JP2936694B2 - Single crystal growing method and high frequency work coil - Google Patents

Single crystal growing method and high frequency work coil

Info

Publication number
JP2936694B2
JP2936694B2 JP29117290A JP29117290A JP2936694B2 JP 2936694 B2 JP2936694 B2 JP 2936694B2 JP 29117290 A JP29117290 A JP 29117290A JP 29117290 A JP29117290 A JP 29117290A JP 2936694 B2 JP2936694 B2 JP 2936694B2
Authority
JP
Japan
Prior art keywords
frequency
coil
heating
single crystal
temperature control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29117290A
Other languages
Japanese (ja)
Other versions
JPH04164888A (en
Inventor
芳男 藤野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP29117290A priority Critical patent/JP2936694B2/en
Publication of JPH04164888A publication Critical patent/JPH04164888A/en
Application granted granted Critical
Publication of JP2936694B2 publication Critical patent/JP2936694B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • General Induction Heating (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高周波電源から発生する高周波電流をワー
クコイルに導き、このワークコイル中に設置した単結晶
材料を高周波電流によって加熱・融解し、単結晶化を行
う、いわゆる高周波加熱法による単結晶育成方法及びそ
の方法に用いる高周波ワークコイルに関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention guides a high-frequency current generated from a high-frequency power supply to a work coil, and heats and melts a single crystal material installed in the work coil by the high-frequency current. The present invention relates to a method for growing a single crystal by a so-called high-frequency heating method for performing single crystallization and a high-frequency work coil used for the method.

〔従来の技術〕[Conventional technology]

高周波加熱法で単結晶を育成する場合、原料融液の温
度制御を行うのに二つの方法がある。第1の方法は、原
料を収容するためのるつぼに熱電対を取付けて、これに
よって高周波電流を制御し、るつぼ中の原料融液の温度
制御を行うもので、熱電対制御法と呼んでおり、制御の
精度を高く保つことができる。第2の方法は、るつぼを
用いても適当な熱電対がない場合、フローティングゾー
ン法のようにるつぼを用いずに熱電対を使う余地のない
場合を対象とするもので、この方法は、高周波電流を直
接制御するので、電流制御法と呼ばれているものである
が、温度制御としては間接的であるため、制御精度は低
い。
When growing a single crystal by the high frequency heating method, there are two methods for controlling the temperature of the raw material melt. The first method is to attach a thermocouple to a crucible for accommodating a raw material, thereby controlling a high-frequency current and controlling the temperature of the raw material melt in the crucible, and is called a thermocouple control method. , The control accuracy can be kept high. The second method is intended for a case where there is no room for using a thermocouple without using a crucible such as a floating zone method when there is no suitable thermocouple even if a crucible is used. Since the current is directly controlled, it is called a current control method. However, since the temperature control is indirect, the control accuracy is low.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

電流制御法は、熱電対制御法と異なり、原料融液の温
度そのものを制御するのではなく、単に高周波電流が所
定の値にとどまるよう制御するものであるから、原料融
液が自から状態を変えたり、外部状況の変化を受けたり
などで温度が変化しても、これを復元する能力はない。
例えば、電流制御法を用いてフローティングゾーン法に
より単結晶育成を行う場合、最初のスタート時において
全ての条件を調整し、育成を開始したとしても、時間と
共に周辺温度が変化したり、原料や育成された結晶の内
部の熱の流れ方が変化したりなどして育成されつつある
部分の温度が変化すると、結晶の直径は、それに対応し
て太くなったり、細くなったりする。これは単に直径の
変化だけでなく、結晶組成が変化するなど大きな問題と
なる。
Unlike the thermocouple control method, the current control method does not control the temperature of the raw material melt itself, but simply controls the high-frequency current to stay at a predetermined value. Even if the temperature changes due to change, external conditions, etc., there is no ability to restore it.
For example, when growing a single crystal by the floating zone method using the current control method, even if the growth is started by adjusting all conditions at the first start, the surrounding temperature changes with time, When the temperature of the growing portion changes due to a change in the flow of heat inside the formed crystal or the like, the diameter of the crystal becomes correspondingly thicker or thinner. This poses a serious problem such as a change in crystal composition as well as a change in diameter.

