JPH03108273A - Manufacture of nickel hydrogen secondary battery - Google Patents

Manufacture of nickel hydrogen secondary battery

Info

Publication number
JPH03108273A
JPH03108273A JP1243307A JP24330789A JPH03108273A JP H03108273 A JPH03108273 A JP H03108273A JP 1243307 A JP1243307 A JP 1243307A JP 24330789 A JP24330789 A JP 24330789A JP H03108273 A JPH03108273 A JP H03108273A
Authority
JP
Japan
Prior art keywords
battery
electrode
electrolyte
storage alloy
hydrogen storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1243307A
Other languages
Japanese (ja)
Other versions
JP2875822B2 (en
Inventor
Hiroyuki Hasebe
裕之 長谷部
Kazuta Takeno
和太 武野
Yuji Sato
優治 佐藤
Hirotaka Hayashida
浩孝 林田
Hiroyuki Takahashi
浩之 高橋
Ichiro Saruwatari
一郎 猿渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd, Toshiba Corp filed Critical Toshiba Battery Co Ltd
Priority to JP1243307A priority Critical patent/JP2875822B2/en
Publication of JPH03108273A publication Critical patent/JPH03108273A/en
Application granted granted Critical
Publication of JP2875822B2 publication Critical patent/JP2875822B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To obtain high battery voltage from the initial stage by filling an electrolyte into a container storing a hydrogen storage alloy electrode containing preset elements at the preset composition and an unsintered nickel oxide electrode, holding it at a preset temperature for a preset period, then initially charging it. CONSTITUTION:The composition of a hydrogen storage alloy is shown by ABX, where A is one kind of rare earth elements including La, B is one of Ni, Co, Mn, Al, B, Cu, Zr, and V, and X is 4.8-5.2. An electrode with this composition is used as a negative electrode, an unsintered nickel oxide electrode is used as a positive electrode, they are stored in a battery container, and an electrolyte is filled. lt is left intact at 35-70 deg.C for three hr or longer, the distribution of the electrolyte in a battery is unified, and the current distribution is unified at the time of initial charging. High voltage is obtained from the initial stage of the charge/discharge cycle, and the secondary battery with little rise of the internal pressure of the battery and no leakage of the electrolyte is obtained.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明はニッケル水素二次電池の製造方法に関し、特に
電解液を注入した後、初充電を行なうまでの工程を改良
したニッケル水素二次電池の製造方法に係る。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) The present invention relates to a method for manufacturing a nickel-metal hydride secondary battery, and in particular improves the process from injecting an electrolyte to initial charging. Pertains to a method for manufacturing a nickel-metal hydride secondary battery.

(従来の技術) 近年、電子技術の進歩により各種電子機器がポータプル
化し、また実装技術が進歩したことにより、大型の電子
機器にも電池を使用する要求が高まってきている。それ
に伴って、前記大型の電子機器にも使用することができ
る電池として、高容量の二次電池が望まれている。
(Prior Art) In recent years, with advances in electronic technology, various electronic devices have become portable, and with advances in packaging technology, there has been an increasing demand for the use of batteries in large electronic devices. Accordingly, a high-capacity secondary battery is desired as a battery that can be used in the large-sized electronic devices.

この高容量化に対応できる二次電池としては、例えばL
aNi5等で示される組成の水素吸蔵合金を含有する水
素吸蔵合金電極を負極に使用し、水酸化ニッケルを含有
する非焼結式ニッケル酸化物電極を正極に使用したニッ
ケル水素二次電池が知られている。このニッケル水素二
次電池は、船釣な負極にカドミウム電極を使用したニッ
ケルカドミウム二次電池と比較して、負極に前記水素吸
蔵合金電極を使用しているので、■環境汚染を引き起こ
すことがなく、■電池特性にも優れると共に、■負極の
単位重量や単位容積当りのエネルギー密度が大きく、負
極の容量を高めることができるので、高容量化に対応す
ることができる。
As a secondary battery that can handle this increase in capacity, for example, L
A nickel-hydrogen secondary battery is known in which a hydrogen storage alloy electrode containing a hydrogen storage alloy having a composition such as aNi5 is used as a negative electrode, and a non-sintered nickel oxide electrode containing nickel hydroxide is used as a positive electrode. ing. Compared to nickel-cadmium secondary batteries that use a cadmium electrode for the negative electrode, this nickel-metal hydride secondary battery uses the hydrogen storage alloy electrode for the negative electrode, so it does not cause environmental pollution. 2) It has excellent battery characteristics, and 2) the negative electrode has a high energy density per unit weight and unit volume, and the capacity of the negative electrode can be increased, so it can respond to higher capacity.

