JPH0426581A - Production of compound semiconductor single crystal and apparatus for producing this crystal - Google Patents

Production of compound semiconductor single crystal and apparatus for producing this crystal

Info

Publication number
JPH0426581A
JPH0426581A JP12994790A JP12994790A JPH0426581A JP H0426581 A JPH0426581 A JP H0426581A JP 12994790 A JP12994790 A JP 12994790A JP 12994790 A JP12994790 A JP 12994790A JP H0426581 A JPH0426581 A JP H0426581A
Authority
JP
Japan
Prior art keywords
opening
crystal
closing
crystal growth
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12994790A
Other languages
Japanese (ja)
Inventor
Shoji Nakamori
中森 昌治
Hideo Yamada
秀夫 山田
Michinori Wachi
三千則 和地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP12994790A priority Critical patent/JPH0426581A/en
Publication of JPH0426581A publication Critical patent/JPH0426581A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To stabilize the crystal growth boundary at the time of crystal growth and to uniformize a crystal growing speed by providing a heat radiating hole in the upper part of a furnace body forming a high-temp. part and opening and closing this heat radiating hole to control the temp. distribution in the furnace according to the amt. of opening and closing thereof. CONSTITUTION:The detection value of a thermocouple 15 is applied to a control circuit 22 by which both are compared and the control circuit 22 outputs a control signal to an actuator 23 to control the opening/closing angle of an opening/closing door 14 in such a manner that the detected value of the thermocouple 15 is equaled to a set value. The set values most adequate for a temp. falling process are previously set stepwise in a setting circuit. The set values are empirifically obtd. and are properly corrected and changed even during the crystal growth. The opening/closing angle of the pening/closing door 14 is adjusted in accordance with the set values at the time of producing the compd. semiconductor crystal by lowering the temp. while maintaining the prescribed temp. distribution formed in the high-temp. furnace 31, by which the fluctuation in heat radiating conditions is suppressed and the heat radiation quantity at the crystal growth boundary position is stabilized and uniformized.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は化合物半導体結晶製造装置およびその製造方法
に間するものであり、特に温度傾斜凝固法(GF法)に
よるボート法化合物半導体結晶製造装置およびその製造
方法に間するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a compound semiconductor crystal manufacturing apparatus and a manufacturing method thereof, and particularly to a boat method compound semiconductor crystal manufacturing apparatus using a temperature gradient solidification method (GF method). and its manufacturing method.

[従来の技術] 第3図の上半分に従来のGF法による化合物半導体結晶
製造装置の概略構成例を示す。
[Prior Art] The upper half of FIG. 3 shows a schematic configuration example of a compound semiconductor crystal manufacturing apparatus using the conventional GF method.

30は二連式の抵抗加熱炉であり、融液保持温度を与え
る高温炉31と、蒸気圧温度を与える低温炉32とを持
っている。GF法を実施するこの抵抗加熱炉30を以下
、GF炉という。
30 is a double resistance heating furnace, which has a high temperature furnace 31 that provides a melt holding temperature and a low temperature furnace 32 that provides a vapor pressure temperature. This resistance heating furnace 30 that implements the GF method will be referred to as a GF furnace hereinafter.

GF炉30内には石英アンプル35が炉体の軸方向に挿
入されている。この石英アンプル35内には拡散障壁3
8によって仕切られて、一方の高温炉31側に石英ボー
ト36が、他方の低温炉32側に■属元素33がセット
されている。石英ボート36内にはm−■属元素の融液
34が入れろれ、ボート端部には■−v属元素の種結晶
39が置かれている。
A quartz ampoule 35 is inserted into the GF furnace 30 in the axial direction of the furnace body. Inside this quartz ampoule 35 is a diffusion barrier 3.
A quartz boat 36 is set on one side of the high temperature furnace 31, and a group 3 element 33 is set on the other side of the low temperature furnace 32. A molten liquid 34 of m--group elements is placed in the quartz boat 36, and a seed crystal 39 of ■-v group elements is placed at the end of the boat.

!!1!液保持温度を与える上記高温炉31内に任意の
温度分布を形成し、この温度分布を保持したまま、温度
を降下させることにより、ボート360種結晶39例の
一端から融液34を凝固させて、融液全体を結晶化する
ことにより、化合物半導体結晶を得ている。
! ! 1! By forming an arbitrary temperature distribution in the high-temperature furnace 31 that provides a liquid holding temperature, and lowering the temperature while maintaining this temperature distribution, the melt 34 is solidified from one end of the 360 seed crystals of the boat. , a compound semiconductor crystal is obtained by crystallizing the entire melt.

ところで、GF法では、欠陥のない化合物半導体結晶を
得るために、融液34の凝固は結晶自由表面から凝固す
ることが必要であり、そのために高温炉31上部に放熱
のための放熱孔37を設け、結晶自由表面から放熱させ
る構造が採られている。
By the way, in the GF method, in order to obtain a defect-free compound semiconductor crystal, it is necessary to solidify the melt 34 from the crystal free surface, and for this purpose, a heat radiation hole 37 is provided in the upper part of the high temperature furnace 31 for heat radiation. A structure is adopted in which heat is dissipated from the free surface of the crystal.

[発明が解決しようとする課題] しかしながら、上記した従来のGF炉30においては、
放熱孔37はボート36の長さ程度の有限長であり、第
3図の下半分に表した温度特性に示すごとく、放熱孔3
7の長さ方向で放熱条件が変化してしまうという欠点を
有している。
[Problem to be solved by the invention] However, in the conventional GF furnace 30 described above,
The heat radiation hole 37 has a finite length approximately equal to the length of the boat 36, and as shown in the temperature characteristics shown in the lower half of FIG.
7 has the disadvantage that the heat dissipation conditions change in the length direction.

即ち、放熱孔37の影響を受けない、アンプル35の下
部の高温炉長さ方向温度分布aについては、この温度分
布を保持したまま降温できるのであるが、放熱孔37の
影響を直接受ける結晶自由表面の高温炉長さ方向分布す
については、図示するように、降温に応じて放熱条件が
変化し、その分布が点線で重ねて描いたアンプル下部の
温度分布と大きく異なったものとなる。
In other words, the temperature distribution a in the longitudinal direction of the high-temperature furnace in the lower part of the ampoule 35, which is not affected by the heat radiation holes 37, can be lowered while maintaining this temperature distribution, but the crystal freedom, which is directly affected by the heat radiation holes 37, can be lowered. Regarding the longitudinal distribution of the high temperature furnace on the surface, as shown in the figure, the heat dissipation conditions change as the temperature decreases, and the distribution becomes significantly different from the temperature distribution in the lower part of the ampoule, which is overlapped with the dotted line.

このため融液34の凝固速度が変動したり、結晶固液界
面が変動したりして、結晶欠陥が発生しやすい状態にな
り、不安定な結晶成長をもたらすことになる。
For this reason, the solidification rate of the melt 34 fluctuates and the crystal solid-liquid interface fluctuates, creating a state in which crystal defects are likely to occur, resulting in unstable crystal growth.

なお、このことは放熱孔37の幅方向による放熱条件の
変化にも起因している。
Note that this is also due to a change in heat radiation conditions depending on the width direction of the heat radiation hole 37.

このような不具合を解消するには、放熱孔37からの放
熱量を調整して降温による結晶成長中の放熱条件の変更
ができればよい。ところが、第4図に示すごとく、放熱
孔37の構造は一般的には断熱材42と石英ガラス板4
3とを交互に積層した固定構造となっている。なお、図
中40は耐火物、41はヒータ素線である。
In order to eliminate such a problem, it is only necessary to adjust the amount of heat radiation from the heat radiation holes 37 and change the heat radiation conditions during crystal growth due to temperature decrease. However, as shown in FIG.
It has a fixed structure in which 3 layers are alternately stacked. In addition, in the figure, 40 is a refractory, and 41 is a heater wire.

このような固定構造であると、断熱材42@および積層
数により放熱量が決定されてしまうため、常に放熱条件
は一定となフてしまい、結晶成長中に結晶固液界面およ
び結晶成長速度に及ぼす放熱条件の変動を制御するよう
放熱条件を変更することはできない。
With such a fixed structure, the amount of heat dissipation is determined by the insulation material 42@ and the number of laminated layers, so the heat dissipation conditions are always constant, and the crystal solid-liquid interface and crystal growth rate change during crystal growth. It is not possible to change the heat dissipation conditions to control variations in the heat dissipation conditions.

特に結晶の厚肉化、大面積化を図るうえでは、この放熱
条件の変動が結晶成長に大きく影響し、結晶欠陥の発生
がさらに増大し、品質、生産性両面で大きな問題となる
Particularly when attempting to thicken the crystal and increase its area, variations in heat dissipation conditions greatly affect crystal growth, further increasing the occurrence of crystal defects, and causing major problems in terms of both quality and productivity.

本発明の目的は、前記した従来技術の欠点を解消し、結
晶成長時の結晶成長界面の安定化および結晶成長速度の
均一化を大幅に向上できる新規な化合物半導体結晶製造
装置およびその製造方法を提供することにある。
An object of the present invention is to provide a novel compound semiconductor crystal manufacturing apparatus and method for manufacturing the same, which eliminates the drawbacks of the prior art described above and can significantly improve the stabilization of the crystal growth interface during crystal growth and the uniformity of the crystal growth rate. It is about providing.

[r!R題を解決するための手段] 本発明の化合物半導体結晶製造装置は、高温部及び低温
部を有する加熱炉を用い、前記高温部に形成した所定の
温度分布を保持したまま降温させて化合物半導体結晶を
製造する化合物半導体結晶製造装置において、前記高温
部を形成する炉体の上部に炉内の熱を放出する放熱孔を
設け、この放熱孔に該放熱孔を開閉しその開閉量に応じ
て炉内温度分布を制御する開閉手段を取り付けるように
したものである。
[r! Means for Solving Problem R] The compound semiconductor crystal manufacturing apparatus of the present invention uses a heating furnace having a high temperature section and a low temperature section, and cools the compound semiconductor while maintaining a predetermined temperature distribution formed in the high temperature section. In a compound semiconductor crystal manufacturing apparatus for manufacturing crystals, a heat radiation hole is provided in the upper part of the furnace body forming the high temperature section to release heat in the furnace, and the heat radiation hole is opened and closed according to the amount of opening and closing of the heat radiation hole. It is equipped with an opening/closing means to control the temperature distribution inside the furnace.

また、本発明の化合物半導体結晶製造方法は、高温部及
び低温部を有する加熱炉を用い、前記高温部に形成した
所定の温度分布を保持したまま降温させて化合物半導体
結晶を製造する化合物半導体結晶製造方法において、 炉内から放出する放熱量を可変にして結晶成長界面およ
び結晶成長速度を制御するようにしたものである。
Further, the compound semiconductor crystal production method of the present invention uses a heating furnace having a high temperature section and a low temperature section, and lowers the temperature while maintaining a predetermined temperature distribution formed in the high temperature section to produce a compound semiconductor crystal. In this manufacturing method, the amount of heat released from the inside of the furnace is varied to control the crystal growth interface and crystal growth rate.

[作用] 本発明によれば、高温部の上部に設けられた放熱孔に、
放熱孔を開閉することが可能な開閉手段を設けであるの
で、この開閉手段を開閉することにより放熱量の調整が
可能となり、その結果、結晶成長界面形状および結晶成
長速度と密接に関連する放熱条件を調整することが可能
となり、結晶成長中の放熱条件の変動を抑制することが
できる。
[Function] According to the present invention, the heat radiation hole provided in the upper part of the high temperature section has
Since the opening/closing means that can open and close the heat radiation hole is provided, the amount of heat radiation can be adjusted by opening and closing this opening/closing means, and as a result, the heat radiation is closely related to the crystal growth interface shape and crystal growth rate. It becomes possible to adjust the conditions, and it is possible to suppress fluctuations in heat dissipation conditions during crystal growth.

これにより結晶成長界面の安定化および結晶成長速度の
均一化を大幅に向上させることが可能となる。
This makes it possible to significantly improve the stabilization of the crystal growth interface and the uniformity of the crystal growth rate.

[実施例コ 以下、本発明の一実施例を第1図および第2図を用いて
説明する。GF炉の基本構造は従来例と同じである。
[Example 1] An example of the present invention will be described below with reference to FIGS. 1 and 2. The basic structure of the GF furnace is the same as the conventional example.

第1図は、石英アンプル35の挿入されたGF炉の高温
炉31の上部断面構造を示す。高温炉31の上部に、炉
内に発生した熱の一部を放出する長孔状の放熱孔17が
炉体の軸方向に設けられる。
FIG. 1 shows an upper cross-sectional structure of a high temperature furnace 31 of a GF furnace into which a quartz ampoule 35 is inserted. An elongated heat radiation hole 17 is provided in the upper part of the high temperature furnace 31 in the axial direction of the furnace body to release part of the heat generated in the furnace.

放熱孔17は炉体上部の耐火物40をくりぬいて形成さ
れる。放熱孔17の開設位置は、第3図と同様に、石英
アンプル35の真上で、かつ種結晶を載置した石英ボー
トの先端から融液の入ったボートの後端近くまでとする
The heat radiation hole 17 is formed by hollowing out the refractory 40 in the upper part of the furnace body. As in FIG. 3, the opening position of the heat radiation hole 17 is directly above the quartz ampoule 35 and extends from the tip of the quartz boat on which the seed crystal is placed to near the rear end of the boat containing the melt.

上記のように形成された放熱孔17には、その放熱孔1
7よりもやや口径の小さな間口16の開設された石英ガ
ラス板12が搭載されている。
The heat dissipation hole 17 formed as described above has the heat dissipation hole 1
A quartz glass plate 12 having a frontage 16 with a diameter slightly smaller than that of 7 is mounted.

石英ガラス板12に開設された間口16は放熱孔17と
連通させ、間口16には、炉体上部の放熱孔17を開閉
する開閉手段としての両開きの開閉1114が取り付け
られている。この開閉扉14はその開閉角度を自由に調
整できるように構成され、その開閉量に応じて炉内温度
分布を任意に制御できるようになっている。開閉扉14
は断熱材で構成することが望ましい。
The opening 16 opened in the quartz glass plate 12 is communicated with the heat radiation hole 17, and a double opening 1114 is attached to the opening 16 as an opening/closing means for opening and closing the heat radiation hole 17 in the upper part of the furnace body. The opening/closing door 14 is configured so that its opening/closing angle can be freely adjusted, and the temperature distribution in the furnace can be arbitrarily controlled according to the amount of opening/closing. Opening/closing door 14
It is preferable to use a heat insulating material.

放熱孔17から放出される放熱温度を検出するために、
開口16に検出端を臨ませた一対の熱電対15.15が
石英ガラス板12上に取り付けられている。
In order to detect the heat radiation temperature emitted from the heat radiation hole 17,
A pair of thermocouples 15,15 with their detection ends facing the opening 16 are mounted on the quartz glass plate 12.

第2図は開閉s14の制御系を示すブロック図である。FIG. 2 is a block diagram showing a control system for opening/closing s14.

21は開閉!!114の開閉角度に相間のある放熱量を
任意に設定できる設定回路であり、設定値を制御回路2
2に加える。制御回路22には、熱電対15からの検出
値も加えられて、両者は比較され、熱電対15の検出値
が設定値と等しくなるように、制御回路22はアクチュ
エータ23に制御信号を出力して、開閉Ji14の開閉
角度を制御する。
21 is open and close! ! This is a setting circuit that can arbitrarily set the amount of heat radiation between the opening and closing angles of 114, and the set value is set by the control circuit 2.
Add to 2. The detected value from the thermocouple 15 is also added to the control circuit 22, the two are compared, and the control circuit 22 outputs a control signal to the actuator 23 so that the detected value of the thermocouple 15 becomes equal to the set value. The opening/closing angle of the opening/closing Ji 14 is controlled.

予め、降温過程にもっとも適切な設定値を段階的に設定
回路211に設定しておく。もっとも、この設定値は経
験的に得られるものであり、結晶成長中であっても、適
宜補正変更され得る。
The most appropriate setting values for the temperature decreasing process are set in advance in the setting circuit 211 in stages. However, this set value is obtained empirically, and can be corrected and changed as appropriate even during crystal growth.

高温炉31に形成した所定の温度分布を保持したまま降
温させて化合物半導体結晶を製造する際に、設定値にも
とづいて、開閉扉14の開閉角度を調整することにより
、放熱条件の変動を抑制し、結晶成長界面位置での放熱
量を安定化し、かつ均一化することが可能となる。これ
により、結晶成長界面および結晶成長速度制御が有効に
なされる。
When manufacturing a compound semiconductor crystal by lowering the temperature while maintaining a predetermined temperature distribution formed in the high temperature furnace 31, fluctuations in heat radiation conditions are suppressed by adjusting the opening/closing angle of the opening/closing door 14 based on the set value. However, it becomes possible to stabilize and make the amount of heat dissipated at the crystal growth interface position uniform. Thereby, the crystal growth interface and crystal growth rate can be controlled effectively.

また、結晶の厚肉化、大面積化を図る上でも、放熱量を
任意に調整することにより、炉体構造を変えることなく
容易に対処することができるようになる。その結果、多
結晶、双晶、リネージ等の結晶欠陥発生を大幅に低減で
き、またそれらの不良発生による溶直し等の=WJkな
作業も大幅に低減でき、品質および生産性の上で大幅な
向上ができる。
Furthermore, by arbitrarily adjusting the amount of heat dissipation, it becomes possible to easily cope with the need to increase the thickness and area of the crystal without changing the structure of the furnace body. As a result, the occurrence of crystal defects such as polycrystals, twins, and lineages can be significantly reduced, and the amount of WJk work such as remelting due to the occurrence of these defects can also be greatly reduced, resulting in a significant improvement in quality and productivity. You can improve.

なお、上記実施例では、開閉手段を両開きの開閉扉とし
た場合について説明したが、本発明はこれに限定される
ものではない。例えば、スライド式、絞り式等であって
もよい。また、放熱孔に設けられる開閉手段は、放熱孔
の全面積を開閉するようにすることも、あるいはその一
部だ(すを開閉するようしてもよい。更には、第4図に
示す、断熱材42の一部を開閉手段に置換することも可
能である。
In addition, although the said Example demonstrated the case where the opening-and-closing means was a double-door opening-and-closing door, this invention is not limited to this. For example, it may be of a sliding type, a diaphragm type, or the like. Further, the opening/closing means provided in the heat radiation hole may be configured to open and close the entire area of the heat radiation hole, or may be configured to open and close a portion thereof.Furthermore, as shown in FIG. It is also possible to replace a part of the heat insulating material 42 with an opening/closing means.

[発明の効果] 本発明によれば次のような効果を発揮する。[Effect of the invention] According to the present invention, the following effects are achieved.

(1)本発明装置によれば、炉体構造、寸法を変えるこ
となく簡易な構造でありながら、結晶成長界面変動およ
び結晶成長速度変動を大幅に改善でき、安定な結晶成長
が得られる。
(1) According to the apparatus of the present invention, although it has a simple structure without changing the furnace structure and dimensions, fluctuations in the crystal growth interface and fluctuations in the crystal growth rate can be significantly improved, and stable crystal growth can be obtained.

(2)本発明方法によれば、結晶成長時の結晶成長界面
の安定化及び結晶成長速度の均一化を大幅に向上でき、
結晶の厚肉化、大面積化が容易に対応可能となり、歩留
り向上、生産性向上を図ることができる。
(2) According to the method of the present invention, stabilization of the crystal growth interface during crystal growth and uniformity of the crystal growth rate can be greatly improved;
It becomes possible to easily handle thicker crystals and larger crystal areas, thereby improving yield and productivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す要部断面図、第2図は
本実施例の制御系を示すブロック図、第3図は従来の化
合物半導体結晶製造装置の概略構成図および高温炉内部
の温度分布を示す特性図、第4図は従来の放熱孔の断面
構造を示す図である。 12は石英ガラス板、14は開閉扉、15は熱電対、1
6は開口、17は放熱孔、40は耐火物、41はヒータ
素線、30はGF炉、31は高温炉、32は低温炉、3
5は石英アンプルである。 放熱量 本実施例による構成 本実施例による制御系 第2図 第3図 従来例による構成 第4図
Fig. 1 is a cross-sectional view of essential parts showing an embodiment of the present invention, Fig. 2 is a block diagram showing a control system of this embodiment, and Fig. 3 is a schematic configuration diagram of a conventional compound semiconductor crystal manufacturing apparatus and a high-temperature furnace. A characteristic diagram showing the internal temperature distribution, and FIG. 4 is a diagram showing the cross-sectional structure of a conventional heat radiation hole. 12 is a quartz glass plate, 14 is an opening/closing door, 15 is a thermocouple, 1
6 is an opening, 17 is a heat radiation hole, 40 is a refractory, 41 is a heater wire, 30 is a GF furnace, 31 is a high temperature furnace, 32 is a low temperature furnace, 3
5 is a quartz ampoule. Heat dissipation amount Configuration according to this embodiment Control system according to this embodiment Fig. 2 Fig. 3 Configuration according to conventional example Fig. 4

Claims (1)