通常、行われている電流制御法で結晶育成を行う場
合、高周波電流を一定の値に保持しつづけると、どれぐ
らいの温度変化が起るかを調べてみた。第2図はその実
験の構成を示すもので、石英製アンプル1には、温度検
出用の熱電対2が挿入できるようにしてあり、融解用原
料としてテルル3を真空封入した。このように準備した
アンプル1を高周波電源(図示省略)に接続された高周
波コイル4中に吊した。次に高周波コイル4に高周波電
力を供給し、熱電対2が接続してある温度計(図示省
略)の指示がテルルの融点450℃を越える温度460℃にな
るようにした。これによって熱電対2の周囲の原料テル
ル3は融解し、メルト5となった。このときの高周波電
流は、65Aであったが、電流制御のために分流器から取
り出された高周波電流は制御器の指示で3.50mVであっ
た。温度が500℃になってから、24時間の間、温度を記
録した。
When growing a crystal by the current control method which is usually performed, it was examined how much temperature change occurs when the high-frequency current is kept at a constant value. FIG. 2 shows the configuration of the experiment, in which a thermocouple 2 for temperature detection was inserted into a quartz ampule 1, and tellurium 3 was vacuum-sealed as a raw material for melting. The ampoule 1 thus prepared was suspended in a high-frequency coil 4 connected to a high-frequency power supply (not shown). Next, high-frequency power was supplied to the high-frequency coil 4 so that the temperature indicated by a thermometer (not shown) to which the thermocouple 2 was connected was 460 ° C., which exceeded the melting point of tellurium, 450 ° C. As a result, the raw material tellurium 3 around the thermocouple 2 was melted and turned into a melt 5. The high-frequency current at this time was 65 A, but the high-frequency current extracted from the shunt for current control was 3.50 mV according to the instruction of the controller. The temperature was recorded for 24 hours after the temperature reached 500 ° C.

この結果、分流高周波電流は、3.50mV±0mVで殆ど変
化なく、制御器により完全に制御されていたことが分っ
た。
As a result, it was found that the shunt high-frequency current was 3.50 mV ± 0 mV and hardly changed, and was completely controlled by the controller.

一方、熱電対2による温度指示は、460℃±4℃であ
った。この温度の変化は外部要因によるもので、通常単
結晶育成に許容される温度変動±0.5℃に比べて相当に
大きい値である。
On the other hand, the temperature indication by the thermocouple 2 was 460 ° C. ± 4 ° C. This change in temperature is due to an external factor, and is considerably larger than the temperature fluctuation ± 0.5 ° C. normally allowed for single crystal growth.

本発明の目的は、特にフローティングゾーン方式の結
晶育成において温度変化が少ない温度制御を行う単結晶
育成方法及びその単結晶育成方法に用いる高周波ワーク
コイルを提供することにある。
An object of the present invention is to provide a single crystal growing method for performing temperature control with little temperature change particularly in a floating zone type crystal growing, and a high frequency work coil used in the single crystal growing method.

〔課題を解決するための手段〕[Means for solving the problem]

前記目的を達成するため、本発明に係る単結晶育成方
法においては、加熱・融解工程と、温度制御工程とを有
し、高周波電流が通電された高周波ワークコイルによる
高周波加熱で単結晶化を行う単結晶育成方法であって、 高周波ワークコイルは、加熱用ワークコイルと、温度
制御用ワークコイルとの対を有し、 対をなすワークコイルは、同一の高周波電源により高
周波電流が通電されるものであり、 加熱・融解工程は、高周波電流が通電された加熱用ワ
ークコイルで単結晶材料を高周波加熱して単結晶化させ
る工程であり、 温度制御工程は、高周波電流が通電された温度制御用
ワークコイルで、単結晶材料と同一素材の参照材料を高
周波加熱して融解し、その融点を熱電対で温度検出し、
その熱電対の出力に基づいて加熱用ワークコイルに通電
される高周波電流値を調整し、該加熱用ワークコイルに
よる温度を制御するものである。
In order to achieve the above object, a single crystal growing method according to the present invention includes a heating / melting step and a temperature controlling step, and performs single crystallization by high frequency heating using a high frequency work coil to which a high frequency current is applied. A method for growing a single crystal, wherein the high-frequency work coil has a pair of a heating work coil and a temperature control work coil, and the pair of work coils is supplied with a high-frequency current by the same high-frequency power supply. The heating / melting step is a step in which the single-crystal material is subjected to high-frequency heating with a heating work coil to which a high-frequency current is applied to form a single crystal, and the temperature control step is a temperature control step in which the high-frequency current is applied. In the work coil, the same reference material as the single crystal material is melted by high frequency heating and its melting point is detected with a thermocouple.
The value of the high-frequency current supplied to the heating work coil is adjusted based on the output of the thermocouple, and the temperature of the heating work coil is controlled.