従来、前記ニッケル水素二次電池の製造方法では、水素
吸蔵合金電極及び非焼結式ニッケル酸化物電極を電池容
器内に収納し、この電池容器内に電解液を注入し、封口
して電池を組み立てた後、初充電を行なってニッケル水
素二次電池を得ていた。
Conventionally, in the manufacturing method of the nickel-metal hydride secondary battery, a hydrogen storage alloy electrode and a non-sintered nickel oxide electrode are housed in a battery container, an electrolyte is injected into the battery container, and the battery is sealed. After assembly, the first charge was performed to obtain a nickel-metal hydride secondary battery.

しかしながら、従来の方法で製造されたニッケル水素二
次電池においては、充放電を繰り返し行なうと充放電サ
イクルの比較的早い段階において電池内部でのガスの発
生による電池内圧の大幅な上昇があり、電解液が安全弁
から漏れ出すことがあるという不具合があった。
However, when nickel-metal hydride secondary batteries manufactured using conventional methods are repeatedly charged and discharged, the internal pressure of the battery increases significantly due to the generation of gas within the battery at a relatively early stage of the charge/discharge cycle. There was a problem in which liquid sometimes leaked from the safety valve.

このようなことから、■ガス吸収反応を促進するための
触媒を水素吸蔵合金電極中に添加する方法、■水素吸蔵
合金粉末又は水素吸蔵合金電極をアルカリ溶液中に浸漬
して表面の劣化を防止した水素吸蔵合金電極を作製する
方法が提案されている。
For these reasons, there are two methods: ■ Adding a catalyst to the hydrogen storage alloy electrode to promote the gas absorption reaction; ■ Preventing surface deterioration by immersing the hydrogen storage alloy powder or hydrogen storage alloy electrode in an alkaline solution. A method for fabricating hydrogen storage alloy electrodes has been proposed.

しかしながら、このような方法で作製された水素吸蔵合
金電極を組込んだニッケル水素二次電池においても、充
放電サイクルの比較的早い段階における電池内部でのガ
スの発生による電池内圧の上昇を充分には抑えることが
できないという問題があった。また、前記触媒を使用す
る方法では高価な触媒を使用するので電池の製造コスト
が上昇するという問題があり、前記アルカリ溶液で水素
吸蔵合金を処理する方法では、処理が繁雑になると共に
作業環境上の安全性が悪化するという問題があった。
However, even in nickel-metal hydride secondary batteries incorporating hydrogen storage alloy electrodes fabricated by this method, it is difficult to sufficiently prevent the rise in battery internal pressure due to gas generation inside the battery at a relatively early stage of the charge/discharge cycle. The problem was that it could not be suppressed. In addition, the method using the catalyst uses an expensive catalyst, which increases the manufacturing cost of the battery, and the method of treating the hydrogen storage alloy with an alkaline solution requires complicated treatment and is difficult to work in. There was a problem that the safety of

(発明が解決しようとする課題) 本発明は、従来の課題を解決するためになされたもので
、充放電サイクルの比較的早い段階での電池内圧の大幅
な上昇が抑えられて電解液が安全弁から漏れ出すのを防
止し、かつ高容量化に充分に対応することができるニッ
ケル水素二次電池を安全かつ低コストで製造し得る方法
を提供しようとするものである。
(Problems to be Solved by the Invention) The present invention has been made to solve the conventional problems, and it is an object of the present invention to suppress the large increase in battery internal pressure at a relatively early stage of the charge/discharge cycle, and to prevent the electrolyte from forming a safety valve. The purpose of the present invention is to provide a method for safely and inexpensively manufacturing a nickel-metal hydride secondary battery that can prevent leakage from the nickel-metal hydride secondary battery and can sufficiently handle increased capacity.

[発明の構成] (課題を解決するための手段) 本発明は、水素吸蔵合金電極及び非焼結式ニッケル酸化
物電極を収納した電池容器内に電解液を注入し、温度3
5〜70℃で3時間以上放置した後に初充電を行なうこ
とを特徴とするニッケル水素二次電池の製造方法である
[Structure of the Invention] (Means for Solving the Problems) The present invention involves injecting an electrolytic solution into a battery container containing a hydrogen storage alloy electrode and a non-sintered nickel oxide electrode,
This is a method for manufacturing a nickel-metal hydride secondary battery, characterized in that initial charging is performed after leaving the battery at 5 to 70°C for 3 hours or more.

前記水素吸蔵合金電極は、水素吸蔵合金粉末に高分子結
着剤を配合し、必要に応じて導電性粉末を配合した合剤
を集電体である導電性芯体に被覆、固定した構造を有す
る。
The hydrogen-absorbing alloy electrode has a structure in which a mixture of hydrogen-absorbing alloy powder, a polymer binder, and conductive powder is coated and fixed on a conductive core as a current collector. have

前記合剤中に配合される水素吸蔵合金としては、格別制
限されるものではなく、電解液中で電気化学的に発生さ
せた水素を吸蔵でき、かつ放電時にその吸蔵水素を容易
に放出できるものであればよいが、特にAB、(ただし
、AはLaを含む少なくとも一種の希土類元素であり、
BはN is Co 5Mn5ADs B5Cu、Zr
及びりよりなる群から選択される少なくとも一種の元素
であり、Xは4.8〜5.2である。)で示される組成
のものを用いることが望ましい。
The hydrogen storage alloy to be added to the mixture is not particularly limited, and may be one that can store hydrogen electrochemically generated in the electrolyte and easily release the stored hydrogen during discharge. In particular, AB, (where A is at least one rare earth element including La,
B is Nis Co 5Mn5ADs B5Cu, Zr
It is at least one element selected from the group consisting of and, and X is 4.8 to 5.2. ) is preferably used.

前記合剤中に配合される高分子結着剤としては、例えば
ポリアクリル酸ソーダ、ポリテトラフルオロエチレン(
PTFE) 、カルボキシメチルセルロース(CMC)
等を挙げることができる。かかる高分子結着剤の配合割
合は、水素吸蔵合金粉末100重量部に対して0.5〜
5重量部の範囲とすることが望ましい。
Examples of the polymer binder blended in the mixture include sodium polyacrylate, polytetrafluoroethylene (
PTFE), carboxymethyl cellulose (CMC)
etc. can be mentioned. The blending ratio of the polymer binder is 0.5 to 100 parts by weight of the hydrogen storage alloy powder.
It is desirable that the amount is in the range of 5 parts by weight.

前記合剤中に配合される導電性粉末としては、例えばカ
ーボンブラック、黒鉛等を挙げることができる。かかる
導電性粉末の配合割合は、前記水素吸蔵合金粉末100
重量部に対して0.1〜4重量部とすることが望ましい
Examples of the conductive powder blended in the mixture include carbon black and graphite. The blending ratio of the conductive powder is 100% of the hydrogen storage alloy powder.
It is desirable that the amount is 0.1 to 4 parts by weight.

前記集電体である導電性芯体としては、例えばパンチト
メタル、エキスバンドメタル、金網等の二次元構造のも
の、発泡メタル、網状焼結金属繊維などの三次元構造の
もの等を挙げることができる。
Examples of the conductive core that is the current collector include those with a two-dimensional structure such as punched metal, expanded metal, and wire mesh, and those with a three-dimensional structure such as foamed metal and reticulated sintered metal fiber. I can do it.

前記非焼結式ニッケル酸化物電極は、例えば焼結繊維基
板、発泡メタル、不織布めっき基板又はバンチトメタル
基板などに、水酸化ニッケルを含有するペーストを充填
する方法により作成されたものである。
The non-sintered nickel oxide electrode is produced by, for example, filling a sintered fiber substrate, a foamed metal substrate, a nonwoven plated substrate, a bunched metal substrate, or the like with a paste containing nickel hydroxide.

本発明において放置条件を限定した理由は、放置時間が
3時間未満であったり放置温度が35℃未満である場合
、電池内部での電解液の分散が不充分となり、一方、放
置温度が70℃を越える場合、水素吸蔵合金表面に被膜
が形成されることにより、電池内部でのガス吸収反応が
円滑に行われず、充放電サイクルの比較的早い段階での
電池内圧の大幅な上昇を招く。
The reason why the storage conditions are limited in the present invention is that if the storage time is less than 3 hours or the storage temperature is less than 35°C, the electrolyte will not be sufficiently dispersed inside the battery, whereas the storage temperature is 70°C. If it exceeds the hydrogen storage alloy surface, a film is formed on the surface of the hydrogen storage alloy, which prevents the gas absorption reaction inside the battery from occurring smoothly, resulting in a significant increase in the battery internal pressure at a relatively early stage of the charge/discharge cycle.

(作用) 本発明によれば、電池容器内に電解液を注入し、温度が
35〜70℃の範囲内で3時間以上放置した後に初充電
を行なうことにより、充放電サイクルの比較的早い段階
での電池内圧の大幅な上昇が抑えられたニッケル水素二
次電池を得ることができる。
(Function) According to the present invention, by injecting the electrolyte into the battery container and performing the initial charge after leaving it at a temperature within the range of 35 to 70°C for 3 hours or more, the battery can be charged at a relatively early stage of the charge/discharge cycle. It is possible to obtain a nickel-metal hydride secondary battery in which a significant increase in battery internal pressure is suppressed.

即ち、本発明者らは従来法で製造されたニッケル水素二
次電池において、充放電サイクルの比較的早い段階で電
池内圧の大幅な上昇を招く原因について検討したところ
、電池を組み立てた後の初充電時において電池内部で電
解液の分布が不均一であることによる電流分布の不均一
性に起因することがわかった。また、初充電後に電解液
の分布が均一になりその後の充放電において電流分布が
均一になってたとしても、前述した問題を解消できない
ことがわかった。
In other words, the present inventors investigated the causes of a significant increase in battery internal pressure at a relatively early stage of the charge/discharge cycle in nickel-metal hydride secondary batteries manufactured using conventional methods. It was found that this is due to non-uniform current distribution due to non-uniform distribution of electrolyte inside the battery during charging. Furthermore, it has been found that even if the electrolyte distribution becomes uniform after the first charge and the current distribution becomes uniform during subsequent charging and discharging, the above-mentioned problem cannot be solved.

このようなことから、本発明では電池容器内に電解液を
注入し、温度が35〜70℃の範囲内で3時間以上放置
することによって、電池内部で電解液の分布が均一とな
り、初充電時における電流分布を均一化することができ
る。その結果、その後の充放電において正負極の電極で
ガス吸収反応が円滑に行なわれるため、充放電サイクル
の比較的早い段階での電池内圧の大幅な上昇を抑えるこ
とができる。また、本発明の方法では高価な触媒を使用
したり、アルカリ溶液での処理も不要となるため、安全
かつ低コストで、しかも簡単にニッケル水素二次電池を
製造することができる。
Therefore, in the present invention, by injecting the electrolyte into the battery container and leaving it for 3 hours or more at a temperature within the range of 35 to 70°C, the distribution of the electrolyte inside the battery becomes uniform, and the initial charging The current distribution at the time can be made uniform. As a result, gas absorption reactions occur smoothly at the positive and negative electrodes during subsequent charging and discharging, so that a significant increase in battery internal pressure at a relatively early stage of the charging and discharging cycle can be suppressed. Furthermore, the method of the present invention does not require the use of expensive catalysts or treatment with an alkaline solution, so that nickel-metal hydride secondary batteries can be produced safely, at low cost, and more easily.

また、ABX (ただし、AはLaを含む少なくとも一
種の希土類元素であり、BはN I SCo、Mn、A
Ω、B s Cu s Z r及びりよりなる群から選
択される少なくとも一種の元素であり、Xは4.8〜5
.2である。)で示される組成の水素吸蔵合金を含有す
る水素吸蔵合金電極を用いれば、充放電サイクルの比較
的早い段階での電池内圧の大幅な上昇がより効果的に抑
制できる。これは、水素吸蔵合金電極表面の電解液に対
する濡れ性が向上し、初充電時における電池内部での電
解液の分布がより均一になり易いことによるものと考え
られる。
In addition, ABX (However, A is at least one kind of rare earth element including La, B is NIS Co, Mn, A
At least one element selected from the group consisting of Ω, B s Cu s Z r, and X is 4.8 to 5
.. It is 2. ) By using a hydrogen storage alloy electrode containing a hydrogen storage alloy having the composition shown in (1), it is possible to more effectively suppress a significant increase in battery internal pressure at a relatively early stage of a charge/discharge cycle. This is considered to be because the wettability of the surface of the hydrogen storage alloy electrode with respect to the electrolytic solution is improved, and the distribution of the electrolytic solution inside the battery at the time of initial charging tends to be more uniform.

更に、本発明によれば素吸蔵合金電極及び非焼結式ニッ
ケル酸化物電極を用いていることにより、高容量化に対
応可能であるニッケル水素二次電池を得ることができる
Furthermore, according to the present invention, a nickel-metal hydride secondary battery capable of increasing capacity can be obtained by using an elementary storage alloy electrode and a non-sintered nickel oxide electrode.

(実施例) 以下、本発明のニッケル水素二次電池の実施例を詳細に
説明する。
(Example) Examples of the nickel-metal hydride secondary battery of the present invention will be described in detail below.

まず、L111Ni4.2CO0,2Mno、3AM 
0.3  (Lm;La富化ミツシュメタル)で示され
る組成の水素吸蔵合金に水素を2回吸収放出させて微粉
化し、200メツシユバスの水素吸蔵合金粉末を用いた
。つづいて、前記水素吸蔵合金粉末に高分子結若剤とし
てPTFE、導電性粉末としてカーボンブラック及び水
を添加してペーストを調製した後、このペーストをニッ
ケルめっきを施したn4仮を穿孔したバンチトメタルに
塗布・乾燥・プレスすることにより負極の水素吸蔵合金
電極を作製した。
First, L111Ni4.2CO0, 2Mno, 3AM
A hydrogen storage alloy having a composition of 0.3 (Lm; La-enriched metal) was made to absorb and release hydrogen twice and was pulverized, and 200 mesh baths of hydrogen storage alloy powder were used. Next, a paste was prepared by adding PTFE as a polymer binder, carbon black as a conductive powder, and water to the hydrogen storage alloy powder, and then this paste was applied to a bunched metal with a nickel-plated N4 temporary hole. A negative hydrogen storage alloy electrode was prepared by coating, drying, and pressing.

一方、水酸化ニッケル及び酸化コバルトを主要組成とす
るペーストを調整した後、このペーストを焼結繊維基板
に充填・乾燥・プレスすることにより正極の非焼結式ニ
ッケル酸化物電極を作製した。
On the other hand, after preparing a paste whose main composition was nickel hydroxide and cobalt oxide, this paste was filled into a sintered fiber substrate, dried, and pressed to produce a non-sintered nickel oxide electrode as a positive electrode.

前記水素吸蔵合金電極及び非焼結式ニッケル酸化物電極
を、ポリアミド製の0.20m1I!厚の不織布を介し
て捲回して電極群を作製した。この電極群を、圧力検出
器を付けたアクリル樹脂製容器のAAサイズの空間に挿
入し、この空間に8規定水酸化カリウムの電解液を注液
し、封口し、第1図に示すような試験セルを組立てた。
The hydrogen storage alloy electrode and the non-sintered nickel oxide electrode were made of polyamide with a thickness of 0.20m1I! An electrode group was prepared by winding the electrode through a thick nonwoven fabric. This electrode group was inserted into the AA size space of an acrylic resin container equipped with a pressure detector, and an electrolytic solution of 8N potassium hydroxide was poured into this space, the seal was sealed, and the space was sealed as shown in Figure 1. The test cell was assembled.

