presumed that oxygen and water in the atmosphere are one of the causes. 4 (1990), it has been revealed that oxygen causes deterioration of the luminescence of an organic light-emitting layer.

【0008】従って、素子の機械的保護及び大気中の酸
素や水分からの封止が必要となる。しかしながら、有機
発光素子が有機化合物や有機金属錯体を含む薄膜である
ため、その薄膜上に封止膜を形成して封止を行う方法で
は、封止膜の塗布や硬化に有機溶剤を使用したり、加熱
プロセスのある成膜プロセスでは薄膜が変質してしまい
、素子の損傷が発生し、実用的な封止方法となり得ず、
実質的な封止方法が存在しなかった。
[0008] Therefore, it is necessary to mechanically protect the device and seal it from oxygen and moisture in the atmosphere. However, since organic light-emitting devices are thin films containing organic compounds or organometallic complexes, the method of sealing by forming a sealing film on the thin film requires the use of organic solvents for coating and curing the sealing film. In the film formation process that involves a heating process, the quality of the thin film changes, causing damage to the element, making it impossible to use as a practical sealing method.
There was no practical sealing method.

【0009】[0009]

【発明が解決しようとする課題】本発明は、有機発光素
子において、有機発光素子の機械的保護及び大気中の酸
素や水分からの封止を行い、発光強度の劣化という実用
上の問題を解決することにある。
[Problems to be Solved by the Invention] The present invention solves the practical problem of deterioration of luminescence intensity in organic light emitting devices by mechanically protecting them and sealing them from oxygen and moisture in the atmosphere. It's about doing.

【0010】0010

【課題を解決するための手段】本発明者は、上記課題を
解決するため、封止材料及び方法について鋭意検討した
結果、少なくとも気相方法によって低温プロセスで形成
した第一層上に光硬化型樹脂による第二層を構成する二
層構成によって、有機発光素子に何らの損傷を与えずに
有機発光素子の機械的保護が可能で、なおかつ発光強度
の劣化を抑えることができることを見いだし、本発明を
完成した。
[Means for Solving the Problems] In order to solve the above problems, the inventors of the present invention, as a result of intensive studies on sealing materials and methods, have developed a photocurable molding material on a first layer formed in a low-temperature process using at least a vapor phase method. It was discovered that the two-layer structure of the second layer made of resin makes it possible to mechanically protect the organic light-emitting element without causing any damage to the element, and also to suppress the deterioration of the luminescence intensity, and has developed the present invention. completed.

【0011】本発明は、有機発光素子において、素子の
保護及び封止を少なくとも二層構造からなる膜によって
行い、その封止膜の素子側から第一層を気相法によって
成膜し、第二層を第一層上に光硬化型樹脂を塗膜し、硬
化させることによって形成する有機発光素子の封止方法
である。
[0011] In an organic light emitting device, the present invention protects and seals the device with a film having at least a two-layer structure, and forms a first layer of the sealing film from the device side by a vapor phase method. This is a method of sealing an organic light-emitting device in which two layers are formed by coating a photocurable resin on the first layer and curing it.

【0012】本発明における有機発光素子とは、正孔輸
送層や発光層、電子輸送層など素子を構成する層が有機
化合物や有機金属錯体でできているか、それらを含んで
いる電界発光素子をいう。
[0012] The organic light-emitting device in the present invention refers to an electroluminescent device in which layers constituting the device, such as a hole transport layer, a light emitting layer, and an electron transport layer, are made of an organic compound or an organometallic complex or contain them. say.

【0013】図1に本発明の構成例を示す。この図にお
いて 401が封止第1層、 402が封止第2層を示
す。第一層は気相法で成膜される。本発明でいう気相法
とは蒸着法及び化学気相成長法をさし、絶縁性の酸化物
や有機化合物、高分子有機化合物、ラジカルを気化させ
て封止物表面に積層するか、ないしは化学反応もしくは
重合させながら積層する方法をいう。これらの具体的な
方法については、例えば日本学術振興会、薄膜第 13
1委員会編、薄膜ハンドブック(1983)オーム社 
 などに記載されている。本発明の第一層としては、通
常の有機物の蒸着や化学気相成長法によるSiO2膜の
形成でもよいが、光硬化型樹脂への耐性や接合性から高
分子薄膜であることがより好ましい。
FIG. 1 shows an example of the configuration of the present invention. In this figure, 401 indicates the first sealing layer, and 402 indicates the second sealing layer. The first layer is formed by a vapor phase method. In the present invention, the vapor phase method refers to a vapor deposition method and a chemical vapor deposition method, in which insulating oxides, organic compounds, high-molecular organic compounds, and radicals are vaporized and layered on the surface of the sealant. A method of laminating layers through chemical reaction or polymerization. Regarding these specific methods, see, for example, Japan Society for the Promotion of Science, Thin Film No. 13.
1 Committee, Thin Film Handbook (1983) Ohmsha
etc. are listed. As the first layer of the present invention, a SiO2 film may be formed by ordinary organic vapor deposition or chemical vapor deposition, but a polymer thin film is more preferable from the viewpoint of resistance to photocurable resin and bondability.

【0014】このような高分子薄膜を形成するための方
法としては、プラズマ重合法や熱分解などの手法によっ
てラジカルをつくる方法や高分子の真空蒸着法が知られ
ている。例えば、前述した日本学術振興会、薄膜第 1
31委員会編、薄膜ハンドブック(1983)オーム社
、 246ページや第66回電子写真学会講演会要旨集
  68(1990)に気相法による高分子薄膜形成に
ついての具体的方法が記載されている。例としてあげれ
ば、数Torr以下の圧力下で、メタン、エチレン、ブ
タジエンなどのガスを電極付近へ導入しながらグロー放
電させ、膜形成をすることができる。また、ジパラキシ
レン類の気相中での熱分解によってポリパラキシレン類
からなる高分子膜を素子上に形成することができる。
[0014] As methods for forming such a polymer thin film, there are known methods in which radicals are created by methods such as plasma polymerization and thermal decomposition, and polymer vacuum evaporation methods. For example, the aforementioned Japan Society for the Promotion of Science, Thin Film No. 1
31 Committee, Thin Film Handbook (1983), Ohmsha, p. 246 and 66th Electrophotography Society Conference Abstracts 68 (1990) describe specific methods for forming polymer thin films by the vapor phase method. For example, a film can be formed by causing glow discharge while introducing a gas such as methane, ethylene, butadiene into the vicinity of the electrode under a pressure of several Torr or less. Further, a polymer film made of polyparaxylene can be formed on the element by thermal decomposition of diparaxylene in the gas phase.