また、本発明に係る高周波ワークコイルにおいては、
加熱用コイルと温度制御用コイルとの対を有し、単結晶
材料を高周波加熱する高周波ワークコイルであって、 加熱用コイルと温度制御用コイルとの対は、同一高周
波電源により高周波電流が通電されるものであり、 加熱用コイルは、結晶育成用アンプルの外周に配設さ
れ、外部から結晶育成用アンプル内の単結晶材料を高周
波加熱するものであり、 結晶育成用アンプルには、単結晶材料が充填されてお
り、 温度制御用コイルは、温度制御用アンプルの外周に配
設され、外部から温度制御用アンプル内を高周波加熱す
るものであり、 温度制御用アンプルには、単結晶材料と同一素材の参
照用材料が充填され、かつ参照用材料の融点の温度検出
を行う熱電対が組込まれているものである。
In the high-frequency work coil according to the present invention,
A high-frequency work coil having a pair of a heating coil and a temperature control coil for heating a single crystal material at a high frequency. A high-frequency current is supplied to the pair of the heating coil and the temperature control coil by the same high-frequency power supply. The heating coil is disposed on the outer periphery of the crystal growth ampule, and heats the single crystal material in the crystal growth ampule from the outside with a high frequency. The crystal growth ampule includes a single crystal. The temperature control coil is arranged on the outer periphery of the temperature control ampule and heats the inside of the temperature control ampule from outside using a high frequency. A reference material of the same material is filled, and a thermocouple for detecting the temperature of the melting point of the reference material is incorporated.

〔作用〕[Action]

第1図(a),(b)に示すように、高周波電源12に
直列に接続された一方の加熱用コイル9は、内部に単結
晶材料8aが充填された結晶育成用アンプル10の外周に配
設し、他方の温度制御用コイル6は、温度制御用アンプ
ル7の外周に配設する。参照用アンプル7には、単結晶
材料8aと同一素材の参照用材料8bが充填され、かつ参照
用材料8bの融点を温度検出する熱電対2が組込まれてい
る。
As shown in FIGS. 1 (a) and 1 (b), one heating coil 9 connected in series to a high-frequency power supply 12 has an outer periphery of a crystal growing ampoule 10 in which a single crystal material 8a is filled. The other temperature control coil 6 is disposed on the outer periphery of the temperature control ampule 7. The reference ampoule 7 is filled with a reference material 8b of the same material as the single crystal material 8a, and incorporates a thermocouple 2 for detecting the melting point of the reference material 8b.

この状態で、高周波電源12から対をなすコイル6,9に
高周波電流を通電し、熱電対2によって参照用材料8bの
温度を制御する温度制御方式でその高周波電流値を制御
する。外部要因による温度変化がない場合は、融解した
参照用材料8b、すなわちメルト11bが所定の温度に保持
されるようにコイル6,9に一定の電流が通電される。外
部要因による温度変化があれば、熱電対2の出力に基づ
いてコイル6,9による加熱温度を一定にするためにそれ
に応じて変化した電流がコイル6,9に通電される。両コ
イル6,9は互いに近接して配置されることにより、外部
の影響は同時に、かつ等しく受ける。従って、外部要因
の影響の補正は、熱電対2と温度制御用コイル6との組
み合せで行われるため、温度制御用コイル6と直列に接
続される加熱用コイル9に流れる電流も当然外部要因の
影響に対応したものであり、結晶育成用アンプル10のメ
ルト11aは、温度制御用アンプル7のメルト11bと同様に
所定の値に温度制御されることになる。
In this state, a high-frequency current is supplied from the high-frequency power supply 12 to the coils 6 and 9 forming a pair, and the high-frequency current value is controlled by a temperature control method in which the thermocouple 2 controls the temperature of the reference material 8b. When there is no temperature change due to external factors, a constant current is supplied to the coils 6, 9 so that the melted reference material 8b, that is, the melt 11b is maintained at a predetermined temperature. If there is a temperature change due to an external factor, a current changed accordingly is supplied to the coils 6 and 9 based on the output of the thermocouple 2 in order to keep the heating temperature of the coils 6 and 9 constant. Since both coils 6, 9 are arranged close to each other, external influences are simultaneously and equally received. Therefore, the correction of the influence of the external factor is performed by the combination of the thermocouple 2 and the temperature control coil 6, and therefore, the current flowing through the heating coil 9 connected in series with the temperature control coil 6 is naturally affected by the external factor. In response to the influence, the temperature of the melt 11a of the crystal growth ampule 10 is controlled to a predetermined value, similarly to the melt 11b of the temperature control ampule 7.

