JPH042601A - Method for selecting hydrogen-occluding alloy - Google Patents

Method for selecting hydrogen-occluding alloy

Info

Publication number
JPH042601A
JPH042601A JP2102003A JP10200390A JPH042601A JP H042601 A JPH042601 A JP H042601A JP 2102003 A JP2102003 A JP 2102003A JP 10200390 A JP10200390 A JP 10200390A JP H042601 A JPH042601 A JP H042601A
Authority
JP
Japan
Prior art keywords
hydrogen
hydrogen storage
alloy
reaction
occluding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2102003A
Other languages
Japanese (ja)
Inventor
Yoshio Moriwaki
良夫 森脇
Hajime Seri
世利 肇
Akiyoshi Shintani
新谷 明美
Munehisa Ikoma
宗久 生駒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2102003A priority Critical patent/JPH042601A/en
Publication of JPH042601A publication Critical patent/JPH042601A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Abstract

PURPOSE:To enable to effectively select a hydrogen-occluding alloy by evaluating a time required for staring an initial hydrogenation reaction and/or evaluating a hydrogen-occluding reaction curved line by a means for measuring an elapsed time from the stating of a hydrogen-occluding reaction and also changes in the pressure of stored hydrogen amount. CONSTITUTION:A hydrogen occlusion alloy to be selected is charged in an at least closable container and the container is, if necessary, degassed. The container is charged with hydrogen gas at a prescribed pressure, and a time required for starting an initial hydrogen-occluding reaction is evaluated by a means for measuring he prescribed time from the application of the hydrogen gas to the starting of the initial hydrogen-occluding reaction and/or a hydrogen- occluding reaction curved line is evaluated by a means for measuring an elapsed time from the stating of the hydrogen-occluding reaction and also the change in the pressure of occluded hydrogen gas, thereby confirming the characteristics of the hydrogen-occluding alloy to judge the quality of the alloy.

