JPH04265156A - Catalyst for steam reforming of hydrocarbon - Google Patents

Catalyst for steam reforming of hydrocarbon

Info

Publication number
JPH04265156A
JPH04265156A JP3045334A JP4533491A JPH04265156A JP H04265156 A JPH04265156 A JP H04265156A JP 3045334 A JP3045334 A JP 3045334A JP 4533491 A JP4533491 A JP 4533491A JP H04265156 A JPH04265156 A JP H04265156A
Authority
JP
Japan
Prior art keywords
catalyst
ceria
steam reforming
carbon
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3045334A
Other languages
Japanese (ja)
Other versions
JP3226556B2 (en
Inventor
Takashi Ino
隆 井野
Iwao Anzai
巌 安斉
Shigeki Matsuoka
茂樹 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEKIYU SANGYO KASSEIKA CENTER
Japan Petroleum Energy Center JPEC
Eneos Corp
Original Assignee
SEKIYU SANGYO KASSEIKA CENTER
Petroleum Energy Center PEC
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEKIYU SANGYO KASSEIKA CENTER, Petroleum Energy Center PEC, Nippon Oil Corp filed Critical SEKIYU SANGYO KASSEIKA CENTER
Priority to JP04533491A priority Critical patent/JP3226556B2/en
Publication of JPH04265156A publication Critical patent/JPH04265156A/en
Application granted granted Critical
Publication of JP3226556B2 publication Critical patent/JP3226556B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To provide a high activity catalyst for steam reforming of hydrocarbon on which carbon deposits hardly. CONSTITUTION:A Pt family metal is supported on ceria contg. 0.2-20wt.% (expressed in terms of metal oxides) one or more kinds of metals selected among alkali metals and alkaline earth metals or ceria-based oxides of rare earth elements to obtain a catalyst for steam reforming of hydrocarbon. Even when a steam reforming reaction is carried out with the catalyst under conditions of a relatively low pressure and a low ratio of steam to carbon, carbon deposits hardly and the catalyst has high activity and long service life.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、炭化水素の水蒸気改質
用触媒に関するものであり、特に比較的低圧、低スチー
ム/カーボン比の条件下でも炭素析出が少なく、高活性
で触媒寿命が長い等の特徴を有する水蒸気改質用触媒に
関するものである。
[Industrial Application Field] The present invention relates to a catalyst for steam reforming of hydrocarbons, and in particular, it has low carbon deposition, high activity, and long catalyst life even under conditions of relatively low pressure and low steam/carbon ratio. This invention relates to a steam reforming catalyst having the following characteristics.

【0002】0002

【従来の技術】炭化水素と水蒸気を反応させ、水素、一
酸化炭素、二酸化炭素、メタンを得るいわゆる炭化水素
の水蒸気改質に用いられる触媒としては、従来アルカリ
金属あるいはアルカリ土類金属を含むNi系触媒が用い
られてきた。通常の炭化水素の水蒸気改質反応は比較的
高圧(20kgf/cm2 以上)、高スチーム/カー
ボン比(3.0以上)で運転されるが、ナフサあるいは
灯油を水蒸気改質して得られたガスを燃料とする燃料電
池システムの場合、装置の取り扱いの容易さから反応圧
力は低いほど好ましい。また、燃料電池の発電効率の面
からは、水蒸気改質におけるスチーム/カーボン比は低
いほど好ましい。このような低圧、低スチーム/カーボ
ン比が要求される燃料電池用の水蒸気改質に通常のNi
系触媒を用いた場合、改質触媒上への炭素析出が重大な
問題となる。触媒への炭素析出が著しい場合、触媒床の
閉鎖を招き、その結果、差圧が増大し、触媒を交換しな
い限り装置の運転の続行が不可能となる。また、触媒の
頻繁な交換は燃料電池システムの経済性を著しく悪化さ
せる。従って、燃料電池用の水蒸気改質の触媒としては
できる限り炭素析出の少ない触媒が望ましい。
[Prior Art] Conventionally, catalysts used in the so-called steam reforming of hydrocarbons to produce hydrogen, carbon monoxide, carbon dioxide, and methane by reacting hydrocarbons with steam are Ni containing alkali metals or alkaline earth metals. catalysts have been used. Normal steam reforming reactions of hydrocarbons are operated at relatively high pressures (20 kgf/cm2 or higher) and high steam/carbon ratios (3.0 or higher), but the gas obtained by steam reforming naphtha or kerosene In the case of a fuel cell system using fuel as fuel, it is preferable that the reaction pressure be as low as possible from the viewpoint of ease of handling the device. Further, from the viewpoint of power generation efficiency of the fuel cell, the lower the steam/carbon ratio in steam reforming, the more preferable. Conventional Ni is used in steam reforming for fuel cells, which requires such low pressure and low steam/carbon ratio.
When a system catalyst is used, carbon deposition on the reforming catalyst becomes a serious problem. Significant carbon deposition on the catalyst can lead to closure of the catalyst bed, resulting in an increase in differential pressure and the inability to continue operation of the device unless the catalyst is replaced. Moreover, frequent replacement of the catalyst significantly deteriorates the economic efficiency of the fuel cell system. Therefore, as a steam reforming catalyst for fuel cells, it is desirable to use a catalyst that deposits as little carbon as possible.