〔実施例〕〔Example〕

以下、本発明の一実施例を図により説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

第1図(a)は、本発明に係る高周波ワークコイルを
示す平面図、第1図(b)は、本発明に係る高周波ワー
クコイルを用いて単結晶化を行う状態を示す構成図であ
る。
FIG. 1A is a plan view illustrating a high-frequency work coil according to the present invention, and FIG. 1B is a configuration diagram illustrating a state where single crystallization is performed using the high-frequency work coil according to the present invention. .

図において、本発明に係る高周波ワークコイルは、加
熱用コイル9と温度制御用コイル6との対を有してお
り、対をなす両コイル6,9は高周波電源12に直列に接続
されたものである。
In the drawing, the high-frequency work coil according to the present invention has a pair of a heating coil 9 and a temperature control coil 6, and both coils 6 and 9 forming a pair are connected in series to a high-frequency power supply 12. It is.

加熱用コイル9は、単結晶材料8aが充填された結晶育
成用アンプル10の外周に配設され、外部から結晶育成用
アンプル10内の単結晶材料8aを高周波加熱するものであ
る。
The heating coil 9 is disposed on the outer periphery of the crystal growing ampule 10 filled with the single crystal material 8a, and heats the single crystal material 8a in the crystal growing ampule 10 from the outside by high frequency.

温度制御用コイル6は、温度制御用アンプル7の外周
に配設され、外部からアンプル7内を高周波加熱するも
のである。
The temperature control coil 6 is disposed on the outer periphery of the temperature control ampule 7 and heats the inside of the ampule 7 from the outside with high frequency.

温度制御用アンプル7には、単結晶材料8aと同一素材
の参照用材料8bが充填され、かつ参照用材料8bの融点を
温度検出する熱電対2が組込まれている。
The temperature control ampule 7 is filled with a reference material 8b of the same material as the single crystal material 8a, and incorporates a thermocouple 2 for detecting the melting point of the reference material 8b.

本実施例では、加熱用コイル9及び温度制御用コイル
6を、断面内径6mm,断面外径8mmの銅パイプで成形し、
これを高周波電源12に接続した。温度制御用コイル6に
は、中心に熱電対2が挿入される温度制御用アンプル7
に結晶育成を行う化合物材料HgCdTe8aを参照材料8bとし
て充填したものを設置し、加熱用コイル9には、同じ化
合物材料HgCdTe8aを充填した結晶育成用アンプル10を設
置した。実際の結晶育成ではメルト11bが500℃を保つよ
うに高周波電力を印加し、熱電対2によって温度制御を
行った。10日間のフローティングゾーン方式の結晶育成
を終了し、取り出した直径15mm,長さ50mmの結晶の長さ
方向の組成変化を調べた。組成変形は即ちメルトの温度
変化に対応するものである。その結果、Cd組成の所定値
22.0%に対し、±0.5%の変動範囲に納っていることが
分った。この値は、HgCdTeのデバイス・クオリティとし
て充分な値である。この結晶育成期間中の温度変動は、
熱電対2でモニターした結果、±1℃の範囲に入ってい
ることが記録されていた。
In the present embodiment, the heating coil 9 and the temperature control coil 6 are formed by a copper pipe having a cross-sectional inner diameter of 6 mm and a cross-sectional outer diameter of 8 mm,
This was connected to the high frequency power supply 12. A temperature control ampule 7 into which the thermocouple 2 is inserted at the center is inserted into the temperature control coil 6.
A crystal growth ampoule 10 filled with the same compound material HgCdTe 8a was installed in the heating coil 9. In actual crystal growth, high-frequency power was applied so that the melt 11b maintained 500 ° C., and temperature was controlled by the thermocouple 2. After 10 days of floating zone crystal growth, the composition change in the length direction of the extracted crystal with a diameter of 15 mm and a length of 50 mm was examined. The composition deformation corresponds to a change in the temperature of the melt. As a result, the predetermined value of Cd composition
It was found that the variation was within the range of ± 0.5% against 22.0%. This value is sufficient for the device quality of HgCdTe. The temperature fluctuation during this crystal growth period
As a result of monitoring with thermocouple 2, it was recorded that the temperature was within the range of ± 1 ° C.