【0015】本発明では、これらの方法によって、素子
及び素子の端面や基板上へ均一に第一層を形成すること
ができる。第一層を成膜する前に、基板や電極などと第
一層との密着性をよくするために、基板や電極上に予備
コートとしてプライマー層をつけてもよい。
According to the present invention, the first layer can be uniformly formed on the element, the end face of the element, and the substrate by these methods. Before forming the first layer, a primer layer may be applied as a preliminary coat on the substrate or electrode in order to improve the adhesion between the substrate or electrode and the first layer.

【0016】プライマー層は気相法によって形成される
ことが好ましく、膜厚は薄くてもよく、通常10nm以
下の厚さに成膜される。例えば、シランカップリング剤
の蒸着などがガラスや無機化合物からなる基板や電極と
の密着性を向上させるために好適な例として挙げること
ができる。
[0016] The primer layer is preferably formed by a vapor phase method, and the film thickness may be thin, and is usually formed to a thickness of 10 nm or less. For example, vapor deposition of a silane coupling agent can be cited as a suitable example for improving adhesion to a substrate or electrode made of glass or an inorganic compound.

【0017】第一層の膜厚は 0.1μmから50μm
が好ましく、また、第一層は複数の気相法で形成された
多層構造をとってもよく、多成分であってもかまわない
[0017] The thickness of the first layer is from 0.1 μm to 50 μm.
is preferable, and the first layer may have a multilayer structure formed by a plurality of vapor phase methods, and may be composed of multiple components.

【0018】第二層は光硬化型樹脂を第一層上に塗布し
、所定の光を照射することによって硬化させて成膜する
The second layer is formed by coating a photocurable resin on the first layer and curing it by irradiating it with a predetermined light.

【0019】光硬化型樹脂としては、溶剤など揮発成分
が少なく、硬化時に大気中の酸素や水分の透過性が小さ
く残留歪の小さなものであればよい。
The photocurable resin may be one that contains few volatile components such as solvents, has low permeability to atmospheric oxygen and moisture during curing, and has low residual strain.

【0020】一般に光硬化型樹脂は、光重合性モノマー
、光重合性オリゴマー、光開始剤、溶剤、およびその他
添加剤からなり、これらを調製して用いられる。
[0020] In general, a photocurable resin is composed of a photopolymerizable monomer, a photopolymerizable oligomer, a photoinitiator, a solvent, and other additives, and these are prepared and used.

【0021】本発明に用いられる光硬化型樹脂は、樹脂
中の溶剤含量が少ないほうが好ましく、望ましくは5%
以下がよく、さらに好ましくは含まないものが望ましい
。同様に他の揮発成分も少ない方が好ましく、含まない
ものがさらに好ましい。
The photocurable resin used in the present invention preferably has a small solvent content, preferably 5%.
The following is preferable, and more preferably, it does not contain. Similarly, it is preferable that the amount of other volatile components is small, and it is even more preferable that they be omitted.

【0022】本発明で使用される光重合性モノマーとし
ては、非揮発性のものが望ましく、高沸点のものが好ま
しい。したがって、光重合性モノマーは揮発性が小さく
、重合時の収縮率の小さなものから選ばれ、例えばトリ
メチロールプロパントリアクリレート、ジトリメチロー
ルプロパンテトロアクリレートなどのトリメチロールア
クリレート類などの分岐した多官能モノマーや1、6ー
ヘキサンジオールジアクリレート、1,6ーヘキサンジ
オールジメタクリレートなどの長鎖のアクリレート類、
ジシクロペンテニロキシエチルアクリレート、ジシクロ
ペンテニルアクリレート、シクロヘキシルメタクリレー
トなどシクロヘキシルアクリレート類やイソボニルアク
リレートなどの分子のかさの大きいモノマーが好ましい
例として挙げることができる。
The photopolymerizable monomer used in the present invention is preferably a non-volatile monomer, and preferably has a high boiling point. Therefore, photopolymerizable monomers are selected from those with low volatility and low shrinkage during polymerization, such as branched polyfunctional monomers such as trimethylol acrylates such as trimethylolpropane triacrylate and ditrimethylolpropane tetroacrylate. Long chain acrylates such as 1,6-hexanediol diacrylate, 1,6-hexanediol dimethacrylate,
Preferred examples include monomers with large molecular bulk such as cyclohexyl acrylates such as dicyclopentenyloxyethyl acrylate, dicyclopentenyl acrylate, and cyclohexyl methacrylate, and isobornyl acrylate.

【0023】光重合性オリゴマーとしては、絶縁性や耐
水性がよいものが好ましい。このような光重合性オリゴ
マーの例としては、ポリエステルアクリレート、エポキ
シアクリレート、ウレタンアクリレート、アクリル系ア
クリレート、ポリエーテルアクリレートなどが好ましい
例として挙げられる。絶縁性や耐水性からはエポキシア
クリレートがさらに好ましい例として挙げられる。
The photopolymerizable oligomer preferably has good insulation properties and water resistance. Preferred examples of such photopolymerizable oligomers include polyester acrylate, epoxy acrylate, urethane acrylate, acrylic acrylate, and polyether acrylate. From the standpoint of insulation and water resistance, epoxy acrylate is a more preferred example.

【0024】光開始剤としてはベンゾインエーテル類、
ベンゾフェノン類、チオキサンソン類、アセトフェノン
類、ケタール類などが例としてあげられるが、ベンゾフ
ェノンやミハイルケトンなどのベンゾフェノン類、ベン
ジルジメチールケタールなどのケタール類がより好まし
い。
As photoinitiators, benzoin ethers,
Examples include benzophenones, thioxansones, acetophenones, and ketals, but benzophenones such as benzophenone and Mikhail ketone, and ketals such as benzyl dimethyl ketal are more preferred.

【0025】この他にも、添加剤としてマイカ、ガラス
繊維、シリカ、不活性ポリマーなどの充填剤を加えても
よく、またチクソ剤や改質剤を必要に応じて加えてもよ
い。さらに、金属、無機物との接着性向上剤を添加して
もよい。
[0025] In addition, fillers such as mica, glass fiber, silica, and inert polymers may be added as additives, and thixotropic agents and modifiers may be added as necessary. Furthermore, an agent for improving adhesion to metals and inorganic substances may be added.

【0026】光硬化型樹脂を第一層上に塗布する方法と
しては、スプレー法、スクリーン印刷法、ディップコー
ト法、スピンコート法などが好ましい例として挙げられ
る。このような方法によって塗布された光硬化型樹脂は
、塗布した後、水銀灯、キセノン灯などにより光照射し
硬化させる。発光素子の照射面の加熱を避けるために熱
線カットフィルターなどを用いてもよい。硬化後の樹脂
の膜厚は封止の効果を得るために30μm以上であるこ
とが好ましい。
Preferred examples of the method for applying the photocurable resin onto the first layer include a spray method, a screen printing method, a dip coating method, and a spin coating method. After being applied, the photocurable resin applied by such a method is cured by being irradiated with light using a mercury lamp, a xenon lamp, or the like. A heat ray cut filter or the like may be used to avoid heating the irradiation surface of the light emitting element. The thickness of the resin after curing is preferably 30 μm or more in order to obtain a sealing effect.

【0027】[0027]

【実施例】以下、実施例により本発明を具体的に説明す
るが、これにより本発明の実施の形態が限定されるもの
ではない。 実施例1 (1) 厚さ 1.8mmの50mm×50mmの正四
角形の青板ガラス上に、ガラス中央部に30mm×30
mmの正四角形に膜が形成されるようにマスクをかけ、
真空蒸着法により20nmの厚さで発光層であるトリス
(8−ハイドロキシキノリン)アルミニウム錯体薄膜を
形成した。 (2) ジパラキシリレンジクロライドを予備室で気化
させ、 680℃、 0.5Torrで熱分解させ、こ
の分解されたラジカルモノマーを(1)で形成したトリ
ス(8−ハイドロキシキノリン)アルミニウム錯体薄膜
上へ蒸着させ、厚さ5μmのポリモノクロロパラキシレ
ン膜の封止膜第1層を形成した。 (3) ビスコート 540エポキシアクリレート(大
阪有機化学工業製)50wt%、ライトアクリレートI
B−XAイソボルニルメタクリレート(共栄社油脂化学
社製)20wt%、アロニックスM− 315トリアク
リロイルオキシエチルイソシアネート(東亜合成化学工
業社製)30wt%を混ぜ合わせ、これに光開始剤とし
て全体の3wt%のダロキュアー1173(メルク社製
)を加えて光硬化型樹脂を調製した。この光硬化型樹脂
を (2)で形成した第1層上にのせ、基板を水平に保
ちながら、1000rpm の回転をさせてスピンコー
トを行った。スピンコート直後、窒素雰囲気下で高圧水
銀灯による光照射を15分間行い硬化させて封止膜第2
層を形成した。光硬化樹脂層の膜厚を測定したところ、
 160μmであった。 (4) 400nm の励起光で、発光層であるトリス
(8−ハイドロキシキノリン)アルミニウム薄膜を励起
し、その発光スペクトルを封止膜形成前後で比較したと
ころ、ほとんど変化しなかった。これは有機薄膜そのも
のの封止においても、有機薄膜が封止膜形成によって損
傷を受けないことがわかった。 (5) この封止したトリス(8−ハイドロキシキノリ
ン)アルミニウム薄膜試料を発光分光器(島津スペクト
ルフォトメーターRF−5000)で 400nmの励
起光をスリット10mmの条件で照射しつづけ、発光ス
ペクトルを測定して劣化試験を行ったところ、60分照
射してもほとんど発光スペクトルの劣化はみられなかっ
た。図2に520nmでの発光強度変化(図中■)を示
す。
[Examples] The present invention will be specifically explained below with reference to Examples, but the embodiments of the present invention are not limited thereto. Example 1 (1) On a 50 mm x 50 mm regular square blue plate glass with a thickness of 1.8 mm, a 30 mm x 30 square plate was placed in the center of the glass.
Apply a mask so that a film is formed in a square of mm,
A tris(8-hydroxyquinoline) aluminum complex thin film serving as a light emitting layer was formed to a thickness of 20 nm by vacuum evaporation. (2) Diparaxylylene dichloride is vaporized in a preliminary chamber, thermally decomposed at 680°C and 0.5 Torr, and the decomposed radical monomer is applied onto the tris(8-hydroxyquinoline) aluminum complex thin film formed in (1). A first sealing film layer of a polymonochloroparaxylene film having a thickness of 5 μm was formed. (3) Viscoat 540 epoxy acrylate (manufactured by Osaka Organic Chemical Industry) 50 wt%, light acrylate I
20 wt% of B-XA isobornyl methacrylate (manufactured by Kyoeisha Yushi Kagaku Co., Ltd.) and 30 wt% of Aronix M-315 triacryloyloxyethyl isocyanate (manufactured by Toagosei Kagaku Kogyo Co., Ltd.) were mixed, and 3 wt% of the total was added as a photoinitiator. Darocure 1173 (manufactured by Merck & Co., Ltd.) was added to prepare a photocurable resin. This photocurable resin was placed on the first layer formed in (2), and spin coating was performed by rotating at 1000 rpm while keeping the substrate horizontal. Immediately after spin coating, light irradiation with a high-pressure mercury lamp was performed for 15 minutes in a nitrogen atmosphere to cure the second sealing film.
formed a layer. When the film thickness of the photocurable resin layer was measured,
It was 160 μm. (4) When the tris(8-hydroxyquinoline) aluminum thin film serving as the light-emitting layer was excited with excitation light of 400 nm and the emission spectrum was compared before and after the formation of the sealing film, there was almost no change. This indicates that even when the organic thin film itself is sealed, the organic thin film is not damaged by the formation of the sealing film. (5) This sealed tris(8-hydroxyquinoline) aluminum thin film sample was continuously irradiated with 400 nm excitation light using an emission spectrometer (Shimadzu Spectral Photometer RF-5000) with a slit of 10 mm, and the emission spectrum was measured. When a deterioration test was conducted, almost no deterioration of the emission spectrum was observed even after 60 minutes of irradiation. FIG. 2 shows the change in emission intensity at 520 nm (■ in the figure).

【0028】比較例1 実施例1の (1)で形成した有機薄膜のみで、封止を
行っていない素子について実施例1の (5)と同じ劣
化試験を行ったところ、発光強度が照射時間とともに減
少していく現象がみられた。この初期から1分、3分、
10分、30分、60分での発光スペクトル変化を図3
に示し、図2に 520nmでの発光強度変化(図中■
)を示す。このことから、実施例1において、本発明に
おける封止方法によって有機薄膜の発光の劣化が抑えら
れていることがわかる。
Comparative Example 1 When the same deterioration test as in (5) of Example 1 was conducted on the device with only the organic thin film formed in (1) of Example 1 but without sealing, it was found that the luminescence intensity changed over the irradiation time. A phenomenon was observed in which the number decreased with time. From this initial stage, 1 minute, 3 minutes,
Figure 3 shows the change in emission spectrum at 10 minutes, 30 minutes, and 60 minutes.
Figure 2 shows the change in emission intensity at 520 nm (■ in the figure).
) is shown. This shows that in Example 1, the deterioration of the light emission of the organic thin film was suppressed by the sealing method of the present invention.

【0029】比較例2 実施例1の (2)で形成した気相法による第一層のみ
で封止した素子について、実施例2の (5)と同じ劣
化試験をおこなったところ劣化が観測された。図2に発
光強度変化(図中■)を示す。これは、第一層のみでは
大気中の酸素や水分を十分封止することができなかった
ことを示す。
Comparative Example 2 When the same deterioration test as in Example 2 (5) was performed on the device sealed with only the first layer formed by the vapor phase method formed in Example 1 (2), no deterioration was observed. Ta. Figure 2 shows the change in luminescence intensity (■ in the figure). This indicates that the first layer alone was not able to sufficiently seal off oxygen and moisture in the atmosphere.

【0030】比較例3 実施例1の (1)で形成した有機金属薄膜のみの素子
に実施例1の (3)と同条件で光硬化型樹脂を塗布し
、硬化させた。実施例1の (5)と同じ劣化試験をお
こなったところ、発光スペクトルの変化はほとんどせず
、劣化が抑制されることがわかった。しかしながら、光
硬化前後で発光スペクトルを測定すると発光強度がほぼ
半分に低下していた。これは、光硬化型樹脂のみの封止
方法では、封止の効果はあるが封止膜形成時に有機金属
錯体薄膜に損傷を与えることを示す。
Comparative Example 3 A photocurable resin was coated and cured under the same conditions as in Example 1 (3) to the element having only an organic metal thin film formed in Example 1 (1). When the same deterioration test as in Example 1 (5) was conducted, it was found that the emission spectrum hardly changed and deterioration was suppressed. However, when the emission spectra were measured before and after photocuring, the emission intensity was reduced to approximately half. This indicates that a sealing method using only a photocurable resin has a sealing effect, but damages the organometallic complex thin film during formation of the sealing film.

【0031】実施例2 (1) 厚さ 1.0mmの50mm×50mmの正四
角形のIn−Sn 酸化物(ITO)を透明電極として
、 200nmの厚さでパターンエッチングされている
ガラス基板(松崎真空社製)上に、真空蒸着法によりN
,N,N’,N’−テトラフェニル− 1,3−ジアミ
ノベンゼン薄膜及びトリス(8−ハイドロキシキノリン
)アルミニウム、マグネシウムを順に30nm、20n
m、 200nmの厚さで積層して発光素子を形成した
。 (2) ジパラキシリレンジクロライドを予備室で気化
させ、 680℃、 0.5Torrで熱分解させ、こ
の分解されたラジカルモノマーを(1)で形成した積層
膜上へ蒸着させ、厚さ8μmのポリモノクロロパラキシ
レン膜の封止膜第1層を形成した。 (3) ビスコート 540エポキシアクリレート(大
阪有機化学工業製)50wt%、ライトアクリレートI
B−XAイソボルニルメタクリレート(共栄社油脂化学
社製)20wt%、アロニックスM− 315トリアク
リロイルオキシエチルイソシアネート(東亜合成化学工
業社製)30wt%を混ぜ合わせ、これに光開始剤とし
て全体の3wt%のダロキュアー1173(メルク社製
)を加えて光硬化型樹脂を調製した。この光硬化型樹脂
を(2) で形成した第1層上にのせ、基板を水平に保
ちながら、1000 rpmの回転をさせてスピンコー
トを行った。スピンコート直後、窒素雰囲気下で高圧水
銀灯による光照射を15分間行い、硬化させて封止膜第
2層を形成した。 (4) 封止をおこなった素子の発光輝度特性は、14
Vの電圧を印加しながら 100時間連続発光させても
ほとんど変化しなかった。また、初期の発光輝度特性は
実施例2の (1)で得られた素子の初期特性とほぼ同
じであった。図4に輝度−電圧変化(■:初期、■:1
00 時間後)及び図5に輝度の時間変化(図中■)を
示す。これから、有機薄膜を含む積層膜からなる発光素
子の封止においても、素子が封止膜形成によって損傷を
受けず、封止によって劣化が抑制されていることがわか
る。
Example 2 (1) A glass substrate (Matsuzaki vacuum (manufactured by) by vacuum evaporation method.
,N,N',N'-tetraphenyl-1,3-diaminobenzene thin film, tris(8-hydroxyquinoline)aluminum, and magnesium in order of 30nm and 20nm.
A light-emitting device was formed by laminating layers with a thickness of 200 nm and 200 nm. (2) Diparaxylylene dichloride was vaporized in a preliminary chamber and thermally decomposed at 680°C and 0.5 Torr, and the decomposed radical monomer was evaporated onto the laminated film formed in (1) to form a film with a thickness of 8 μm. A first sealing film layer of polymonochloroparaxylene film was formed. (3) Viscoat 540 epoxy acrylate (manufactured by Osaka Organic Chemical Industry) 50 wt%, light acrylate I
20 wt% of B-XA isobornyl methacrylate (manufactured by Kyoeisha Yushi Kagaku Co., Ltd.) and 30 wt% of Aronix M-315 triacryloyloxyethyl isocyanate (manufactured by Toagosei Kagaku Kogyo Co., Ltd.) were mixed, and 3 wt% of the total was added as a photoinitiator. Darocure 1173 (manufactured by Merck & Co., Ltd.) was added to prepare a photocurable resin. This photocurable resin was placed on the first layer formed in (2), and spin coating was performed by rotating at 1000 rpm while keeping the substrate horizontal. Immediately after spin coating, light irradiation was performed using a high-pressure mercury lamp in a nitrogen atmosphere for 15 minutes to cure and form a second sealing film layer. (4) The luminance characteristics of the sealed device are 14
There was almost no change even after continuous light emission for 100 hours while applying a voltage of V. In addition, the initial luminance characteristics were almost the same as the initial characteristics of the device obtained in Example 2 (1). Figure 4 shows the brightness-voltage change (■: initial, ■: 1
00 hours later) and FIG. 5 shows the temporal change in brightness (■ in the figure). From this, it can be seen that even in the case of sealing a light emitting element made of a laminated film including an organic thin film, the element is not damaged by the formation of the sealing film and deterioration is suppressed by the sealing.