【0003】このような炭素析出の少ない触媒として貴
金属系の触媒、特にロジウム、ルテニウム系触媒が有効
であることが知られている(例えば、特開平2−439
50号公報、特開平2−2878号公報、特開昭61−
28451号公報、特開昭57−4232号公報等)。 しかし、これらの触媒であっても低圧、低スチーム/カ
ーボン比で用いた場合、まだ十分に炭素析出を抑えるこ
とはできない。
[0003] It is known that precious metal catalysts, especially rhodium and ruthenium catalysts, are effective as catalysts that cause less carbon deposition (for example, JP-A-2-439).
50, JP-A-2-2878, JP-A-61-
28451, JP-A-57-4232, etc.). However, even these catalysts still cannot sufficiently suppress carbon deposition when used at low pressure and low steam/carbon ratio.

【0004】0004

【発明が解決しようとする課題】本発明は炭化水素の水
蒸気改質反応に適した触媒を提供することを目的とし、
特に低圧、低スチーム/カーボン比においても炭素析出
の少ない、高活性で触媒寿命の長い触媒を提供すること
を目的とする。
[Problems to be Solved by the Invention] An object of the present invention is to provide a catalyst suitable for steam reforming reactions of hydrocarbons.
The purpose of the present invention is to provide a catalyst with high activity and long catalyst life, which exhibits little carbon deposition even at low pressure and low steam/carbon ratio.

【0005】[0005]

【課題を解決するための手段】本発明者らは炭化水素の
水蒸気改質反応における炭素析出を抑えることを主眼に
鋭意研究した結果、特定の触媒を用いることにより炭素
析出を抑えられることを見出し、この知見に基づいて本
発明を達成することができた。
[Means for Solving the Problems] As a result of intensive research focused on suppressing carbon precipitation in the steam reforming reaction of hydrocarbons, the present inventors discovered that carbon precipitation can be suppressed by using a specific catalyst. Based on this knowledge, we were able to achieve the present invention.

【0006】すなわち、本発明はアルカリ金属およびア
ルカリ土類金属から選ばれた1種あるいは2種以上の金
属を金属酸化物として0.2〜20wt%含有するセリ
アあるいはセリアを主成分とする希土類元素酸化物に白
金族金属を担持させたことを特徴とする炭化水素の水蒸
気改質用触媒に関する。
That is, the present invention provides ceria containing 0.2 to 20 wt% of one or more metals selected from alkali metals and alkaline earth metals as a metal oxide, or a rare earth element mainly composed of ceria. The present invention relates to a catalyst for steam reforming of hydrocarbons, characterized in that a platinum group metal is supported on an oxide.

【0007】本発明でいうセリアおよびセリアを主成分
とする希土類元素酸化物ならびにアルカリ金属およびア
ルカリ土類金属は触媒担体として用いる。
In the present invention, ceria, rare earth element oxides containing ceria as a main component, alkali metals, and alkaline earth metals are used as catalyst carriers.

【0008】本発明で用いるセリアの調製方法は特に限
定されないが、例えば硝酸セリウム(Ce(NO3 )
3 ・6H2 O)、塩化セリウム(CeCl3 ・7
H2 O)、水酸化セリウム(CeO2 ・nH2 O
)、炭酸セリウム(Ce2 (CO3 )3 ・8H2
 O)等から通常の方法で調製したものを用いることが
できる。
The method for preparing ceria used in the present invention is not particularly limited, but for example, cerium nitrate (Ce(NO3)
3 ・6H2 O), cerium chloride (CeCl3 ・7
H2 O), cerium hydroxide (CeO2 ・nH2 O
), cerium carbonate (Ce2 (CO3)3 ・8H2
Those prepared from O) etc. by a conventional method can be used.

【0009】またセリウムを主成分とした混合希土類元
素の塩から調製したものでもよい。セリア以外の希土類
元素酸化物としてはスカンジウム(Sc)、イットリウ
ム(Y)、ランタン(La)、プラセオジム(Pr)、
ネオジム(Nd)、プロメチウム(Pm)、サマリウム
(Sm)、ユウロピウム(Eu)、ガドリニウム(Gd
)、テルビウム(Tb)、ジスプロシウム(Dy)、ホ
ルミウム(Ho)、エルビウム(Er)、ツリウム(T
m)、イッテルビウム(Yb)、ルテチウム(Lu)の
各元素の酸化物が挙げられるが、これらの中でイットリ
ウム、ランタン、ネオジムの各元素の酸化物が好ましく
用いられ、特にランタンの酸化物が好ましい。
[0009] It may also be prepared from a mixed rare earth element salt containing cerium as a main component. Rare earth element oxides other than ceria include scandium (Sc), yttrium (Y), lanthanum (La), praseodymium (Pr),
Neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd)
), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (T
m), ytterbium (Yb), and lutetium (Lu), among which oxides of yttrium, lanthanum, and neodymium are preferably used, and lanthanum oxides are particularly preferred. .