なお、本実施例では、温度制御用コイル6と加熱用コ
イル9とを高周波電源12に接続する際に、直列接続とし
たが、並列接続させてもよい。
In this embodiment, the temperature control coil 6 and the heating coil 9 are connected in series when connected to the high-frequency power supply 12, but they may be connected in parallel.

〔発明の効果〕〔The invention's effect〕

以上詳述したように本発明によれば、通常は熱電対を
用いた温度制御ができないために温度変動の大きい電流
制御に頼らざるを得なかったフローティングゾーン方式
の結晶育成において、温度変動の少ない温度制御ができ
るため、組成の均一性のすぐれた結晶を育成することが
できる。
As described in detail above, according to the present invention, in the growth of a floating zone type crystal, which usually has to rely on current control having a large temperature variation because temperature control using a thermocouple cannot be performed, the temperature variation is small. Since the temperature can be controlled, a crystal having excellent composition uniformity can be grown.

【図面の簡単な説明】[Brief description of the drawings]

第1図(a)は、本発明に係る高周波ワークコイルを示
す平面図、第1図(b)は、本発明に係る高周波ワーク
コイルを用いて単結晶化を行う状態を示す構成図、第2
図は、電流制御方式で温度制御を行いながら、その温度
変化を熱電対を用いて検出する状態を示す構成図であ
る。 2……熱電対、6……温度制御用コイル 7……温度制御用アンプル、8a……単結晶材料 8b……参照用材料、9……加熱用コイル 10……結晶育成用アンプル
1 (a) is a plan view showing a high-frequency work coil according to the present invention, and FIG. 1 (b) is a configuration diagram showing a state where single crystallization is performed using the high-frequency work coil according to the present invention. 2
The figure is a configuration diagram showing a state in which a temperature change is detected using a thermocouple while performing temperature control by a current control method. 2 thermocouple, 6 temperature control coil 7 temperature control ampule 8a single crystal material 8b reference material 9 heating coil 10 crystal growth ampule