Description

【発明の詳細な説明】 産業上の利用分野 本発明ζよ 合金中に多量の水素ガスを貯蔵できる水素
吸蔵合金に関するものであり、この水素吸蔵合金を、例
えば水素貯蔵 熱利爪 触弧 電池電極などに用いる際
に使用する合金の良否を簡便に選別する方法に関す翫 従来の技術 水素吸蔵合金は機能性の新素材として、水素の貯蔵・輸
送 水素精観 蓄熱や冷暖鳳 電池電極センサーやアク
チュエー久 ゲッターなどの吸着材などの多くの応用が
考えられていも この水素吸蔵合金を実際の用途に利用
する場合に:戴 まず水素吸蔵合金としての性能を確認
し使用するのが一般的であム この性能を確扱 評価する方法としては使用する機器な
どの要求から従来は 主に水素吸蔵合金の代表的な特性
である水素平衡圧力P−組成C−等温線T特性や、繰り
返し水素吸蔵・放出によるサイクル寿命特性などが採用
されてい九 これらの確認評価法は純粋に水素吸蔵会合
材料の特性を評価できる点ではとても有効な方法であム
 しかしこの情報は水素吸蔵合金本来の特性としては有
用であり基本となるものである力(実際にその水素吸蔵
合金を何かのシステムなどに利用する場合の選別法とし
てζよ 不十分であム なぜなら合金作製直後から放置
や種々の処理を合金に施すことにより特性は微妙に変化
するためであり、その微妙な性能の変化をその場で迅速
に選別評価することが出来ないためであも 例えば 水素吸蔵合金を作製し 当初のPCT特性によ
る評価やサイクル寿命試験の評価で優れた性能を確認し
たものであってL その後例えばこの合金をどのような
粒子径で、どのような条件下に保存するかにによって水
素吸蔵合金としての特性はずいぶん異なることが知られ
ていも また水素吸蔵合金をデバイス化する上において
、合金表面を化学的な処理を施したり、別の化学物質と
混合したりすることなどの加工を行うことがよくある力
(この際に合金の表面状態が変化することが知られてい
も 発明が解決しようとする課題 このようtA  水素吸蔵合金の放置や加工などの履歴
の差により初期水素化の容易さや水素との反応速度が大
きくことなることが予想されも実際に水素吸蔵合金を用
いた機器やデノくイスを製造する場合に(よ このよう
な水素吸蔵合金の水素化特性を簡便な方法で評価する水
素吸蔵合金の選別方法が求められてい丸 したがって水素吸蔵合金の水素化特性を簡便に評価し使
用が可能かどうかの選択を行うことが重要な課題であり
、本発明ζよ 効果的な水素吸蔵合金の選別方法を提供
することを目的とすム課題を解決するための手段 本発明は 選別対象とする水素吸蔵合金を少なくとも密
閉可能な容器内に装着し 必要に応じて容器内を脱ガス
処理し その後水素ガスを所定の圧力で容器内に導入し
 水素吸蔵合金の水素ガス印加から初期水素吸蔵反応が
開始するまでの所要時間を測定する手段によって反応開
始所要時間を評価する力\ もしくは水素吸蔵反応が開
始してから経過時間とともに水素吸蔵量の圧力変化を測
定する手段によって水素吸蔵反応曲線を評価することの
両方もしくはいずれか一方の評価によって水素吸蔵合金
の特性を確認し良否を判定することを特徴とする水素吸
蔵合金の選別方法であもそして反応開始所要時間 水素
吸蔵反応曲線の両方もしくはいずれか一方の測定データ
を標準合金のデータと値と比較し 測定データと標準デ
ータの値のズレの大小により合金の選別ができるように
システム構成した水素吸蔵合金の選別方法であも 作用 本発明は上記した方法により、初期水素化反応開始に必
要な時間を評価すへ もしくは水素吸蔵反応が開始して
から経過時間とともに水素吸蔵量の圧力変化を測定する
手段によって水素吸蔵反応曲線を評価することの両方も
しくはいずれか一方の評価によって水素吸蔵合金の特性
を確認し良否を判定することを特徴とするものであり極
めて簡易な評価方法で必要な情報を確実に入手出来る点
に特徴があ翫 水素吸蔵合金は酸秦 窒秦 炭酸ガスなどのガス吸着や
表面の化学変化により水素ガスとの反応性が異なってく
a それによって実際の機器やデバイスに使用した場合
の性能が大きく変化するものであも この重要な情報の
入手は反応開始所要時間 水素吸蔵反応曲線の両方もし
くはいずれか一方の測定データを得ることにより可能で
あることがわかっ九 そして得られる測定データを相互
に比較検討できるシステム構成をとれ1′L  水素吸
蔵合金の選別が極めて簡便に出来 かつ必要な情報を確
実に評価することができも この選別対象とする水素吸蔵合金が特に電極用に使用す
る水素吸蔵合金である場合に(友 電極あるいは電池を
製造する過程で特に化学的な処理を行うことが多いので
これらの処理による影響を受は易いため番ξ  本発明
の方法が特に有効であも実施例 以下、本発明の一実施例を電池電極用の水素吸蔵合金の
場合について説明する。
[Detailed Description of the Invention] Industrial Field of Application The present invention relates to a hydrogen storage alloy that can store a large amount of hydrogen gas in the alloy. Conventional technology Hydrogen storage alloys are a new functional material that can be used for hydrogen storage and transportation, hydrogen inspection, heat storage, cooling and heating, battery electrode sensors and actuators. Although many applications such as adsorbents such as getters are being considered, when using this hydrogen storage alloy for actual purposes, it is common to first confirm its performance as a hydrogen storage alloy before using it. Due to the requirements of the equipment used, methods to evaluate this performance have traditionally been based mainly on hydrogen equilibrium pressure P - composition C - isotherm T characteristics, which are typical characteristics of hydrogen storage alloys, and repeated hydrogen absorption and release. These confirmation evaluation methods are very effective in that they can purely evaluate the properties of hydrogen-absorbing and associated materials. However, this information is not useful for the inherent properties of hydrogen-absorbing alloys. The basic force (ζ) is insufficient as a selection method when the hydrogen storage alloy is actually used in some kind of system, because the alloy is left alone or subjected to various treatments immediately after the alloy is made. This is because the properties change subtly due to the change in performance, and it is not possible to quickly select and evaluate such subtle changes in performance on the spot. Excellent performance has been confirmed in life test evaluations.Afterwards, the properties of this alloy as a hydrogen storage alloy will vary considerably depending on, for example, what particle size and under what conditions this alloy is stored. Although it is known, when making devices from hydrogen storage alloys, it is common to perform processing such as chemically treating the alloy surface or mixing it with other chemicals (in this case, Although it is known that the surface state of the alloy changes, the problem that the invention seeks to solve is that the ease of initial hydrogenation and the reaction rate with hydrogen are large due to differences in the history of hydrogen storage alloys such as storage and processing. Although it is expected that hydrogen storage alloys will be used in the production of equipment and devices that use hydrogen storage alloys, it is important to consider the following: Therefore, it is an important issue to easily evaluate the hydrogenation properties of hydrogen storage alloys and select whether or not they can be used, and the present invention provides an effective method for selecting hydrogen storage alloys. A means for solving the problem of the present invention is to place a hydrogen storage alloy to be sorted in at least a sealable container, degas the container as necessary, and then supply hydrogen gas to a predetermined amount. The ability to evaluate the time required to start the reaction by introducing hydrogen gas into the container at a pressure of A hydrogen storage device characterized in that the characteristics of a hydrogen storage alloy are confirmed and its quality is determined by evaluating the hydrogen storage reaction curve by means of measuring the pressure change of the hydrogen storage amount over time. In the alloy selection method, the time required to start the reaction is compared with the measured data of either or both of the hydrogen absorption reaction curves with the data and values of the standard alloy, and the alloys are selected based on the magnitude of the difference between the measured data and the standard data. The present invention uses the method described above to evaluate the time required to start the initial hydrogenation reaction, or to evaluate the time required to start the initial hydrogenation reaction, or to evaluate the time required to start the hydrogen storage reaction as time passes from the start of the hydrogen storage reaction. It is characterized by the fact that the characteristics of the hydrogen storage alloy are confirmed and the quality is determined by evaluating the hydrogen storage reaction curve by means of measuring the pressure change of the hydrogen storage amount, and/or by evaluating the hydrogen storage reaction curve, and it is extremely simple. Hydrogen storage alloys are characterized by the ability to reliably obtain the necessary information using a reliable evaluation method. Even if the performance of the product changes significantly when used in actual equipment or devices, it is possible to obtain this important information by obtaining measurement data for the time required to start the reaction and/or the hydrogen absorption reaction curve. Therefore, we should establish a system configuration that allows us to compare and examine the obtained measurement data. Especially when hydrogen storage alloys are hydrogen storage alloys used for electrodes, they are often subjected to chemical treatments in the process of manufacturing electrodes or batteries, so they are easily affected by these treatments. EXAMPLE 1 Hereinafter, an example of the present invention will be described in the case of a hydrogen storage alloy for battery electrodes.

水素吸蔵合金として市販のMm(ミツシュメタル)、 
 Ni、Co、Mn、AIの各原材料を一定の組成比に
秤量し アルゴンアーク溶解炉によりMm N i *
、*Co s、sM n s、aA l m、s合金を
製造しさらにこれを1050℃で6時間の真空中熱処理
を行った この合金を機械的な粉砕により平均粒径を2
0μmとした 微粉砕したこの合金を水素吸蔵合金電極
にするためには種々の製造工程を経る必要があ4 特に
この合金粉末を熱アルカリ中で一定時間放置することに
より電池性能が向上することがわかっているので、この
アルカリ処理を例に本発明の水素吸蔵合金の選別方法を
説明すもアルカリ処理の条件は比重1.30のKOH水
溶液に合金粉末を80℃で1時間放置した選別対象とす
る水素吸蔵合金としては次の4つの試料であム 4つの
うち共通する条件4友 先に示したMm N i z、
@c o *、sM n 14A I g、*合金で平
均粒径を20μmとした粉末であも (a)合金粉砕直後−アルカリ処理なしく基準)(b)
アルカリ処理後すぐ乾燥 (c)アルカリ処理後水洗し乾燥 (d)アルカリ処理後水洗し45℃の水中に2週間放置
後乾燥 この4種試料合金粉末をそれぞれ評価装置であるステン
レス製の圧力容器内に5gづつセットし九 そしてこの
容器を150℃で30分真空脱ガスし丸 その後この容
器温度をいずれも20℃に調整し水素ガスを30kg/
cm”印加した水素ガス印加によりこの条件では(a)
〜(d)のいずれの試料も1〜2秒後の早い間に初期水
素化がスタートしん 正確に初期水素化反応の開始に必
要な所要時間の評価については別の結果を後はど示す。
Mm (Mitshu Metal), which is commercially available as a hydrogen storage alloy,
Each raw material of Ni, Co, Mn, and AI is weighed to a certain composition ratio and melted into Mm Ni * using an argon arc melting furnace.
, *Co s, sM n s, aAl m, s alloy was produced and further heat treated in vacuum at 1050°C for 6 hours. This alloy was mechanically pulverized to reduce the average particle size to 2.
In order to turn this finely pulverized alloy into a hydrogen storage alloy electrode, it is necessary to go through various manufacturing processes.4 In particular, battery performance can be improved by leaving this alloy powder in a hot alkali for a certain period of time. Since this is known, the method for sorting hydrogen storage alloys of the present invention will be explained using this alkaline treatment as an example.The conditions for the alkaline treatment were as follows: The alloy powder was left in a KOH aqueous solution with a specific gravity of 1.30 for 1 hour at 80°C. The following four samples are used as hydrogen storage alloys. Four common conditions among the four are the Mm N i z shown above,
@c o *, sM n 14A I g, * Powder with an average particle size of 20 μm (a) Immediately after alloy crushing - standard without alkali treatment) (b)
Dry immediately after alkali treatment (c) Wash with water and dry after alkali treatment (d) Wash with water after alkali treatment, leave in water at 45°C for 2 weeks and dry Then, vacuum degas the container at 150°C for 30 minutes.Then, adjust the temperature of each container to 20°C and add 30kg/h of hydrogen gas.
Under these conditions, (a)
Initial hydrogenation started as early as 1 to 2 seconds after 1 to 2 seconds for any of the samples in (d). Separate results will be presented later regarding accurate evaluation of the time required to start the initial hydrogenation reaction.

しかし この試料(a)〜(d)のその後の水素吸蔵反
応は図に示すようJ−、試料の違いにより大きな差異が
見られ九 この図は縦軸に合金の水素吸蔵(反応)量を
合金1モルあたりの水素原子数で示していも 横軸は水
素化が開始してからの経過反応時間であも 図中の番号
は試料番号であ4層図から水素吸蔵反応は(a)> (
d)> (c)> (b)の順に速くなっていることが
わかム 具体的な値としては仮に合金の水素吸蔵量がH
x=3.0に達する時間はそれぞれ(a)0.4時11
1(b)37時fla(c)10゜5時fla(d)3
.5時間であることがわかったこの水素吸蔵反応の速度
の変化について別に調べたとこへ 4種の試料合金粉末
のアルカリ処理による合金表面へのKOHの付着による
影響が水洗条件やその後の水中放置条件により異なって
おりこのKOHが作用したことによる合金表面の状態変
化が直接水素吸蔵反応速度の差異になって表れているこ
とが予想できた つぎにこれら4種の試料合金粉末を用いて実際の電極お
よび密閉形ニッケルー水素蓄電池を構成した結果につい
て説明すも 先の4種の合金粉末をカルボキシメチルセルローズ(C
MC)の冷水溶液と混合撹拌しペースト状にして、電極
支持体として平均ポアサイズ150ミクロン、多孔度9
5% 厚さ1. 0mmの発泡状ニッケルシートに充填
し九 これを120℃で乾燥してローラープレスで加圧
し さらにその表面にフッソ樹脂粉末をコーテングし水
素吸蔵合金電極とし九 そしてこれらの電極を用いて密閉形ニッケルー水素蓄電
池を構成した すなわち先の電極をそれぞれ幅3.3c
rrL、長さ21cm、  厚さ0.50mmに調整し
 リード板を所定の2カ所に取り付けへ そして、正極
 セパレータと組み合わせて円筒状に3層に渦巻き状に
してSCサイズの電槽に収納した このときの正極(友
 公知の発泡式ニッケル極を選び、幅3.3CrlL 
 長さ16cmとして用いた この場合もリード板を2
カ所に取り付はム またセパレータCヨ  親水性を付
与したポリプロピレン不織布を用い九 電解液としては
比重1.20の水酸化カリウム水溶液に水酸化リチウム
を30g/I溶解して用い九 これを封口して密閉形電
池とし九 これらの電池(友 正極容量規制で公称容量
は2.5Ahであム この密閉形電池で水素吸蔵合金電
極の先の4種類の合金試料粉末で構成した電池をそれぞ
れ(A)、  (B)。
However, as shown in the figure, the subsequent hydrogen absorption reactions of samples (a) to (d) show large differences depending on the sample.9 In this figure, the vertical axis shows the hydrogen absorption (reaction) amount of the alloy. Even if it is expressed in terms of the number of hydrogen atoms per mole, the horizontal axis is the elapsed reaction time after the start of hydrogenation.The numbers in the diagram are sample numbers, and from the four-layer diagram, the hydrogen absorption reaction is (a) > (
It can be seen that the speed increases in the order of d) > (c) > (b).As a concrete value, suppose the hydrogen storage capacity of the alloy is H
The time to reach x = 3.0 is (a) 0.4:11, respectively.
1 (b) 37 o'clock fla (c) 10° 5 o'clock fla (d) 3
.. The change in the rate of this hydrogen absorption reaction, which was found to take 5 hours, was investigated separately.The effect of KOH adhesion on the alloy surface due to alkali treatment of four types of sample alloy powders was determined by water washing conditions and subsequent water storage conditions. It was possible to predict that the changes in the state of the alloy surface caused by the action of KOH directly manifested as differences in the hydrogen storage reaction rate.Next, using these four types of sample alloy powders, we tested actual electrodes. I will explain the results of constructing a sealed nickel-metal hydride storage battery using carboxymethyl cellulose (C
Mix and stir with a cold water solution of MC) to form a paste and use it as an electrode support with an average pore size of 150 microns and a porosity of 9.
5% Thickness 1. This was filled into a 0 mm foamed nickel sheet, dried at 120°C, and pressed with a roller press.Furthermore, the surface was coated with fluorocarbon resin powder to form a hydrogen storage alloy electrode.These electrodes were then used to form a sealed nickel-hydrogen alloy. A storage battery was constructed, that is, each electrode had a width of 3.3 cm.
Adjust the rrL to 21cm in length and 0.50mm in thickness, attach the lead plates to the two designated locations, and then combine it with the positive electrode separator to form a cylindrical three-layer spiral and store it in an SC size battery case. Positive electrode (Friend) Select a well-known foamed nickel electrode, with a width of 3.3CrlL.
In this case, the length was 16 cm. Also in this case, two lead plates were used.
Separator C should be installed in the same place. Also, use a polypropylene non-woven fabric with hydrophilic properties as the electrolyte. Lithium hydroxide is dissolved at 30g/I in a potassium hydroxide aqueous solution with a specific gravity of 1.20.9 This is sealed. According to the positive electrode capacity regulation, the nominal capacity of these batteries is 2.5 Ah. In these sealed batteries, each battery composed of four types of alloy sample powder at the end of the hydrogen storage alloy electrode ( ), (B).

(C)、  (D)とす4 これらの電池をそれぞれ10個づつ作成し通常の充放電
サイクル試験によって評価した結果を説明すも 充電(
L  O,5C(2時間率)で150%まで、放電は0
.5C(2時間率)で終止電圧1、 Ovとし20℃で
の充放電サイクルを繰り返した その結果 4種のいず
れの電池もサイクルの初期は はぼ2,6Ahの放電容
量が得られた戟 500サイクルまでの充放電試験によ
り、それぞれ電池の寿命に大きな差異が見られ九 寿命
性能の優れたものから順に列記すると(D)> (C)
> (B)> (A)となった 電池(A)は100サイクル以降に放電容量の急激な低
下が認められ九 同様に電池(B)は300サイクル前
後で放電容量の急激な低下が認められた これに対し電
池(C)ではlOココ中コがまた電池(D)では10個
共すべて500サイクルまでの充放電試験により安定な
性能を維持した 以上の結果からこの電池に使用する水
素吸蔵合金としては(C)、  (D)で得た合へ 好
ましくは(D)が良いことが確認できtう 以上の密閉電池試験結果は先の4種合金の図に示した水
素吸蔵反応とうまく対応した結果であった すなわ板 
最も早い反応速度を有した(a)合金は電池特性との関
連からアルカリ処理が電池の寿命特性に不可欠であり参
考データとして評価したものであり、アルカリ処理を行
った(b)。
(C), (D) and 4 We will explain the results of making 10 of each of these batteries and evaluating them through normal charge/discharge cycle tests.
Up to 150% at L O, 5C (2 hour rate), discharge is 0
.. Charge/discharge cycles were repeated at 20°C with a final voltage of 1 Ov at 5C (2 hour rate).As a result, all four types of batteries had a discharge capacity of approximately 2.6Ah at the beginning of the cycle.500 A large difference in the lifespan of each battery was observed through charge-discharge tests up to cycling.9 Listed in descending order of lifespan performance: (D) > (C)
> (B) > In battery (A), a rapid decrease in discharge capacity was observed after 100 cycles. Similarly, in battery (B), a rapid decrease in discharge capacity was observed after around 300 cycles. On the other hand, in battery (C), all 10 batteries maintained stable performance through charge/discharge tests up to 500 cycles.From the above results, the hydrogen storage alloy used in this battery As for the cases obtained with (C) and (D), it can be confirmed that (D) is preferable.The above sealed battery test results correspond well to the hydrogen absorption reaction shown in the diagram of the four types of alloys above. This was the result of
The alloy (a) that had the fastest reaction rate was subjected to the alkali treatment (b) because it was evaluated as reference data because alkaline treatment is essential for the battery life characteristics in relation to the battery characteristics.

(c)、  (d)の合金では少なくとも(c)以上の
反応速度を有する水素吸蔵合金材料力(この電池に適応
するのに適していも この結果から予め簡易な本発明の
水素吸蔵反応速度を評価すれば電池に使用する水素吸蔵
合金の選別が容易であり、長寿命の電池を構成すること
が可能となもな扛 先の4種試料合金粉末の水素ガスで
の反応開始所要時間については先の150℃で30分真
空脱ガスで20℃に調整後水素ガスを30kg/cm”
印加した場合には いずれの試料も1〜2秒後の早い間
に初期水素化がスタートしたのでそれらの差異が不明確
であり九 この反応開始所要時間の評価によって試料合金を選別す
るために先の4種試料合金を選別可能なように評価した
結果について以下に述べる。
The alloys (c) and (d) are hydrogen storage alloy materials having a reaction rate at least higher than (c) (which is suitable for application to this battery). If evaluated, it will be easy to select the hydrogen storage alloy to be used in the battery, and it will be possible to construct a long-life battery. After adjusting the temperature to 20℃ by vacuum degassing for 30 minutes at 150℃, add 30kg/cm of hydrogen gas.
In this case, the initial hydrogenation of all samples started within 1 to 2 seconds, so the difference between them is unclear. The following describes the results of evaluating four types of sample alloys so that they can be sorted.

先の例では選別対象とする水素吸蔵合金を少なくとも密
閉可能な容器内に装着し 容器内を脱ガス処理する条件
が150℃で30分の真空脱ガス条件を用いていた力(
これではこれらの合金の反応開始所要時間は非常に短い
ものであるので、 100℃で30分の真空脱ガス条件
に変更して評価をし九 その結果 先の4種合金の反応
開始所要時間(よ それぞれ(a)2分、  (b)2
40分。
In the previous example, the hydrogen storage alloy to be sorted was placed inside a container that could be sealed at least, and the conditions for degassing the inside of the container were vacuum degassing conditions at 150°C for 30 minutes.
Since the time required to initiate the reaction of these alloys is extremely short, we changed the vacuum degassing conditions to 100°C for 30 minutes and evaluated the results. (a) 2 minutes, (b) 2 minutes each
40 minutes.

(c)60分、(d)10分となり、 (a)> (d)> (c)> (a)の順に所要時間
が短かっ九 この反応開始所要時間も先の反応速度評価と同様に密閉
電池試験結果対応したものであり、同様に電池に使用す
る水素吸蔵合金の選別が容易であることがわかっ九 本発明の水素ガスによる初期水素吸蔵反応が開始するま
での所要時間を測定する手段によって反応開始所要時間
を評価する方法 もしくは水素吸蔵反応が開始してから
経過時間とともに水素吸蔵量の圧力変化を測定する手段
によって水素吸蔵反応曲線を評価する方法(友 水素吸
蔵合金材料の種類 例えば希土類ニッケル系合金力\ 
Ti −Mn系合金かの違い東 その後の合金作製後の
処理状風 例えば粉砕条体 化学的処理などによる違い
により、反応開始所要時間や水素吸蔵反応曲線による評
価結果に大きな差異が生ずるのは当然であり、材料選別
を正確に行うために1友 より測定評価がやり易い条件
例えば 容器内を脱ガス処理条件や、水素ガス印可条件
などを選ぶことが好まし11℃ またこれらの反応開始所要時間 水素吸蔵反応曲線の両
方もしくはいずれか一方の測定データを通常のコンピュ
ータ処理により、例えば性能が優れている標準合金のデ
ータと比較し 測定データと標準データの値のズレの大
小により合金の選別が自動的にできるようにシステム構
成することが効果的であム 具体的にはある評価条件下
での反応開始所要時間を最適範囲に入っているか否かを
圧力計の変化から読み取り比較して判別するシステムや
、水素吸蔵反応曲線を簡易な反応速度式に演算して判別
することなどが可能である。
(c) 60 minutes, (d) 10 minutes, and the required time is shorter in the order of (a) > (d) > (c) > (a).9 This reaction initiation time is also the same as the reaction rate evaluation above. This corresponds to the battery test results, and it has been found that it is easy to select hydrogen storage alloys to be used in batteries. A method of evaluating the time required to start the reaction, or a method of evaluating the hydrogen storage reaction curve by measuring the change in pressure of the amount of hydrogen storage with the elapsed time after the start of the hydrogen storage reaction (for example, rare earth nickel). System alloy power\
Differences between Ti-Mn alloys Processing conditions after alloy production For example, pulverized strips Differences in chemical processing, etc. naturally lead to large differences in the time required to start the reaction and the evaluation results based on the hydrogen absorption reaction curve. Therefore, in order to perform material selection accurately, it is preferable to select conditions that make it easier to perform measurement and evaluation, such as degassing the inside of the container or applying hydrogen gas at 11℃.Also, the time required to start these reactions. The measurement data for either or both of the hydrogen absorption reaction curves is compared with, for example, the data of a standard alloy with superior performance through normal computer processing, and alloys are automatically selected based on the magnitude of the discrepancy between the measured data and the standard data. It is effective to configure the system so that the time required to start a reaction under a certain evaluation condition is within the optimal range or not by reading and comparing changes in the pressure gauge. It is possible to make a determination by calculating the system and hydrogen absorption reaction curve using a simple reaction rate equation.

な耘 先の実施例では水素吸蔵合金を応用する例が電池
用電極であったバ 本発明は特にこれに限定されるもの
ではなく、この他にも例えば水素貯蔵 水素精観 熱利
爪 触孤 アクチュエータなど水素吸蔵合金の応用分野
全般にわたり、使用する合金の良否を簡便に選別するこ
とができも発明の効果 以上のように本発明の水素吸蔵合金の選別方法(友 反
応開始所要時間を評価する力\ もしくは水素吸蔵反応
曲線を評価することによって水素吸蔵合金の特性を確認
し良否を判定することを特徴とするものであり、実際に
水素吸蔵合金を用いた機器やデバイスを製造する場合へ
 水素吸蔵合金の水素化特性を簡便に評価し使用が可能
かどうかの選択を行うことができる効果的な水素吸蔵合
金の選別方法を提供できも
In the previous embodiments, the hydrogen storage alloy was applied to electrodes for batteries.The present invention is not particularly limited to this, but can also be applied to hydrogen storage, hydrogen inspection, heat utilization, contact, etc. The hydrogen storage alloy selection method of the present invention can be used in all application fields of hydrogen storage alloys, such as actuators, to easily select the quality of the alloy to be used. This method is characterized by confirming the characteristics of hydrogen storage alloys and determining their acceptability by evaluating the hydrogen storage reaction curve or hydrogen storage reaction curve. It is possible to provide an effective method for selecting hydrogen storage alloys, which can easily evaluate the hydrogenation properties of storage alloys and select whether or not they can be used.

【図面の簡単な説明】[Brief explanation of the drawing]

Claims (3)

【特許請求の範囲】[Claims] (1)選別対象とする水素吸蔵合金を少なくとも密閉可
能な容器内に装着し、必要に応じて容器内を脱ガス処理
し、その後水素ガスを所定の圧力で容器内に導入し、水
素吸蔵合金の水素ガス印加から初期水素吸蔵反応が開始
するまでの所要時間を測定する手段によって反応開始所
要時間を評価するか、もしくは水素吸蔵反応が開始して
から経過時間とともに水素吸蔵量の圧力変化を測定する
手段によって水素吸蔵反応曲線を評価することの両方も
しくはいずれか一方の評価によって水素吸蔵合金の特性
を確認し良否を判定することを特徴とする水素吸蔵合金
の選別方法
(1) Place the hydrogen storage alloy to be selected in at least a sealable container, degas the inside of the container as necessary, and then introduce hydrogen gas into the container at a predetermined pressure. Evaluate the time required to start the reaction by measuring the time required from the application of hydrogen gas to the start of the initial hydrogen storage reaction, or measure the change in pressure of the hydrogen storage amount over time after the hydrogen storage reaction starts. A method for selecting hydrogen storage alloys, characterized in that the characteristics of the hydrogen storage alloy are confirmed and the quality is determined by evaluating the hydrogen storage reaction curve by means of
(2)反応開始所要時間、水素吸蔵反応曲線の両方もし
くはいずれか一方の測定データを標準合金のデータと値
と比較し、測定データと標準データの値のズレの大小に
より合金の選別することを特徴とする請求項1記載の水
素吸蔵合金の選別方法。
(2) Compare the measurement data of the reaction initiation time and/or hydrogen absorption reaction curve with the data and values of the standard alloy, and select the alloy based on the magnitude of the difference between the measurement data and the standard data. The method for selecting hydrogen storage alloys according to claim 1.
(3)選別対象とする水素吸蔵合金が電池電極用に使用
する水素吸蔵合金であることを特徴とする請求項1また
は2記載の水素吸蔵合金の選別方法。
(3) The method for sorting hydrogen storage alloys according to claim 1 or 2, wherein the hydrogen storage alloy to be selected is a hydrogen storage alloy used for battery electrodes.
JP2102003A 1990-04-18 1990-04-18 Method for selecting hydrogen-occluding alloy Pending JPH042601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2102003A JPH042601A (en) 1990-04-18 1990-04-18 Method for selecting hydrogen-occluding alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2102003A JPH042601A (en) 1990-04-18 1990-04-18 Method for selecting hydrogen-occluding alloy

Publications (1)

Publication Number Publication Date
JPH042601A true JPH042601A (en) 1992-01-07

Family

ID=14315619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2102003A Pending JPH042601A (en) 1990-04-18 1990-04-18 Method for selecting hydrogen-occluding alloy

Country Status (1)

Country Link
JP (1) JPH042601A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6255416B1 (en) 1998-05-13 2001-07-03 Jsr Corporation Method of producing conjugated diene polymers
JP2002275598A (en) * 2001-03-16 2002-09-25 Showa Denko Kk Normal/defective judgement method for rare earth magnet alloy ingot, manufacturing method, rare earth magnet alloy ingot and rare earth magnet alloy
US6747085B2 (en) 1999-11-12 2004-06-08 Jsr Corporation Conjugated diene polymer and rubber composition
US6838526B1 (en) 1999-11-12 2005-01-04 Jsr Corporation Modified conjugated diene polymer and method of producing the same and rubber composition

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6255416B1 (en) 1998-05-13 2001-07-03 Jsr Corporation Method of producing conjugated diene polymers
US6747085B2 (en) 1999-11-12 2004-06-08 Jsr Corporation Conjugated diene polymer and rubber composition
US6838526B1 (en) 1999-11-12 2005-01-04 Jsr Corporation Modified conjugated diene polymer and method of producing the same and rubber composition
JP2002275598A (en) * 2001-03-16 2002-09-25 Showa Denko Kk Normal/defective judgement method for rare earth magnet alloy ingot, manufacturing method, rare earth magnet alloy ingot and rare earth magnet alloy
JP4723741B2 (en) * 2001-03-16 2011-07-13 昭和電工株式会社 Rare earth magnet alloy ingot quality determination method, manufacturing method, rare earth magnet alloy ingot and rare earth magnet alloy

Similar Documents

Publication Publication Date Title
Leblanc et al. Mechanism of alloy corrosion and consequences on sealed nickel—metal hydride battery performance
US6524746B2 (en) Hydrogen absorbing alloy powder and process for producing same
JP5250167B2 (en) Metal hydride material and method for activating electrodes
US5205985A (en) Hydrogen storage alloy and hydride electrodes having c15 crystal structure
JPH042601A (en) Method for selecting hydrogen-occluding alloy
US6057057A (en) Conductive agent and non-sintered nickel electrode for alkaline storage batteries
EP0652601B1 (en) Method for evaluating hydrogen-absorbing alloys for electrode.
Bashtavelova et al. PbO2 active material as an electrocrystalline network
EP0586718B1 (en) Method of manufacturing sealed type nickel-hydrogen cell
Zhang et al. Investigations on rate constants of the charging/discharging processes for metal hydride electrodes
US5468309A (en) Hydrogen storage alloy electrodes
JPH03245460A (en) Hydrogen storage alloy electrode, its manufacture and sealed alkaline storage battery using the electrode
JPH0756802B2 (en) Manufacturing method of hydrogen storage electrode
Sun et al. Effects of measurement factor on electrochemical capacity of some hydrogen storage alloys
JP2001266860A (en) Nickel hydrogen storage battery
Giza et al. Hydrogen sorption and corrosion properties of La2Ni9CoSn0. 2 alloy
Balcerzak et al. Electrochemical Characterization of Metal Hydride Electrode Materials
JPH0265060A (en) Hydrogen storage electrode
JPH03108273A (en) Manufacture of nickel hydrogen secondary battery
JPH0466636A (en) Hydrogen storage alloy electrode and its manufacture
JPH03201364A (en) Hydrogen storage electrode and nickel-hydrogen battery
JPH05101819A (en) Electrode of hydrogen storage alloy and manufacture thereof
JPS63146353A (en) Manufacture of hydrogen absorbing electrode
JPH03216959A (en) Manufacture of electrode for battery
JPS63175340A (en) Manufacture of hydrogen absorption electrode