【0010】セリアを主成分とする希土類元素酸化物は
セリアの含有量が50wt%以上、好ましくは50〜9
5wt%、さらに好ましくは70〜90wt%の範囲で
ある。
[0010] The rare earth element oxide containing ceria as a main component has a ceria content of 50 wt% or more, preferably 50 to 9
5 wt%, more preferably 70 to 90 wt%.

【0011】本発明でセリアに含有させて用いるアルカ
リ金属としては、Li、Na、K、Rb、Cs、Fr等
を挙げることができる。アルカリ土類金属としては、B
e、Mg、Sr、Ba、Ra等を挙げることができる。 これらの金属は単独あるいは混合して用いてもよい。ア
ルカリ金属としてはCs、Kが好ましく、さらにCsが
好ましい。アルカリ土類金属としてはMg、Ba、Ca
が好ましく、さらにBaが好ましい。
[0011] Examples of the alkali metals used in ceria in the present invention include Li, Na, K, Rb, Cs, and Fr. As an alkaline earth metal, B
Examples include e, Mg, Sr, Ba, and Ra. These metals may be used alone or in combination. As the alkali metal, Cs and K are preferable, and Cs is more preferable. Alkaline earth metals include Mg, Ba, Ca
is preferred, and Ba is more preferred.

【0012】これらの金属は酸化物、水酸化物、炭酸塩
あるいは硝酸塩等のいずれの形態で用いてもよい。
These metals may be used in any form such as oxides, hydroxides, carbonates or nitrates.

【0013】これらの金属のセリアへの含有方法はセリ
アの調製時に添加してもよいし、成型したセリアに後か
ら含浸してもよい。
[0013] These metals may be added to ceria during the preparation of ceria, or may be impregnated into molded ceria afterwards.

【0014】アルカリ金属あるいはアルカリ土類金属の
含有量は金属酸化物として触媒担体重量(セリアあるい
はセリアを主成分とする希土類元素酸化物とアルカリ金
属あるいはアルカリ土類金属の酸化物の合計量)の0.
2〜20wt%であり、好ましくは0.5〜5wt%で
ある。
The content of the alkali metal or alkaline earth metal is determined by the weight of the catalyst carrier as a metal oxide (the total amount of ceria or rare earth element oxide containing ceria as a main component and the alkali metal or alkaline earth metal oxide). 0.
The content is 2 to 20 wt%, preferably 0.5 to 5 wt%.

【0015】アルカリ金属あるいはアルカリ土類金属の
含有量が0.2wt%より少ない場合は触媒の活性を高
め、かつ炭素析出を抑制することができない。20wt
%より多い場合は触媒活性が低下する。
[0015] If the content of the alkali metal or alkaline earth metal is less than 0.2 wt%, it is not possible to enhance the activity of the catalyst and suppress carbon precipitation. 20wt
%, the catalyst activity decreases.

【0016】本発明において、触媒の機械的強度を高め
るために触媒担体に少量のシリカ、セメント等のバイン
ダーを添加することができる。
In the present invention, a small amount of a binder such as silica or cement may be added to the catalyst carrier in order to increase the mechanical strength of the catalyst.

【0017】本発明の触媒において白金族金属は活性金
属として用いられる。白金族金属としてはルテニウム(
Ru)、ロジウム(Rh)、パラジウム(Pd)、オス
ミウム(Os)、イリジウム(Ir)、白金(Pt)が
挙げられる。活性金属は単独でも2種以上を混合して用
いてもよい。ルテニウム、ロジウム、白金が好ましいが
、特にルテニウムが好ましい。
A platinum group metal is used as the active metal in the catalyst of the present invention. Ruthenium (
Ru), rhodium (Rh), palladium (Pd), osmium (Os), iridium (Ir), and platinum (Pt). The active metals may be used alone or in combination of two or more. Ruthenium, rhodium, and platinum are preferred, with ruthenium being particularly preferred.

【0018】白金族金属の担持量は特に限定されないが
、触媒重量(触媒担体と活性金属の合計重量)の0.1
〜20wt%であり、好ましくは0.5〜10wt%で
ある。白金族金属の担持量が、0.1wt%より少ない
場合は触媒活性が低下し、20wt%より多い場合は触
媒活性があまり増加せず不経済である。
The amount of platinum group metal supported is not particularly limited, but is 0.1 of the catalyst weight (total weight of catalyst carrier and active metal).
~20wt%, preferably 0.5~10wt%. If the amount of platinum group metal supported is less than 0.1 wt%, the catalytic activity decreases, and if it is more than 20 wt%, the catalytic activity does not increase much, which is uneconomical.