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】加熱・融解工程と、温度制御工程とを有
し、高周波電流が通電された高周波ワークコイルによる
高周波加熱で単結晶化を行う単結晶育成法であって、 高周波ワークコイルは、加熱用ワークコイルと、温度制
御用ワークコイルとの対を有し、 対をなすワークコイルは、同一の高周波電源により高周
波電流が通電されるものであり、 加熱・融解工程は、高周波電流が通電された加熱用ワー
クコイルで単結晶材料を高周波加熱して単結晶化させる
工程であり、 温度制御工程は、高周波電流が通電された温度制御用ワ
ークコイルで、単結晶材料と同一素材の参照材料を高周
波加熱して融解し、その融点を熱電対で温度検出し、そ
の熱電対の出力に基づいて加熱用ワークコイルに通電さ
れる高周波電流値を調整し、該加熱用ワークコイルによ
る温度を制御する工程であることを特徴とする単結晶育
成方法。
1. A single crystal growing method comprising a heating / melting step and a temperature control step, wherein a single crystal is grown by high frequency heating using a high frequency work coil to which a high frequency current is applied. It has a pair of a heating work coil and a temperature control work coil, and the paired work coils are energized by a high-frequency current from the same high-frequency power supply. The single-crystal material is subjected to high-frequency heating by the heated heating work coil to be single-crystallized. The temperature control step is a temperature-controlling work coil to which high-frequency current is applied, and the same reference material as the single-crystal material Is melted by high-frequency heating, its melting point is detected by a thermocouple, and the value of the high-frequency current supplied to the heating work coil is adjusted based on the output of the thermocouple. A method for growing a single crystal, which comprises controlling the temperature of the single crystal.
【請求項2】加熱用コイルと温度制御用コイルとの対を
有し、単結晶材料を高周波加熱する高周波ワークコイル
であって、 加熱用コイルと温度制御用コイルとの対は、同一高周波
電源により高周波電流が通電されるものであり、 加熱用コイルは、結晶育成用アンプルの外周に配設さ
れ、外部から結晶育成用アンプル内の単結晶材料を高周
波加熱するものであり、 結晶育成用アンプルには、単結晶材料が充填されてお
り、 温度制御用コイルは、温度制御用アンプルの外周に配設
され、外部から温度制御用アンプル内を高周波加熱する
ものであり、 温度制御用アンプルには、単結晶材料と同一素材の参照
用材料が充填され、かつ参照用材料の融点の温度検出を
行う熱電対が組込まれていることを特徴とする高周波ワ
ークコイル。
2. A high-frequency work coil having a pair of a heating coil and a temperature control coil for high-frequency heating of a single crystal material, wherein the pair of the heating coil and the temperature control coil is the same high-frequency power supply. The heating coil is disposed on the outer periphery of the crystal growth ampule, and heats the single crystal material in the crystal growth ampule from the outside by high frequency. Is filled with a single crystal material.The temperature control coil is disposed on the outer periphery of the temperature control ampule, and heats the inside of the temperature control ampule with high frequency from the outside. A high-frequency work coil characterized by being filled with a reference material the same as the single crystal material and incorporating a thermocouple for detecting the temperature of the melting point of the reference material.
JP29117290A 1990-10-29 1990-10-29 Single crystal growing method and high frequency work coil Expired - Fee Related JP2936694B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29117290A JP2936694B2 (en) 1990-10-29 1990-10-29 Single crystal growing method and high frequency work coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29117290A JP2936694B2 (en) 1990-10-29 1990-10-29 Single crystal growing method and high frequency work coil

Publications (2)

Publication Number Publication Date
JPH04164888A JPH04164888A (en) 1992-06-10
JP2936694B2 true JP2936694B2 (en) 1999-08-23

Family

ID=17765384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29117290A Expired - Fee Related JP2936694B2 (en) 1990-10-29 1990-10-29 Single crystal growing method and high frequency work coil

Country Status (1)

Country Link
JP (1) JP2936694B2 (en)

Also Published As

Publication number Publication date
JPH04164888A (en) 1992-06-10

Similar Documents

Publication Publication Date Title
US5183528A (en) Method of automatic control of growing neck portion of a single crystal by the cz method
KR20020081287A (en) Method for controlling growth of a silicon crystal to minimize growth rate and diameter deviations
JPH09183606A (en) Production of polycrystalline semiconductor and apparatus for production therefor
JPH04149092A (en) Method and device for controlling growth of cone part
JP2936694B2 (en) Single crystal growing method and high frequency work coil
JP3867476B2 (en) Silicon single crystal manufacturing method and silicon single crystal manufacturing apparatus
JP3085568B2 (en) Apparatus and method for producing silicon single crystal
JP3592909B2 (en) Single crystal pulling device
JPH02221184A (en) Method and apparatus for producing single crystal
JPS5912632B2 (en) Tanketshuyounohikiagesouchi
JP2826085B2 (en) Liquid temperature control method for single crystal pulling furnace
JP3832527B2 (en) Single crystal manufacturing method
JP2732723B2 (en) Liquid surface temperature control method
JPS6011297A (en) Method and device for controlling growth of crystal
JPS6321281A (en) Method for precisely controlling diameter of single crystal
JPH07109195A (en) Device for growing crystal and method for growing crystal
JPH078754B2 (en) Single crystal manufacturing method
JPH07513B2 (en) Single crystal growth method
JPS598696A (en) Preparation of single crystal
SU1705424A1 (en) Method of growing single crystals with sillenite structure
JPH02124792A (en) Method for growing single crystal
JPS6360190A (en) Device for pulling up single crystal
JPH07277878A (en) Cooling control cylinder for producing signle crystal
JPH0940492A (en) Production of single crystal and apparatus for production therefor
JPS59116189A (en) Method for controlling shape of single crystal

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees