JPH04263403A - Anisotropic permanent magnet and manufacture thereof - Google Patents

Anisotropic permanent magnet and manufacture thereof

Info

Publication number
JPH04263403A
JPH04263403A JP3046135A JP4613591A JPH04263403A JP H04263403 A JPH04263403 A JP H04263403A JP 3046135 A JP3046135 A JP 3046135A JP 4613591 A JP4613591 A JP 4613591A JP H04263403 A JPH04263403 A JP H04263403A
Authority
JP
Japan
Prior art keywords
atomic
iron
powder
permanent magnet
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3046135A
Other languages
Japanese (ja)
Other versions
JP2980254B2 (en
Inventor
Ichiro Takasu
一郎 高須
Noboru Harada
昇 原田
Tomohiro Nishiyama
智宏 西山
Yoshikazu Tanaka
義和 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP3046135A priority Critical patent/JP2980254B2/en
Publication of JPH04263403A publication Critical patent/JPH04263403A/en
Application granted granted Critical
Publication of JP2980254B2 publication Critical patent/JP2980254B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0574Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by liquid dynamic compaction

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To enhance the magnetic efficiency of an R-Fe-B anisotropic magnet, and to facilitate its manufacture. CONSTITUTION:The title permanent magnet is composed of a rare-earth element of 10 to 21 atomic %, boron of 3 to 15 atomic %, and the remaining part consisting of an iron group element and inevitable impurities. When the iron- group element is 100 atomic %, its X-atomic % is replaced with cobalt, and Y-atomic % is replaced with nickel. X is 30 atomic % or smaller, and Y is 1.5 atomic % or smaller, the alloy of raw material, having (X+10Y) of 11 atomic % or more, is formed into spherical powder by a gas atomizing method in which inert gas is used, and a molded article is formed by plastically processing the powder at 550 to 800 deg.C.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、磁気特性の異方性を与
えた希土類−鉄−ほう素系(R−Fe−B系)永久磁石
及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rare earth-iron-boron (R--Fe--B) permanent magnet having anisotropic magnetic properties and a method for manufacturing the same.

【0002】0002

【従来の技術】希土類元素が10〜21原子%、ほう素
が3〜15原子%、残部が鉄及び不可避不純物である合
金を用いた異方性永久磁石が知られている。ここで、希
土類元素としては一般にNd、Prの一方または双方が
用いられ、両元素が製品の磁気特性に与える効果は殆ど
同一である。この合金に異方性を付与する方法には、次
の2種類がある。
BACKGROUND OF THE INVENTION Anisotropic permanent magnets are known that use an alloy containing 10 to 21 atomic percent of rare earth elements, 3 to 15 atomic percent of boron, and the balance being iron and unavoidable impurities. Here, one or both of Nd and Pr is generally used as the rare earth element, and the effects of both elements on the magnetic properties of the product are almost the same. There are two methods for imparting anisotropy to this alloy:

【0003】第1の製法は、所定の組成の合金塊を鋳造
し、これを3〜10μmの微粉末に粉砕し、個の粉末を
磁場中で配向させて成形し、不活性ガス雰囲気中で焼結
処理する。
[0003] The first manufacturing method involves casting an alloy ingot with a predetermined composition, pulverizing it into fine powder of 3 to 10 μm, orienting the powder in a magnetic field, shaping it, and then molding it in an inert gas atmosphere. Sinter treatment.

【0004】第2の製法は、所定の組成の合金を溶融し
、メルトスピニング法により急冷凝固させてフレーク状
の薄片を得、この薄片をホットプレスにより成形し、更
に熱間据込み加工によって加圧して加圧方向に易磁化軸
を配向させる。
[0004] The second manufacturing method involves melting an alloy of a predetermined composition, rapidly solidifying it by melt spinning to obtain flakes, forming the flakes by hot pressing, and further processing by hot upsetting. Apply pressure to orient the axis of easy magnetization in the direction of application.

【0005】これらの方法で製造させる磁石において、
その磁気性能を向上させる目的で、Rの一部をDyで置
換したり、Feの一部をCoで置換したりすることが試
みられていた。
[0005] In the magnets manufactured by these methods,
For the purpose of improving the magnetic performance, attempts have been made to replace part of R with Dy or part of Fe with Co.

【0006】[0006]

【発明が解決しようとする課題】Coの添加は、磁石の
キューリー点を高めて高温での減磁率を小さくする効果
が認められたが、磁気特性、特に最大磁気エネルギー積
は殆ど改善されなかった。Dyを添加すると磁気特性を
させることができるが、Dyは、極めて効果なために実
用上の問題があった。従ってこの発明は、R−Fe−B
系の異法性永久磁石の磁気特性、特に最大磁気エネルギ
ー積を向上させようとするものである。
[Problem to be solved by the invention] Although the addition of Co was found to be effective in raising the Curie point of the magnet and reducing the demagnetization rate at high temperatures, the magnetic properties, especially the maximum magnetic energy product, were hardly improved. . Addition of Dy can improve magnetic properties, but Dy is extremely effective and poses a practical problem. Therefore, this invention provides R-Fe-B
The aim is to improve the magnetic properties of the anomalous permanent magnet system, especially the maximum magnetic energy product.

【0007】[0007]

【課題を解決するための手段】この発明に用いる原料合
金の基本的な組成は、周知の希土類元素が10〜21原
子%、ほう素が3〜15原子%、残部が鉄族元素及び不
可避不純物よりなるものであり、希土類元素としてはN
d及びPrの一方または双方を使用する。この発明の特
徴として、上記合金中の鉄元素は、そのX原子%のコバ
ルトとY原子%のニッケルと残部の鉄とよりなり、これ
らX及びYは、 0≦X≦30 0≦Y≦1.5 X+10Y≧11 を満足する値である。
[Means for Solving the Problems] The basic composition of the raw material alloy used in this invention is 10 to 21 atomic percent of well-known rare earth elements, 3 to 15 atomic percent of boron, and the balance is iron group elements and unavoidable impurities. As a rare earth element, N
Use one or both of d and Pr. As a feature of this invention, the iron element in the alloy is composed of X atomic % of cobalt, Y atomic % of nickel, and the balance iron, and these X and Y are as follows: 0≦X≦30 0≦Y≦1 .5 This value satisfies X+10Y≧11.

【0008】この発明においては、製品に異法性を与え
るために、上記原料合金を溶融し、不活性ガスを用いた
ガスアトマイズ法によってこれを球状粉末化し、この粉
末を550℃〜800℃の温度で塑性加工することによ
って、所定の形状に成形すると同時に、異法性を与える
[0008] In this invention, in order to impart irregularity to the product, the above raw material alloy is melted, it is made into a spherical powder by a gas atomization method using an inert gas, and this powder is heated at a temperature of 550°C to 800°C. By plastic working, it is molded into a predetermined shape and at the same time gives irregularity.

【0009】上記の不活性ガスとしては、アルゴン、ネ
オン、ヘリウムの何れか、またはこれらの混合ガスを用
いる。塑性加工に用いる球状粉末の寸法は、極端に小さ
いと取扱中に酸化し、大きすぎると塑性加工に支障を来
すので、平均粒径が20〜100μm、最大粒径が30
0μm以下であることが望ましい。また、塑性加工に際
しては、加熱及び加工時の酸化を防ぐために、粉末を塑
性加工が可能な金属容器中に真空封入し、容器ごと加熱
及び加工を行うことが望ましい。
As the above-mentioned inert gas, argon, neon, helium, or a mixture thereof is used. The size of the spherical powder used for plastic processing is such that if it is extremely small, it will oxidize during handling, and if it is too large, it will interfere with plastic processing.
It is desirable that the thickness is 0 μm or less. Furthermore, during plastic processing, in order to prevent oxidation during heating and processing, it is desirable to vacuum seal the powder in a metal container capable of plastic processing, and heat and process the entire container.

【0010】塑性加工の態様としては、前方押出加工、
後方押出加工、リング状押出加工、圧延、温間据込み加
工など適宜の方法を採用することができ、その際に生ず
る歪の方向によって異方性を生ずる方向が決まる。顕著
な異方性を得るためには、加工比(加工前の断面積/加
工後の断面積)が4.6以上であることが望ましい。
[0010] Examples of the plastic working include forward extrusion processing,
Appropriate methods such as backward extrusion, ring extrusion, rolling, and warm upsetting can be employed, and the direction in which anisotropy is produced is determined by the direction of strain produced at that time. In order to obtain remarkable anisotropy, it is desirable that the processing ratio (cross-sectional area before processing/cross-sectional area after processing) be 4.6 or more.

【0011】塑性加工に際しては、加工速度が速すぎる
と、材料の歪速度が大きくなって破損するから、歪速度
を0.3以下に抑えることが必要である。歪速度Veは
、加工の態様によらず、次のようにして算出される。 歪E=lnK 歪速度Ve=E/T(sec −1) ここで、kは加工比であり、Tは材料中の或る部位が加
工領域に入ってからこれを出るまでの滞留時間である。
[0011] During plastic working, if the working speed is too high, the strain rate of the material will increase and cause damage, so it is necessary to suppress the strain rate to 0.3 or less. The strain rate Ve is calculated as follows, regardless of the processing mode. Strain E=lnK Strain rate Ve=E/T (sec -1) Here, k is the machining ratio, and T is the residence time from when a certain part of the material enters the machining area to when it leaves the machining area. .

【0012】0012

【作用】前記した2種類の従来の製法では、原料合金中
の鉄の一部をコバルト及びニッケルの一方または双方で
置換しても、目立った磁気特性の改善が得られなかった
。しかし、本発明においては、原料合金の粉末化に不活
性ガスを用いたガスアトマイズ法を採用し、更にその粉
末を容器に真空封入して加熱及び塑性加工を行うように
したことにより、コバルト及び/またはニッケルによる
鉄の一部置換の効果が顕著に現れて、磁気特性、特に最
大磁気エネルギー積を大きく改善することができた。 その最大の原因は、原料合金の粉末化から塑性加工が完
了するまでの間、原料粉末の酸化を抑制し得たことにあ
ると考えられる。
[Function] In the above-mentioned two conventional manufacturing methods, even if a part of the iron in the raw material alloy was replaced with one or both of cobalt and nickel, no noticeable improvement in magnetic properties could be obtained. However, in the present invention, a gas atomization method using an inert gas is used to powderize the raw material alloy, and the powder is vacuum-sealed in a container and heated and plastic-processed. Alternatively, the effect of partially substituting iron with nickel was noticeable, and the magnetic properties, especially the maximum magnetic energy product, could be greatly improved. The biggest reason for this is thought to be that oxidation of the raw material powder was suppressed from the time of powdering the raw material alloy to the completion of plastic working.

【0013】Nd及びPrが製品の磁気特性に与える効
果は殆ど同じであることが知られている。換言すれば、
Ndの一部または全部をPrで置換しても、合金中で占
めるNdとPrの合計量の割合が一定である限り、製品
の磁気特性は殆ど変わらない。原料合金中の鉄をコバル
ト及びニッケルで置換する量の範囲を図1に示す。即ち
、鉄、コバルト、ニッケルの総量(100原子%)中で
、コバルト量X(原子%)とニッケル量Y(原子%)の
関係がX+10Y<11のとき、及びコバルト量Xが3
0原子%を越え、或いはニッケル量Yが1.5原子%を
越えるときは、製品の磁気特性は十分改善されない。
It is known that Nd and Pr have almost the same effect on the magnetic properties of products. In other words,
Even if part or all of Nd is replaced with Pr, as long as the ratio of the total amount of Nd and Pr in the alloy remains constant, the magnetic properties of the product will hardly change. FIG. 1 shows the range of amounts of cobalt and nickel to replace iron in the raw material alloy. That is, when the relationship between the amount of cobalt X (at %) and the amount of nickel Y (at %) in the total amount of iron, cobalt, and nickel (100 at %) is X+10Y<11, and the amount of cobalt X is 3
If the nickel content Y exceeds 0 atomic % or exceeds 1.5 atomic %, the magnetic properties of the product will not be sufficiently improved.

【0014】更に、この発明においては、たとえば前方
押出加工のような極めて生産性が良好な塑性加工方法を
採用できるので、優れた性能の異方性磁石を工業的に有
利に生産できるようになった。
Furthermore, in the present invention, it is possible to employ a plastic working method with extremely good productivity, such as forward extrusion, making it possible to industrially advantageously produce anisotropic magnets with excellent performance. Ta.

【0015】[0015]

【実施例】実施例1 表1に試料1乃至6として示すR−Fe−B系の各種の
合金を溶製し、それぞれアルゴンガスアトマイズ法によ
り粒径298μm以下に粉末化する。これらをそれぞれ
外径28mm、長さ35mm、肉厚1mmの軟鋼製カプ
セルに充填し、内部を真空排気して電子ビーム溶接によ
り封止する。これをビレットとして下記条件で前方押出
加工した。 予熱        600℃×5分間押出温度   
 650±5℃ 押出比      4.0(径28mm→径14mm)
歪速度      毎秒0.05
EXAMPLES Example 1 Various R-Fe-B alloys shown as Samples 1 to 6 in Table 1 were melted and powdered to a particle size of 298 μm or less by argon gas atomization. Each of these is filled into a mild steel capsule with an outer diameter of 28 mm, a length of 35 mm, and a wall thickness of 1 mm, the inside of which is evacuated and sealed by electron beam welding. This was made into a billet and subjected to forward extrusion processing under the following conditions. Preheating 600℃ x 5 minutes Extrusion temperature
650±5℃ Extrusion ratio 4.0 (diameter 28mm → diameter 14mm)
Strain rate 0.05 per second

【0016】得られた磁石材の磁気特性を表1に示す。 なお、Zは押出加工方向、rは半径方向、θはrに直交
する方向である。
Table 1 shows the magnetic properties of the obtained magnet material. Note that Z is the extrusion direction, r is the radial direction, and θ is the direction perpendicular to r.

【表1】 表1を検討すると、試料3、4、5ではCoの添加によ
って磁気特性が顕著に改善されているが、試料2及び6
ではCoの添加による磁気特性の改善が殆ど認められな
い。
[Table 1] Examining Table 1, it can be seen that the magnetic properties of Samples 3, 4, and 5 are significantly improved by the addition of Co, but Samples 2 and 6 have significantly improved magnetic properties.
Almost no improvement in magnetic properties was observed by the addition of Co.

【0017】実施例2 表2に試料7乃至9として示すR−Fe−B系の各種の
合金を、それぞれ実施例1と同条件で粉末化し、かつ同
条件で磁石材に加工した。得られた磁石材の磁気特性を
表2に示す。
Example 2 Various R-Fe-B alloys shown as Samples 7 to 9 in Table 2 were each powdered under the same conditions as in Example 1 and processed into magnet materials under the same conditions. Table 2 shows the magnetic properties of the obtained magnet material.

【表2】 表2を検討すると、試料8はNiの添加によって磁気特
性が顕著に改善されているが、試料7及び9ではNi添
加による磁気特性の改善が殆ど認められない。
[Table 2] Examination of Table 2 shows that the magnetic properties of Sample 8 are significantly improved by the addition of Ni, but in Samples 7 and 9, almost no improvement in the magnetic properties by the addition of Ni is observed.

【0018】実施例3 表3に試料10乃至12として示すR−Fe−B系の各
種の合金を、それぞれ実施例1と同条件で粉末化し、か
つ同条件で磁石材に加工した。得られた磁石材の磁気特
性を表3に示す。
Example 3 Various R-Fe-B alloys shown as Samples 10 to 12 in Table 3 were powdered under the same conditions as in Example 1, and processed into magnet materials under the same conditions. Table 3 shows the magnetic properties of the obtained magnet material.

【表3】 表3を検討すると、試料10及び11ではNi及びCo
の同時添加による磁気特性の改善効果が認められるが、
試料12では磁気特性が却って減退している。
[Table 3] Examining Table 3, samples 10 and 11 contain Ni and Co.
Although the effect of improving magnetic properties by simultaneous addition of
In sample 12, the magnetic properties are rather reduced.

【0019】図1は、横軸にCo量X(原子%)を、縦
軸にNi量(原子%)をとり、上記試料1乃至12の分
布状況を示すものである。図中の符号1乃至12は上記
試料番号を示し、括弧内の数字はr方向の最大磁気エネ
ルギー積(BH)max(MGOe)を示す。図1によ
って明らかなように、r方向の最大磁気エネルギー積が
およそ13MGOe以上である範囲は、X=30 Y=1.5 X+10Y=11 である3本の直線で囲まれた部分である。
FIG. 1 shows the distribution of Samples 1 to 12, with the Co content X (atomic %) plotted on the horizontal axis and the Ni content (atomic %) plotted on the vertical axis. Reference numerals 1 to 12 in the figure indicate the sample numbers, and the numbers in parentheses indicate the maximum magnetic energy product (BH) max (MGOe) in the r direction. As is clear from FIG. 1, the range in which the maximum magnetic energy product in the r direction is approximately 13 MGOe or more is the area surrounded by three straight lines where X=30 Y=1.5 X+10Y=11.

【0020】[0020]

【発明の効果】以上の実施例によって明らかなように、
本発明によれば、R−Fe−B系磁石合金の磁気特性を
Co及びNiの一方または双方の添加によって向上する
ことができ、かつ生産性の良好なガスアトマイズ法及び
生産性が良好な適宜の塑性加工方法の採用によって、所
望形状の異法性磁石を安価に量産することができる。
[Effect of the invention] As is clear from the above examples,
According to the present invention, the magnetic properties of an R-Fe-B magnet alloy can be improved by adding one or both of Co and Ni, and a gas atomization method with good productivity and an appropriate method with good productivity can be used. By employing the plastic working method, irregular magnets with desired shapes can be mass-produced at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明におけるCo量とNi量の範囲を示す分
布図である。
FIG. 1 is a distribution diagram showing the range of Co amount and Ni amount in the present invention.

【符号の説明】[Explanation of symbols]

1〜12  試料番号 1-12 Sample number

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  希土類元素が10〜21原子%、ほう
素が3〜15原子%、残部が鉄族元素及び不可避不純物
よりなり、かつ上記鉄族元素は、そのX原子%のコバル
トと、Y原子%のニッケルと、残部の鉄とよりなり、上
記X及びYは 0≦X≦30(原子%) 0≦Y≦1.5(原子%) X+10Y≧11(原子%) である合金の不活性ガスを用いたガスアトマイズ粉末の
成形品であることを特徴とする異方性永久磁石。
Claim 1: 10 to 21 atomic % of rare earth elements, 3 to 15 atomic % of boron, and the balance consisting of iron group elements and unavoidable impurities, and the iron group elements are composed of X atomic % of cobalt and Y An alloy consisting of atomic% nickel and the balance iron, where X and Y are 0≦X≦30 (atomic%) 0≦Y≦1.5 (atomic%) X+10Y≧11 (atomic%) An anisotropic permanent magnet characterized by being a molded product of gas atomized powder using active gas.
【請求項2】  希土類元素が10〜21原子%、ほう
素が3〜15原子%、残部が鉄族元素及び不可避不純物
よりなり、かつ上記鉄族元素は、そのX原子%がコバル
トで、Y原子%がニッケルで、残部が鉄であって、上記
X及びYは 0≦X≦30(原子%) 0≦Y≦1.5(原子%) X+10Y≧11(原子%) である合金を溶融して、不活性ガスを用いたガスアトマ
イズ法により球状粉末化し、この粉末を550℃〜80
0℃の温度で塑性加工を行うことにより所定の形状の成
形品を得ることを特徴とする異方性永久磁石の製造方法
2. Rare earth elements are 10 to 21 atomic %, boron is 3 to 15 atomic %, the balance is iron group elements and unavoidable impurities, and the iron group elements are cobalt in X atomic % and Y Melting an alloy in which atomic% is nickel and the balance is iron, and the above X and Y are 0≦X≦30 (atomic%) 0≦Y≦1.5 (atomic%) X+10Y≧11 (atomic%) The powder is made into a spherical powder by a gas atomization method using an inert gas, and this powder is heated at 550°C to 80°C.
A method for producing an anisotropic permanent magnet, characterized in that a molded product having a predetermined shape is obtained by plastic working at a temperature of 0°C.
JP3046135A 1991-02-18 1991-02-18 Anisotropic permanent magnet and manufacturing method thereof Expired - Fee Related JP2980254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3046135A JP2980254B2 (en) 1991-02-18 1991-02-18 Anisotropic permanent magnet and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3046135A JP2980254B2 (en) 1991-02-18 1991-02-18 Anisotropic permanent magnet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH04263403A true JPH04263403A (en) 1992-09-18
JP2980254B2 JP2980254B2 (en) 1999-11-22

Family

ID=12738540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3046135A Expired - Fee Related JP2980254B2 (en) 1991-02-18 1991-02-18 Anisotropic permanent magnet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2980254B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60189901A (en) * 1984-03-09 1985-09-27 Sumitomo Special Metals Co Ltd Manufacture of alloy powder for rare earth-boron-iron group magnetic anisotropic permanent magnet
JPS63287007A (en) * 1987-05-19 1988-11-24 Seiko Epson Corp Manufacture of permanent magnet
JPS63289905A (en) * 1987-05-22 1988-11-28 Kobe Steel Ltd Manufacture of rare earth-fe-b magnet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60189901A (en) * 1984-03-09 1985-09-27 Sumitomo Special Metals Co Ltd Manufacture of alloy powder for rare earth-boron-iron group magnetic anisotropic permanent magnet
JPS63287007A (en) * 1987-05-19 1988-11-24 Seiko Epson Corp Manufacture of permanent magnet
JPS63289905A (en) * 1987-05-22 1988-11-28 Kobe Steel Ltd Manufacture of rare earth-fe-b magnet

Also Published As

Publication number Publication date
JP2980254B2 (en) 1999-11-22

Similar Documents

Publication Publication Date Title
US4801340A (en) Method for manufacturing permanent magnets
JP3932143B2 (en) Magnet manufacturing method
US5314548A (en) Fine grained anisotropic powder from melt-spun ribbons
JPH0366105A (en) Rare earth anisotropic powder and magnet, and manufacture thereof
US5127970A (en) Method for producing rare earth magnet particles of improved coercivity
JP3084748B2 (en) Manufacturing method of rare earth permanent magnet
JPS62202506A (en) Permanent magnet and manufacture thereof
CN112216460A (en) Nanocrystalline neodymium-iron-boron magnet and preparation method thereof
JPS61268006A (en) Anisotropic magnet
JPS6348805A (en) Manufacture of rare-earth magnet
JPS63178505A (en) Anisotropic r-fe-b-m system permanent magnet
JPH04263403A (en) Anisotropic permanent magnet and manufacture thereof
JPH04321202A (en) Manufacture of anisotropic permanent magnet
JPS6329908A (en) Manufacture of r-fe-b rare earth magnet
JPH0562814A (en) Method of manufacturing rare-earth element-fe-b magnet
JPS63289905A (en) Manufacture of rare earth-fe-b magnet
JPH05152113A (en) Manufacture of rare-earth anisotropic magnet powder
JPS62264609A (en) Manufacture of cylindrical rare-earth magnet
JPS594107A (en) Manufacture of rare earth and cobalt group magnetic material
JPS6316603A (en) Manufacture of sintered rare-earth magnet
JPH0584043B2 (en)
JPS63211705A (en) Anisotropic permanent magnet and manufacture thereof
JPS61252604A (en) Manufacture of rare earth magnet
JPH0239503A (en) Rare earth-fe-b anisotropic permanent magnet and its manufacture
JPH01179305A (en) Manufacture of anisotropic permanent magnet

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19970819

LAPS Cancellation because of no payment of annual fees