【0019】白金族金属は通常の方法で触媒担体に担持
することができる。その方法は含浸法、沈着法、共沈法
、混練法、イオン交換法あるいはポアフィリング法を挙
げることができる。特に含浸法が好ましい。
The platinum group metal can be supported on a catalyst carrier by a conventional method. Examples of the method include an impregnation method, a deposition method, a coprecipitation method, a kneading method, an ion exchange method, and a pore filling method. Particularly preferred is the impregnation method.

【0020】白金族金属を担持するときの出発物質は担
持法により異なるが、通常白金族金属の塩化物、硝酸塩
が用いられる。
[0020] The starting material for supporting platinum group metals varies depending on the supporting method, but chlorides and nitrates of platinum group metals are usually used.

【0021】ルテニウムを担持するときの出発物質は担
持法により異なるが、通常塩化ルテニウム(RuCl3
 ・nH2 O)、硝酸ルテニウム(Ru(NO3 )
3 ・nH2 O)が用いられる。
The starting material for supporting ruthenium varies depending on the supporting method, but is usually ruthenium chloride (RuCl3
・nH2O), ruthenium nitrate (Ru(NO3)
3 .nH2O) is used.

【0022】本発明の触媒の調製方法の一例を下記に述
べる。まずセリウム塩を含有する水溶液と塩基性化合物
の水溶液をpH10付近で反応させることにより酸化セ
リウムの水和物を沈澱させる。上記塩基性化合物として
は、例えばアンモニア、水酸化ナトリウム、水酸化カリ
ウム等がある。セリウム塩を含有する水溶液と塩基性化
合物の水溶液との反応は、好ましくはpH6.0以上、
さらに好ましくはpH7.0〜11.0の範囲である。 次に生成した沈澱物を濾過、洗浄し、濾過物を100〜
120℃で一昼夜乾燥する。乾燥後これを500〜70
0℃で焼成してセリアを得る。こうして得られたセリア
にアルカリ金属あるいはアルカリ土類金属を含む水溶液
を含浸させ、100〜120℃で乾燥後、600〜90
0℃で焼成する。こうして得られた担体にルテニウムを
含む水溶液を含浸させ、100〜120℃で乾燥後、6
00〜900℃で水素還元する。
An example of the method for preparing the catalyst of the present invention will be described below. First, a cerium oxide hydrate is precipitated by reacting an aqueous solution containing a cerium salt with an aqueous solution of a basic compound at around pH 10. Examples of the basic compound include ammonia, sodium hydroxide, potassium hydroxide, and the like. The reaction between the aqueous solution containing the cerium salt and the aqueous solution of the basic compound is preferably carried out at a pH of 6.0 or higher,
More preferably, the pH is in the range of 7.0 to 11.0. Next, the generated precipitate is filtered and washed, and the filtrate is
Dry at 120°C overnight. After drying, apply this to 500 to 70
Ceria is obtained by firing at 0°C. The ceria thus obtained is impregnated with an aqueous solution containing an alkali metal or alkaline earth metal, and after drying at 100-120°C,
Bake at 0°C. The carrier thus obtained was impregnated with an aqueous solution containing ruthenium, dried at 100 to 120°C, and then
Hydrogen reduction is performed at 00 to 900°C.

【0023】本発明の触媒の表面積は5〜200m2 
/g、細孔容積は0.05〜1.0cc/gの範囲のも
のが好ましい。
[0023] The surface area of the catalyst of the present invention is 5 to 200 m2.
/g, and the pore volume is preferably in the range of 0.05 to 1.0 cc/g.

【0024】本発明の触媒を用いて水蒸気改質反応を行
う場合の反応条件は、温度400〜1000℃、好まし
くは温度450〜850℃、圧力50kgf/cm2 
以下、好ましくは圧力0.1〜10kgf/cm2 、
さらに好ましくは圧力0.1〜2kgf/cm2 、ス
チーム/カーボン比2.5以下、好ましくはスチーム/
カーボン比2.0以下の範囲である。本発明の触媒はこ
の反応条件で用いた場合に触媒の優位性が顕著になる。
[0024] When carrying out a steam reforming reaction using the catalyst of the present invention, the reaction conditions are a temperature of 400 to 1000°C, preferably a temperature of 450 to 850°C, and a pressure of 50 kgf/cm2.
Below, preferably the pressure is 0.1 to 10 kgf/cm2,
More preferably, the pressure is 0.1 to 2 kgf/cm2, and the steam/carbon ratio is 2.5 or less, preferably steam/carbon.
The carbon ratio is in the range of 2.0 or less. When the catalyst of the present invention is used under these reaction conditions, its superiority becomes remarkable.

【0025】本発明でいう炭化水素としては、天然ガス
、LPG、ナフサ、灯油等が挙げられる。炭化水素中の
イオウ分は0.5wtppm以下のものが好ましい。 炭化水素にイオウ分が0.5wtppmより多く含有し
ている場合には水素化脱硫、イオウ吸着剤等で脱硫した
方が好ましい。本発明の触媒は比較的炭素析出を起し易
いナフサ、灯油等の炭化水素を用いた場合に触媒の優位
性が顕著になる。
[0025] Hydrocarbons as used in the present invention include natural gas, LPG, naphtha, kerosene and the like. The sulfur content in the hydrocarbon is preferably 0.5 wtppm or less. If the hydrocarbon contains more than 0.5 wtppm of sulfur, it is preferable to perform hydrodesulfurization, desulfurization using a sulfur adsorbent, or the like. The superiority of the catalyst of the present invention becomes remarkable when hydrocarbons such as naphtha and kerosene, which are relatively prone to carbon deposition, are used.

【0026】本発明の触媒は水蒸気改質器を有したナフ
サ、灯油等の炭化水素を燃料とする燃料電池システムの
ための水蒸気改質触媒として顕著な効果を示す。
The catalyst of the present invention exhibits remarkable effects as a steam reforming catalyst for a fuel cell system equipped with a steam reformer and using hydrocarbons such as naphtha and kerosene as fuel.

【0027】[0027]

【実施例】次に本発明の実施例等について説明する。[Examples] Next, examples of the present invention will be described.

【0028】実施例1   (1)  触媒の調製 5リットルの容器に硝酸セリウム50.5gを含む水溶
液1000ccと2Nのアンモニア水をpH10となる
ように加え、酸化セリウムの水和物を沈澱させた。これ
を吸引濾過した後2リットルの純水で洗浄し、濾過物を
120℃で一昼夜乾燥した。次にこれを600℃で3h
r空気焼成し、セリアを得た。
Example 1 (1) Preparation of Catalyst 1000 cc of an aqueous solution containing 50.5 g of cerium nitrate and 2N aqueous ammonia were added to a 5-liter container to adjust the pH to 10 to precipitate a cerium oxide hydrate. This was suction filtered, washed with 2 liters of pure water, and the filtrate was dried at 120° C. all day and night. Next, this was heated to 600℃ for 3 hours.
It was air fired to obtain ceria.

【0029】上記セリアに炭酸セシウムの水溶液を含浸
させ、水分を蒸発乾固させた。添加したセシウムの量は
セリアと酸化セシウムの合計量に対して酸化セシウムと
して1.5wt%である。次にこれを800℃で3hr
空気焼成し、触媒担体を得た。
The above ceria was impregnated with an aqueous solution of cesium carbonate, and the water was evaporated to dryness. The amount of cesium added was 1.5 wt% as cesium oxide based on the total amount of ceria and cesium oxide. Next, this was heated to 800℃ for 3 hours.
Air firing was performed to obtain a catalyst carrier.

【0030】上記触媒担体にルテニウム金属として担持
量が1wt%となるように塩化ルテニウムの水溶液を含
浸させ、水分を蒸発乾固させた。次にこれを加圧成形(
3mmφ×3mm)した後700℃で3hr水素還元し
、触媒Aとした。この触媒の表面積は9m2 /gであ
った。触媒の活性試験をする場合はこれをさらに30〜
80メッシュに粉砕して用いた。
The catalyst carrier was impregnated with an aqueous solution of ruthenium chloride so that the supported amount of ruthenium metal was 1 wt %, and the water was evaporated to dryness. Next, this is pressure molded (
3 mmφ×3 mm) and then subjected to hydrogen reduction at 700° C. for 3 hours to obtain catalyst A. The surface area of this catalyst was 9 m2/g. If you want to test the activity of the catalyst, add another 30~
It was used after being ground to 80 mesh.

【0031】(2)  水蒸気改質反応水蒸気改質反応
は固定床のマイクロリアクターを用いた。触媒充填量は
5ccである。炭化水素原料として軽質ナフサ(C/H
原子比0.422、比重0.642、イオウ分0.2p
pm)を用いた。反応条件は以下の通りである。反応温
度500℃、反応圧力1kgf/cm2 、スチーム/
カーボン比1.5、GHSV9000。
(2) Steam reforming reaction A fixed bed microreactor was used for the steam reforming reaction. The catalyst loading amount was 5 cc. Light naphtha (C/H
Atomic ratio 0.422, specific gravity 0.642, sulfur content 0.2p
pm) was used. The reaction conditions are as follows. Reaction temperature 500℃, reaction pressure 1kgf/cm2, steam/
Carbon ratio 1.5, GHSV9000.

【0032】反応ガスはガスクロマトグラフを用いて定
量分析した。反応10hr後の生成ガスの組成より求め
た原料ナフサの転化率を表1に示す。ここで表1中の転
化率は原料ナフサがCO、CH4 、CO2 に転化し
た割合であり、炭素を基準に計算したものである。
The reaction gas was quantitatively analyzed using a gas chromatograph. Table 1 shows the conversion rate of the raw material naphtha determined from the composition of the produced gas after 10 hours of reaction. Here, the conversion rate in Table 1 is the rate at which raw material naphtha was converted to CO, CH4, and CO2, and was calculated based on carbon.

【0033】また反応終了後、触媒を反応装置から抜き
出し触媒に付着したカーボンの量を測定し、これも表1
に示した。
After the reaction was completed, the catalyst was taken out from the reaction apparatus and the amount of carbon attached to the catalyst was measured, which is also shown in Table 1.
It was shown to.

【0034】実施例2   実施例1の(1)と同様の方法で調製したセリアに
硝酸マグネシウムの水溶液を含浸させ、水分を蒸発乾固
させた。添加したマグネシウムの量はセリアと酸化マグ
ネシウムの合計量に対して酸化マグネシウムとして1.
5wt%である。次にこれを800℃で3hr空気焼成
し、触媒担体を得た。
Example 2 Ceria prepared in the same manner as in Example 1 (1) was impregnated with an aqueous solution of magnesium nitrate, and the water was evaporated to dryness. The amount of magnesium added is 1.5% as magnesium oxide based on the total amount of ceria and magnesium oxide.
It is 5wt%. Next, this was air-calcined at 800°C for 3 hours to obtain a catalyst carrier.

【0035】以下、実施例1と同様の方法でルテニウム
を担持し触媒Bを得た。この触媒の活性評価および反応
終了後のカーボン量の測定も実施例1と同様の方法で行
い、結果を表1に示した。
[0035] Ruthenium was then supported in the same manner as in Example 1 to obtain Catalyst B. Evaluation of the activity of this catalyst and measurement of the amount of carbon after completion of the reaction were also carried out in the same manner as in Example 1, and the results are shown in Table 1.

【0036】実施例3   実施例1の(1)と同様の方法で調製したセリアに
硝酸バリウムの水溶液を含浸させ、水分を蒸発乾固させ
た。添加したバリウムの量はセリアと酸化バリウムの合
計量に対して酸化バリウムとして1.5wt%である。 次にこれを800℃で3hr空気焼成し、触媒担体を得
た。
Example 3 Ceria prepared in the same manner as in Example 1 (1) was impregnated with an aqueous solution of barium nitrate, and the water was evaporated to dryness. The amount of barium added was 1.5 wt% as barium oxide based on the total amount of ceria and barium oxide. Next, this was air-calcined at 800°C for 3 hours to obtain a catalyst carrier.

【0037】以下、実施例1と同様の方法でルテニウム
を担持し触媒Cを得た。この触媒の活性評価および反応
終了後のカーボン量の測定も実施例1と同様の方法で行
い、結果を表1に示した。
[0037] Ruthenium was then supported in the same manner as in Example 1 to obtain Catalyst C. Evaluation of the activity of this catalyst and measurement of the amount of carbon after completion of the reaction were also carried out in the same manner as in Example 1, and the results are shown in Table 1.

【0038】実施例4   実施例1の(1)と同様の方法で調製したセリアに
硝酸カルシウムの水溶液を含浸させ、水分を蒸発乾固さ
せた。添加したカルシウムの量はセリアと酸化カルシウ
ムの合計量に対して酸化カルシウムとして1.5wt%
である。次にこれを800℃で3hr空気焼成し、触媒
担体を得た。
Example 4 Ceria prepared in the same manner as in Example 1 (1) was impregnated with an aqueous solution of calcium nitrate, and the water was evaporated to dryness. The amount of added calcium was 1.5wt% as calcium oxide based on the total amount of ceria and calcium oxide.
It is. Next, this was air-calcined at 800°C for 3 hours to obtain a catalyst carrier.

【0039】以下、実施例1と同様の方法でルテニウム
を担持し触媒Dを得た。この触媒の活性評価および反応
終了後のカーボン量の測定も実施例1と同様の方法で行
い、結果を表1に示した。
[0039] Ruthenium was then supported in the same manner as in Example 1 to obtain Catalyst D. Evaluation of the activity of this catalyst and measurement of the amount of carbon after completion of the reaction were also carried out in the same manner as in Example 1, and the results are shown in Table 1.

【0040】実施例5   実施例1の(1)と同様の方法で調製したセリアに
炭酸カリウムの水溶液を含浸させ、水分を蒸発乾固させ
た。添加したカリウムの量はセリアと酸化カリウムの合
計量に対して酸化カリウムとして1.5wt%である。 次にこれを800℃で3hr空気焼成し、触媒担体を得
た。
Example 5 Ceria prepared in the same manner as in Example 1 (1) was impregnated with an aqueous solution of potassium carbonate, and the water was evaporated to dryness. The amount of potassium added was 1.5 wt% as potassium oxide based on the total amount of ceria and potassium oxide. Next, this was air-calcined at 800°C for 3 hours to obtain a catalyst carrier.

【0041】以下、実施例1と同様の方法でルテニウム
を担持し触媒Eを得た。この触媒の活性評価および反応
終了後のカーボン量の測定も実施例1と同様の方法で行
い、結果を表1に示した。
[0041] Ruthenium was then supported in the same manner as in Example 1 to obtain Catalyst E. Evaluation of the activity of this catalyst and measurement of the amount of carbon after completion of the reaction were also carried out in the same manner as in Example 1, and the results are shown in Table 1.

【0042】比較例1   実施例1の(1)と同様の方法で調製したセリアを
800℃で3hr空気焼成し、触媒担体を得た。
Comparative Example 1 Ceria prepared in the same manner as in Example 1 (1) was air-calcined at 800° C. for 3 hours to obtain a catalyst carrier.

【0043】以下、実施例1と同様の方法でルテニウム
を担持し触媒Fを得た。この触媒の活性評価および反応
終了後のカーボン量の測定も実施例1と同様の方法で行
い、結果を表1に示した。
[0043] Ruthenium was then supported in the same manner as in Example 1 to obtain Catalyst F. Evaluation of the activity of this catalyst and measurement of the amount of carbon after completion of the reaction were also carried out in the same manner as in Example 1, and the results are shown in Table 1.

【0044】比較例2   5リットルの容器に硝酸アルミニウム1475gを
含む水溶液1000ccと2Nのアンモニア水をpH1
0となるように加え、アルミナの水和物を沈澱させた。 これを吸引濾過した後2リットルの純水で洗浄し、濾過
物を120℃で一昼夜乾燥した。次にこれを600℃で
3hr空気焼成し、アルミナを得た。
Comparative Example 2 In a 5 liter container, 1000 cc of an aqueous solution containing 1475 g of aluminum nitrate and 2N ammonia water were mixed at pH 1.
0 to precipitate alumina hydrate. This was suction filtered, washed with 2 liters of pure water, and the filtrate was dried at 120° C. all day and night. Next, this was air fired at 600°C for 3 hours to obtain alumina.

【0045】上記アルミナに炭酸セシウムの水溶液を含
浸させ、水分を蒸発乾固させた。添加したセシウムの量
はアルミナと酸化セシウムの合計量に対して酸化セシウ
ムとして1.5wt%である。次にこれを800℃で3
hr空気焼成し、触媒担体を得た。
The above alumina was impregnated with an aqueous solution of cesium carbonate, and water was evaporated to dryness. The amount of cesium added was 1.5 wt% as cesium oxide based on the total amount of alumina and cesium oxide. Next, heat this at 800℃ for 3
A catalyst carrier was obtained by air firing for hr.

【0046】以下、実施例1と同様の方法でルテニウム
を担持し触媒Gを得た。この触媒の活性評価および反応
終了後のカーボン量の測定も実施例1と同様の方法で行
い、結果を表1に示した。
[0046] Ruthenium was then supported in the same manner as in Example 1 to obtain Catalyst G. Evaluation of the activity of this catalyst and measurement of the amount of carbon after completion of the reaction were also carried out in the same manner as in Example 1, and the results are shown in Table 1.

【0047】比較例3〜4   Ni系の市販触媒HおよびIの活性および反応終了
後のカーボン量の測定を実施例1と同様の方法で行い、
結果を表1に示した。
Comparative Examples 3 to 4 The activity of commercially available Ni-based catalysts H and I and the amount of carbon after the reaction were measured in the same manner as in Example 1.
The results are shown in Table 1.

【0048】[0048]

【表1】[Table 1]

【0049】表1よりセリア担持ルテニウム触媒の場合
、過酷な水蒸気改質反応条件下においても炭素析出が極
めて少ないことが判る。またアルカリ金属あるいはアル
カリ土類金属をセリアに添加することによりセリア担持
ルテニウム触媒の活性を高めることができる。特にセシ
ウム、バリウムの添加による触媒活性の向上が顕著であ
る。
Table 1 shows that in the case of the ceria-supported ruthenium catalyst, carbon precipitation is extremely small even under severe steam reforming reaction conditions. Furthermore, the activity of the ceria-supported ruthenium catalyst can be increased by adding an alkali metal or alkaline earth metal to ceria. In particular, the improvement in catalytic activity by the addition of cesium and barium is remarkable.

【0050】[0050]

【発明の効果】本発明の水蒸気改質触媒は比較的に低圧
、低スチーム/カーボンの条件で水蒸気改質反応を行っ
ても炭素析出が少なく、高活性で触媒寿命が長い。
Effects of the Invention The steam reforming catalyst of the present invention exhibits little carbon deposition even when the steam reforming reaction is carried out under conditions of relatively low pressure and low steam/carbon, has high activity, and has a long catalyst life.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  アルカリ金属およびアルカリ土類金属
から選ばれた1種あるいは2種以上の金属を金属酸化物
として0.2〜20wt%含有するセリアあるいはセリ
アを主成分とする希土類元素酸化物に白金族金属を担持
させたことを特徴とする炭化水素の水蒸気改質用触媒。
Claim 1: Ceria containing 0.2 to 20 wt% of one or more metals selected from alkali metals and alkaline earth metals as a metal oxide, or a rare earth element oxide mainly composed of ceria. A catalyst for steam reforming of hydrocarbons characterized by supporting a platinum group metal.
JP04533491A 1991-02-19 1991-02-19 Catalyst for steam reforming of hydrocarbons Expired - Lifetime JP3226556B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04533491A JP3226556B2 (en) 1991-02-19 1991-02-19 Catalyst for steam reforming of hydrocarbons

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04533491A JP3226556B2 (en) 1991-02-19 1991-02-19 Catalyst for steam reforming of hydrocarbons

Publications (2)

Publication Number Publication Date
JPH04265156A true JPH04265156A (en) 1992-09-21
JP3226556B2 JP3226556B2 (en) 2001-11-05

Family

ID=12716404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04533491A Expired - Lifetime JP3226556B2 (en) 1991-02-19 1991-02-19 Catalyst for steam reforming of hydrocarbons

Country Status (1)

Country Link
JP (1) JP3226556B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003523450A (en) * 2000-02-17 2003-08-05 インペリアル・ケミカル・インダストリーズ・ピーエルシー Desulfurization
JP2008055252A (en) * 2006-08-29 2008-03-13 Nippon Oil Corp Steam modifying catalyst, hydrogen manufacturing apparatus and fuel cell system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0125473B1 (en) * 1994-10-25 1997-12-26 이희종 Stainless sheet having colorful and cubic surfaces and method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003523450A (en) * 2000-02-17 2003-08-05 インペリアル・ケミカル・インダストリーズ・ピーエルシー Desulfurization
JP2008055252A (en) * 2006-08-29 2008-03-13 Nippon Oil Corp Steam modifying catalyst, hydrogen manufacturing apparatus and fuel cell system

Also Published As

Publication number Publication date
JP3226556B2 (en) 2001-11-05

Similar Documents

Publication Publication Date Title
JP3226558B2 (en) Catalyst for high temperature steam reforming of hydrocarbons
CN100496717C (en) Hydrocarbon reforming catalyst, preparation method thereof and hydrocarbon reforming method using same
KR101280200B1 (en) Reforming catalyst for hydrocarbon, method for producing hydrogen using such reforming catalyst, and fuel cell system
KR100825157B1 (en) Catalyst for hydrocarbon reforming and method of reforming hydrocarbon with the same
JP4648567B2 (en) Autothermal reforming catalyst and method for producing fuel gas for fuel cell
WO2008044707A1 (en) Catalyst for carbon monoxide conversion and method of carbon monoxide modification with the same
JP4648566B2 (en) Autothermal reforming catalyst and method for producing fuel gas for fuel cell
JPWO2003086627A1 (en) Reforming catalyst composition
US20080265212A1 (en) Sulfur-tolerant and carbon-resistant catalysts
JP2004344721A (en) Reforming catalyst for oxygen -containing hydrocarbon, method for producing hydrogen or synthesis gas using it and fuel cell system
JP3328845B2 (en) Hydrogen production method and catalyst used for it
JP3717219B2 (en) Method for producing highly dispersed steam reforming catalyst and method for producing hydrogen
JP4525909B2 (en) Water gas shift reaction catalyst, method for producing the same, and method for producing water gas
JPH04265156A (en) Catalyst for steam reforming of hydrocarbon
JP2013017913A (en) Steam-reforming catalyst and hydrogen production process using the same
JP2000061307A (en) High dispersion type steam reforming catalyst and method for producing hydrogen
JP4316181B2 (en) Hydrocarbon reforming catalyst and method for producing the same, and hydrocarbon reforming method using the catalyst
JP3813646B2 (en) Method for producing steam reforming catalyst and method for producing hydrogen
JP4168230B2 (en) Dimethyl ether reforming catalyst and method for producing hydrogen-containing gas using the catalyst
JP4350835B2 (en) On-vehicle reforming method and apparatus for dimethyl ether
JPH0371174B2 (en)
JP2006043587A (en) Reforming catalyst of oxygen-containing hydrocarbon, reforming method of oxygen-containing hydrocarbon using it, and fuel cell system
JP2004113923A (en) Reforming catalyst for hydrocarbon, and reforming method of hydrocarbon using it
JP2001276624A (en) Reforming catalyst for hydrocarbon and steam reforming method of hydrocarbon
JP2001342004A (en) Hydrocarbon steam reformimg process

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080831

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090831

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090831

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 10