【特許請求の範囲】 1、高温部及び低温部を有する加熱炉を用い、前記高温
部に形成した所定の温度分布を保持したまま降温させて
化合物半導体結晶を製造する化合物半導体結晶製造装置
において、 前記高温部を形成する炉体の上部に炉内の熱を放出する
放熱孔を設け、 この放熱孔に該放熱孔を開閉しその開閉量に応じて炉内
温度分布を制御する開閉手段を取り付けた ことを特徴とする化合物半導体結晶製造装置。 2、高温部及び低温部を有する加熱炉を用い、前記高温
部に形成した所定の温度分布を保持したまま降温させて
化合物半導体結晶を製造する化合物半導体結晶製造方法
において、 炉内から放出する放熱量を可変にして結晶成長界面およ
び結晶成長速度を制御するようにしたことを特徴とする
化合物半導体結晶製造方法。
[Scope of Claims] 1. A compound semiconductor crystal production apparatus that uses a heating furnace having a high temperature section and a low temperature section and produces a compound semiconductor crystal by lowering the temperature while maintaining a predetermined temperature distribution formed in the high temperature section, A heat radiation hole is provided in the upper part of the furnace body forming the high-temperature part, and an opening/closing means is attached to the heat radiation hole for opening and closing the heat radiation hole and controlling the temperature distribution in the furnace according to the amount of opening and closing of the heat radiation hole. A compound semiconductor crystal manufacturing device characterized by the following. 2. In a compound semiconductor crystal manufacturing method that uses a heating furnace having a high temperature section and a low temperature section and lowers the temperature while maintaining a predetermined temperature distribution formed in the high temperature section to manufacture a compound semiconductor crystal, A method for producing a compound semiconductor crystal, characterized in that a crystal growth interface and crystal growth rate are controlled by varying the amount of heat.
JP12994790A 1990-05-18 1990-05-18 Production of compound semiconductor single crystal and apparatus for producing this crystal Pending JPH0426581A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12994790A JPH0426581A (en) 1990-05-18 1990-05-18 Production of compound semiconductor single crystal and apparatus for producing this crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12994790A JPH0426581A (en) 1990-05-18 1990-05-18 Production of compound semiconductor single crystal and apparatus for producing this crystal

Publications (1)

Publication Number Publication Date
JPH0426581A true JPH0426581A (en) 1992-01-29

Family

ID=15022374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12994790A Pending JPH0426581A (en) 1990-05-18 1990-05-18 Production of compound semiconductor single crystal and apparatus for producing this crystal

Country Status (1)

Country Link
JP (1) JPH0426581A (en)

Similar Documents

Publication Publication Date Title
TW554093B (en) Method for preparing silicon single crystal and silicon single crystal
EP3396029B1 (en) Sic single crystal production method and production apparatus
US11661671B2 (en) Technique for controlling temperature uniformity in crystal growth apparatus
TWI622673B (en) Drawing mechanism of ingot growing furnace
KR100421125B1 (en) Apparatus and method for producing crystals by the czochralski method and crystals produced by this method
JP3867476B2 (en) Silicon single crystal manufacturing method and silicon single crystal manufacturing apparatus
TWI697591B (en) Silicon melt convection pattern control method and single-crystal silicon manufacturing method
JPH0426581A (en) Production of compound semiconductor single crystal and apparatus for producing this crystal
JP6014838B1 (en) Multiple sapphire single crystals and method for producing the same
JP2828118B2 (en) Single crystal manufacturing method and single crystal pulling apparatus
KR20200060984A (en) High-quality crystal pull-up heat tracing and impeller
JPS5912636B2 (en) How to pull ribbon-shaped single crystals
KR102451953B1 (en) Device for improving flow in single crystal growth furnace of pulling machine
JPH069025Y2 (en) Compound semiconductor single crystal manufacturing equipment
JPH072615Y2 (en) Compound semiconductor single crystal growth equipment
JPS58120591A (en) Production of single crystal
JPS6090897A (en) Method and apparatus for manufacturing compound semiconductor single crystal
JPH01145391A (en) Device for pulling up single crystal
JPH03215381A (en) Producing device of single crystal of compound semiconductor
JPH03193688A (en) Production of single crystal of compound semiconductor
JPH0316988A (en) Production device of single crystal of compound semiconductor
JP2005225714A (en) Crystal growth apparatus and method for growing single crystal
JPS6040664A (en) Production of unidirectionally solidified crystal
JPH024126Y2 (en)
JP2936694B2 (en) Single crystal growing method and high frequency work coil