【0032】比較例4 実施例2の (1)で形成した積層膜のみで封止を行っ
ていない素子について、実施例2の (4)と同じ劣化
試験を行ったところ、発光輝度は発光時間ととも減少し
た。これを図5(図中■)に示す。このことは、実施例
2において本発明における封止方法によって発光素子の
劣化が抑えられていることを示す。
Comparative Example 4 When the same deterioration test as in (4) of Example 2 was conducted on the device that was not sealed with only the laminated film formed in (1) of Example 2, it was found that the luminance was It decreased with This is shown in FIG. 5 (■ in the figure). This shows that in Example 2, the deterioration of the light emitting element was suppressed by the sealing method of the present invention.

【0033】比較例5 実施例2の (2)で作成した気相法による第一層のみ
で封止した素子について、実施例2の (4)と同じ劣
化試験をおこなったところ、発光強度の劣化が観測され
た。これを図5(図中■)に示す。これは、第一層のみ
では、大気中の酸素や水分から発光素子を十分封止する
ことができないことを示す。
Comparative Example 5 When the same deterioration test as in Example 2 (4) was carried out on the element sealed with only the first layer formed by the vapor phase method prepared in Example 2 (2), the emission intensity was Deterioration was observed. This is shown in FIG. 5 (■ in the figure). This indicates that the first layer alone cannot sufficiently seal the light emitting element from oxygen and moisture in the atmosphere.

【0034】比較例6 実施例2の (1)で作成した封止をおこなっていない
積層膜のみの素子に実施例2の (3)と同条件で光硬
化型樹脂を塗布し、硬化させた。実施例2の (4)と
同じ劣化試験をおこなったところ、発光面に斑点状の暗
い部分が出現し、発光時間とともに広がってくる現象が
みられた。これから、少なくとも光硬化型樹脂のみの封
止方法では、光硬化型樹脂成分が封止膜形成時及び形成
後に電極層をぬけて有機金属錯体薄膜に損傷を与えるこ
とがわかる。
Comparative Example 6 A photocurable resin was applied and cured under the same conditions as in Example 2 (3) to the unsealed multilayer film-only device prepared in Example 2 (1). . When the same deterioration test as in (4) of Example 2 was conducted, it was observed that dark speckled areas appeared on the light emitting surface and spread with the emitting time. This shows that, at least in the sealing method using only a photocurable resin, the photocurable resin component passes through the electrode layer during and after formation of the sealing film and damages the organometallic complex thin film.

【0035】実施例3 (1) 厚さ 1.0nmの50mm×50mmの正四
角形のITOを透明電極として、 200nmの厚さで
パターンエッチングされているガラス基板(松崎真空社
製)上に、真空蒸着法によりN,N,N’,N’−テト
ラフェニル −1,3−ジアミノベンゼン薄膜及びトリ
ス(8−ハイドロキシキノリン)アルミニウム、マグネ
シウムを順に30nm、20nm、 200nmの厚さ
で積層して発光素子を形成した。 (2) 1,3−ブタジエンガスを水素をキャリアガス
として (1)で形成した積層膜付近に導入し、圧力1
Torrでグロー放電をおこない、 0.8μmの重合
膜を形成し、封止膜第1層とした。 (3) ビスコート 540エポキシアクリレート(大
阪有機化学工業製)50wt%、ライトアクリレートI
B−XAイソボルニルメタクリレート(共栄社油脂化学
社製)20wt%、アロニックスM− 315トリアク
リロイルオキシエチルイソシアネート(東亜合成化学工
業社製)30wt%を混ぜ合わせ、これに光開始剤とし
て全体の3wt%のダロキュアー1173(メルク社製
)を加えて光硬化型樹脂を調製した。この光硬化型樹脂
を (2)で形成した第1層上にのせ、基板を水平に保
ちながら、1000rpm の回転をさせてスピンコー
トを行った。スピンコート直後、窒素雰囲気下で高圧水
銀灯による光照射を15分間行い、硬化させて封止膜第
2層を形成した。 (4) 封止をおこなった素子の発光輝度特性は、実施
例2と同様に 100時間連続発光させてもほとんど変
化しなかった。また、初期の発光輝度特性は封止前の素
子の初期特性とほぼ同じであった。
Example 3 (1) A 50 mm x 50 mm square ITO with a thickness of 1.0 nm was used as a transparent electrode on a glass substrate (manufactured by Matsuzaki Vacuum Co., Ltd.) that had been pattern-etched with a thickness of 200 nm. A light-emitting device was made by laminating N,N,N',N'-tetraphenyl-1,3-diaminobenzene thin film, tris(8-hydroxyquinoline)aluminum, and magnesium to thicknesses of 30 nm, 20 nm, and 200 nm using a vapor deposition method. was formed. (2) 1,3-butadiene gas is introduced near the laminated film formed in (1) using hydrogen as a carrier gas, and the pressure is 1
Glow discharge was performed at Torr to form a polymer film of 0.8 μm, which was used as the first layer of the sealing film. (3) Viscoat 540 epoxy acrylate (manufactured by Osaka Organic Chemical Industry) 50 wt%, light acrylate I
20 wt% of B-XA isobornyl methacrylate (manufactured by Kyoeisha Yushi Kagaku Co., Ltd.) and 30 wt% of Aronix M-315 triacryloyloxyethyl isocyanate (manufactured by Toagosei Kagaku Kogyo Co., Ltd.) were mixed, and 3 wt% of the total was added as a photoinitiator. Darocure 1173 (manufactured by Merck & Co., Ltd.) was added to prepare a photocurable resin. This photocurable resin was placed on the first layer formed in (2), and spin coating was performed by rotating at 1000 rpm while keeping the substrate horizontal. Immediately after spin coating, light irradiation was performed using a high-pressure mercury lamp in a nitrogen atmosphere for 15 minutes to cure and form a second sealing film layer. (4) As in Example 2, the luminance characteristics of the sealed device hardly changed even after continuous light emission for 100 hours. Further, the initial luminance characteristics were almost the same as the initial characteristics of the device before sealing.

【0036】[0036]

【発明の効果】本発明の封止方法は、有機発光素子を保
護及び封止する膜を形成して、発光素子の劣化を抑える
ことができる非常に良好な方法である。このような効果
は、次にあげる理由により得られるものと推定している
。まず、加熱工程がなく、低温で封止膜が形成されるた
めに有機発光素子そのものに損傷を与えない。また、第
一層が第二層の光硬化樹脂に対する保護層として作用し
、樹脂成分そのものや樹脂に含まれている溶剤や揮発成
分による有機発光素子への損傷を防いでいる。これらの
ことによって、素子を損傷することなしに実質的に封止
膜を形成できるものと考える。また、第一層の気相法で
形成される膜は、膜形成による残留歪がなく、その特性
上多少の体積収縮のある光硬化型樹脂の歪を緩衝する作
用があり、また、光硬化型樹脂との接合性も良いために
封止効果に優れた膜が形成されるものと考えられる。
[Effects of the Invention] The sealing method of the present invention is a very good method for forming a film that protects and seals an organic light-emitting element, thereby suppressing deterioration of the light-emitting element. It is estimated that such effects are obtained for the following reasons. First, there is no heating process and the sealing film is formed at a low temperature, so the organic light emitting device itself is not damaged. In addition, the first layer acts as a protective layer for the photocurable resin of the second layer, and prevents damage to the organic light emitting element due to the resin component itself or the solvent or volatile components contained in the resin. It is believed that due to these factors, a sealing film can be substantially formed without damaging the device. In addition, the film formed by the vapor phase method for the first layer has no residual strain due to film formation, and has the effect of buffering the strain of photocurable resin, which has some volumetric shrinkage due to its characteristics. It is thought that a film with excellent sealing effect is formed because it has good bonding properties with the mold resin.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明における封止膜の構成例を示す図である
FIG. 1 is a diagram showing an example of the configuration of a sealing film in the present invention.

【図2】劣化試験における発光強度の変化を示す図であ
り、■は実施例1、■は比較例1、■は比較例2におけ
る結果である。
FIG. 2 is a diagram showing changes in luminescence intensity in a deterioration test, where ■ is the result of Example 1, ■ is the result of Comparative Example 1, and ■ is the result of Comparative Example 2.

【図3】比較例1の発光スペクトルの劣化試験における
変化を示す図であり、0、1、3、10、30、60は
各照射0分、1分、3分、10分、30分、60分にお
けるスペクトルを表す。
FIG. 3 is a diagram showing changes in the emission spectrum of Comparative Example 1 in a deterioration test; Represents the spectrum at 60 minutes.

【図4】実施例2における電圧−輝度特性を示す図であ
り、■は初期、■は100時間後の特性である。
FIG. 4 is a diagram showing voltage-luminance characteristics in Example 2, where ■ is the initial characteristic and ■ is the characteristic after 100 hours.

【図5】劣化試験における発光強度の変化を示す図であ
り、■は実施例2、■は比較例4、■は比較例5におけ
る結果である。
FIG. 5 is a diagram showing changes in luminescence intensity in a deterioration test, where ■ indicates the results in Example 2, ■ indicates the results in Comparative Example 4, and ■ indicates the results in Comparative Example 5.

【符号の説明】[Explanation of symbols]

000  透明基板 100  透明電極 201  正孔輸送層 202  発光層 300  電極 401  封止膜第一層 402  封止膜第二層 000 Transparent substrate 100 Transparent electrode 201 Hole transport layer 202 Luminescent layer 300 electrode 401 Sealing film first layer 402 Sealing film second layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  有機発光素子において、素子の保護及
び封止を少なくとも二層構造からなる膜によって行い、
その封止膜の素子側から第一層を気相法によって成膜し
、第二層を第一層上に光硬化型樹脂を塗膜し、硬化させ
ることによって形成することを特徴とする有機発光素子
の封止方法。
1. In an organic light-emitting device, the device is protected and sealed by a film having at least a two-layer structure,
The first layer is formed from the element side of the sealing film by a vapor phase method, and the second layer is formed by coating a photocurable resin on the first layer and curing it. A method of sealing a light emitting element.
JP3028219A 1991-02-22 1991-02-22 Organic light emitting device sealing method Expired - Lifetime JP2793048B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3028219A JP2793048B2 (en) 1991-02-22 1991-02-22 Organic light emitting device sealing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3028219A JP2793048B2 (en) 1991-02-22 1991-02-22 Organic light emitting device sealing method

Publications (2)

Publication Number Publication Date
JPH04267097A true JPH04267097A (en) 1992-09-22
JP2793048B2 JP2793048B2 (en) 1998-09-03

Family

ID=12242516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3028219A Expired - Lifetime JP2793048B2 (en) 1991-02-22 1991-02-22 Organic light emitting device sealing method

Country Status (1)

Country Link
JP (1) JP2793048B2 (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0536475A (en) * 1991-07-26 1993-02-12 Idemitsu Kosan Co Ltd Sealing method of organic el element
JPH11111456A (en) * 1997-09-29 1999-04-23 Nippon Steel Chem Co Ltd Multiple type multicolor-emitting organic electroluminescent element
US6198217B1 (en) 1997-05-12 2001-03-06 Matsushita Electric Industrial Co., Ltd. Organic electroluminescent device having a protective covering comprising organic and inorganic layers
WO2001025342A1 (en) * 1999-10-06 2001-04-12 Uv Specialities, Inc. Uv curable compositions for producing electroluminescent coatings
JP2002532850A (en) * 1998-12-16 2002-10-02 バッテル・メモリアル・インスティチュート Environmental barrier material for organic light emitting device and method of manufacturing the same
JP2003109750A (en) * 2001-09-28 2003-04-11 Sanyo Electric Co Ltd Organic electroluminescent element
JP2003282261A (en) * 2002-03-26 2003-10-03 Fuji Electric Co Ltd Organic el display
KR20040039608A (en) * 2002-11-04 2004-05-12 주식회사 엘리아테크 Apparatus and Method for manufacturing an Organic Electro Luminescence Display Device
JP2004515887A (en) * 2000-10-11 2004-05-27 イー.エル.スペシャリスツ、インコーポレイテッド Film-like EL device having an ultraviolet-curing urethane jacket layer
WO2004060021A1 (en) * 2002-12-26 2004-07-15 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
JP2005100943A (en) * 2003-09-04 2005-04-14 Seiko Epson Corp Electro-optical device, manufacturing method of the same, and electronic apparatus
JP2006339049A (en) * 2005-06-02 2006-12-14 Tokki Corp Device for forming passivation film
US7169636B2 (en) 2002-12-13 2007-01-30 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of light emitting device and manufacturing device thereof
JP2007035647A (en) * 2006-09-21 2007-02-08 Sumitomo Chemical Co Ltd Organic electroluminescent element
JP2007066580A (en) * 2005-08-29 2007-03-15 Toyota Industries Corp Organic electroluminescent element and its manufacturing method
JP2009506171A (en) * 2005-08-25 2009-02-12 ヴィテックス・システムズ・インコーポレーテッド Encapsulated device and manufacturing method
US7700958B2 (en) 2002-07-05 2010-04-20 Semiconductor Energy Laboratory Co., Ltd. Light emitting device having pixel portion surrounded by first sealing material and covered with second sealing material
JP2011508062A (en) * 2007-12-28 2011-03-10 スリーエム イノベイティブ プロパティズ カンパニー Flexible encapsulated film system
KR20130129969A (en) 2010-12-07 2013-11-29 도쿄엘렉트론가부시키가이샤 Display device manufacturing apparatus, display device manufacturing method, and display device
US8674397B2 (en) 2010-06-23 2014-03-18 Tokyo Electron Limited Sealing film forming method, sealing film forming device, and light-emitting device
JP2014203654A (en) * 2013-04-04 2014-10-27 凸版印刷株式会社 Organic el device and manufacturing method therefor
US8900366B2 (en) 2002-04-15 2014-12-02 Samsung Display Co., Ltd. Apparatus for depositing a multilayer coating on discrete sheets
US8904819B2 (en) 2009-12-31 2014-12-09 Samsung Display Co., Ltd. Evaporator with internal restriction
US8955217B2 (en) 1999-10-25 2015-02-17 Samsung Display Co., Ltd. Method for edge sealing barrier films
JP2015159083A (en) * 2014-02-25 2015-09-03 株式会社デンソー Method of manufacturing organic el device
US9184410B2 (en) 2008-12-22 2015-11-10 Samsung Display Co., Ltd. Encapsulated white OLEDs having enhanced optical output
US9337446B2 (en) 2008-12-22 2016-05-10 Samsung Display Co., Ltd. Encapsulated RGB OLEDs having enhanced optical output
US9839940B2 (en) 2002-04-15 2017-12-12 Samsung Display Co., Ltd. Apparatus for depositing a multilayer coating on discrete sheets
US10950821B2 (en) 2007-01-26 2021-03-16 Samsung Display Co., Ltd. Method of encapsulating an environmentally sensitive device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7229900B2 (en) 2003-10-28 2007-06-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, method of manufacturing thereof, and method of manufacturing base material

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0536475A (en) * 1991-07-26 1993-02-12 Idemitsu Kosan Co Ltd Sealing method of organic el element
US6198217B1 (en) 1997-05-12 2001-03-06 Matsushita Electric Industrial Co., Ltd. Organic electroluminescent device having a protective covering comprising organic and inorganic layers
JPH11111456A (en) * 1997-09-29 1999-04-23 Nippon Steel Chem Co Ltd Multiple type multicolor-emitting organic electroluminescent element
JP4856313B2 (en) * 1998-12-16 2012-01-18 三星モバイルディスプレイ株式會社 Environmental barrier material for organic light emitting device and method of manufacturing the same
JP2002532850A (en) * 1998-12-16 2002-10-02 バッテル・メモリアル・インスティチュート Environmental barrier material for organic light emitting device and method of manufacturing the same
WO2001025342A1 (en) * 1999-10-06 2001-04-12 Uv Specialities, Inc. Uv curable compositions for producing electroluminescent coatings
US8955217B2 (en) 1999-10-25 2015-02-17 Samsung Display Co., Ltd. Method for edge sealing barrier films
JP2004515887A (en) * 2000-10-11 2004-05-27 イー.エル.スペシャリスツ、インコーポレイテッド Film-like EL device having an ultraviolet-curing urethane jacket layer
JP4723169B2 (en) * 2000-10-11 2011-07-13 オライオンテクノロジーズ,エルエルシー Thin, flexible and adaptable sheet-like electroluminescent structure with UV curable urethane jacket
JP2003109750A (en) * 2001-09-28 2003-04-11 Sanyo Electric Co Ltd Organic electroluminescent element
JP2003282261A (en) * 2002-03-26 2003-10-03 Fuji Electric Co Ltd Organic el display
US8900366B2 (en) 2002-04-15 2014-12-02 Samsung Display Co., Ltd. Apparatus for depositing a multilayer coating on discrete sheets
US9839940B2 (en) 2002-04-15 2017-12-12 Samsung Display Co., Ltd. Apparatus for depositing a multilayer coating on discrete sheets
US9929377B2 (en) 2002-07-05 2018-03-27 Semiconductor Energy Laboratory Co., Ltd. Arrangement of sealing materials for display device
US7700958B2 (en) 2002-07-05 2010-04-20 Semiconductor Energy Laboratory Co., Ltd. Light emitting device having pixel portion surrounded by first sealing material and covered with second sealing material
US10566569B2 (en) 2002-07-05 2020-02-18 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and method of manufacturing the same
US9601712B2 (en) 2002-07-05 2017-03-21 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and method of manufacturing the same
KR20040039608A (en) * 2002-11-04 2004-05-12 주식회사 엘리아테크 Apparatus and Method for manufacturing an Organic Electro Luminescence Display Device
US7569859B2 (en) 2002-12-13 2009-08-04 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of light emitting device and manufacturing device thereof
US7169636B2 (en) 2002-12-13 2007-01-30 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of light emitting device and manufacturing device thereof
US8044411B2 (en) 2002-12-13 2011-10-25 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US8237176B2 (en) 2002-12-13 2012-08-07 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US8482011B2 (en) 2002-12-13 2013-07-09 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
US8785964B2 (en) 2002-12-26 2014-07-22 Semiconductor Energy Laboratory Co., Ltd. Panel light comprising a light-emitting device
WO2004060021A1 (en) * 2002-12-26 2004-07-15 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US7531847B2 (en) 2002-12-26 2009-05-12 Semiconductor Energy Laboratory Co., Ltd. Light emitting device having organic light-emitting element
JP4561201B2 (en) * 2003-09-04 2010-10-13 セイコーエプソン株式会社 Electro-optical device, method of manufacturing electro-optical device, and electronic apparatus
JP2005100943A (en) * 2003-09-04 2005-04-14 Seiko Epson Corp Electro-optical device, manufacturing method of the same, and electronic apparatus
JP2006339049A (en) * 2005-06-02 2006-12-14 Tokki Corp Device for forming passivation film
JP2009506171A (en) * 2005-08-25 2009-02-12 ヴィテックス・システムズ・インコーポレーテッド Encapsulated device and manufacturing method
JP2007066580A (en) * 2005-08-29 2007-03-15 Toyota Industries Corp Organic electroluminescent element and its manufacturing method
JP4706394B2 (en) * 2005-08-29 2011-06-22 株式会社豊田自動織機 Method for manufacturing organic electroluminescence element
JP2007035647A (en) * 2006-09-21 2007-02-08 Sumitomo Chemical Co Ltd Organic electroluminescent element
US10950821B2 (en) 2007-01-26 2021-03-16 Samsung Display Co., Ltd. Method of encapsulating an environmentally sensitive device
US8846169B2 (en) 2007-12-28 2014-09-30 3M Innovative Properties Company Flexible encapsulating film systems
JP2011508062A (en) * 2007-12-28 2011-03-10 スリーエム イノベイティブ プロパティズ カンパニー Flexible encapsulated film system
US9184410B2 (en) 2008-12-22 2015-11-10 Samsung Display Co., Ltd. Encapsulated white OLEDs having enhanced optical output
US9337446B2 (en) 2008-12-22 2016-05-10 Samsung Display Co., Ltd. Encapsulated RGB OLEDs having enhanced optical output
US9362530B2 (en) 2008-12-22 2016-06-07 Samsung Display Co., Ltd. Encapsulated white OLEDs having enhanced optical output
US8904819B2 (en) 2009-12-31 2014-12-09 Samsung Display Co., Ltd. Evaporator with internal restriction
US8674397B2 (en) 2010-06-23 2014-03-18 Tokyo Electron Limited Sealing film forming method, sealing film forming device, and light-emitting device
KR20130129969A (en) 2010-12-07 2013-11-29 도쿄엘렉트론가부시키가이샤 Display device manufacturing apparatus, display device manufacturing method, and display device
JP2014203654A (en) * 2013-04-04 2014-10-27 凸版印刷株式会社 Organic el device and manufacturing method therefor
JP2015159083A (en) * 2014-02-25 2015-09-03 株式会社デンソー Method of manufacturing organic el device

Also Published As

Publication number Publication date
JP2793048B2 (en) 1998-09-03

Similar Documents

Publication Publication Date Title
JP2793048B2 (en) Organic light emitting device sealing method
US7621794B2 (en) Method of encapsulating an organic light-emitting device
KR101156427B1 (en) Encapsulated devices and method of making
US8034182B2 (en) Apparatus for forming a film and an electroluminescence device
KR100656137B1 (en) Organic el device and method of manufacturing the same
JP4526776B2 (en) LIGHT EMITTING DEVICE AND ELECTRONIC DEVICE
JP5533585B2 (en) Gas barrier film manufacturing method, gas barrier film, and electronic device
US20150252125A1 (en) Curable resin compositions and barrier stacks including the same
US20070205409A1 (en) Process for making contained layers and devices made with same
JP2004299230A (en) Gas-barrier substrate
JP2009538504A (en) Method for fabricating sealed plasma sensitive device
WO2011001573A1 (en) Organic el display device and method for manufacturing same
CN111972047A (en) Sealing agent for organic electroluminescent display element
JP4498949B2 (en) Gas barrier film, and display substrate and display using the same
WO2013147189A1 (en) Curable resin composition for vapor deposition, resin protective film, oragnic optical device, and method for manufacturing organic optical device
WO2014119717A1 (en) Curable resin composition, resin protective film, organic optical device, and barrier film
WO2015012108A1 (en) Electronic device and method for manufacturing same
WO2012063445A1 (en) Organic el display device and production method for same
JP2004303562A (en) Substrate for organic electroluminescent element
KR20150105931A (en) Barrier stacks, and method for preparing the same
CN114555661B (en) Composition, cured product, sealing material for organic electroluminescent display element, and organic electroluminescent display device
KR100942498B1 (en) Method of producing organic light emitting apparatus
JP2014143195A (en) Vapor deposition material for protecting organic thin film element, resin protective film and organic optical device
WO2021100710A1 (en) Composition, cured body, sealing material for organic electroluminescent display element, and organic electroluminescent display device
JP2005011649A (en) Bonding method, manufacturing method of electroluminescent panel capable of utilizing the bonding method, and electroluminescent panel

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080619

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090619

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100619

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100619

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110619

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110619

Year of fee payment: 13