即ち、この試験セルは前記アクリル樹脂製のケース本体
1とキャップ2とからなる電池ケースを備える。前記ケ
ース本体1の中心部には、AAサイズの電池の金属容器
と同一の内径及び高さを有する空間3が形成されており
、この空間3内部には電極群4が収納され、更に電解液
が収容されている。前記キャップ2は、封目板の役割を
果たしていると共に、圧力検出器5を取り付けて電池内
圧を検出できるようになっている。前記ケース本体1上
には前記キャップ2がゴムシート6及びOリング7を介
してボルト8及びナツト9により気密に固定されている
。水素吸蔵合金負極からの負極リード10と非焼結式ニ
ッケル正極からの正極リード11は前記ゴムシート6と
前記Oリング7との間を通して導出されている。
That is, this test cell includes a battery case consisting of the case body 1 and the cap 2 made of the acrylic resin. A space 3 having the same inner diameter and height as the metal container of an AA size battery is formed in the center of the case body 1, and an electrode group 4 is housed inside this space 3, and an electrolyte is also contained in the space 3. is accommodated. The cap 2 serves as a sealing plate, and a pressure detector 5 is attached to the cap 2 so that the internal pressure of the battery can be detected. The cap 2 is airtightly fixed onto the case body 1 with bolts 8 and nuts 9 via a rubber sheet 6 and an O-ring 7. A negative electrode lead 10 from the hydrogen storage alloy negative electrode and a positive electrode lead 11 from the non-sintered nickel positive electrode are led out through between the rubber sheet 6 and the O-ring 7.

この組立てた試験セルを、温度が25℃、35℃45℃
、70℃、80℃の恒温槽内に入れ、0.5時間、1時
間、2時間、3時間、6時間、12時間、24時間、4
8時間、72時間、120時間それぞれ放置した。つづ
いて、室温(25℃)で1時間放置し冷却した後に0.
IC電流で15時間の初充電を行なった。
This assembled test cell was tested at temperatures of 25°C, 35°C, and 45°C.
, placed in a thermostat at 70°C and 80°C for 0.5 hours, 1 hour, 2 hours, 3 hours, 6 hours, 12 hours, 24 hours, 4 hours.
It was left to stand for 8 hours, 72 hours, and 120 hours. Subsequently, after being left at room temperature (25°C) for 1 hour and cooling, 0.
Initial charging was performed for 15 hours using IC current.

この初充電を行なった試験セルについて、■IC放電を
行なった時に放電電圧が1v以下になるまでの放電容量
、■その容量の2分の1放電した時の電池電圧、■5C
放電を行なった時に放電電圧が1v以下になるまでの放
電容量、及び■電池内圧の最大値をそれぞれ測定し、こ
れらの測定結果に基づいて、電池電圧の立上がり特性、
電池寿命、電池内圧をそれぞれ調べた。これらの結果を
下記第1表〜第3表に示す。また、第4表には第1表〜
第3表の総合評価を示す。なお、前記立上がり特性、電
池寿命、電池内圧、総合評価は次のように評価した。
Regarding the test cell that was initially charged, ■Discharge capacity until the discharge voltage becomes 1V or less when performing IC discharge, ■Battery voltage when half of its capacity is discharged, ■5C
When discharging, measure the discharge capacity until the discharge voltage becomes 1V or less, and ■ the maximum value of the battery internal pressure, and based on these measurement results, determine the rise characteristics of the battery voltage,
The battery life and battery internal pressure were examined. These results are shown in Tables 1 to 3 below. In addition, Table 4 also includes Tables 1 to 4.
Table 3 shows the overall evaluation. The rise characteristics, battery life, battery internal pressure, and overall evaluation were evaluated as follows.

(1)立上がり特性 0・・・2サイクル目の電池電圧が10サイクル目の電
池電圧に対して20mV以上低下せず、5C放電の大電
流放電でもIC放電に対して大きく低下しなかった。
(1) Rise characteristic 0: The battery voltage at the second cycle did not decrease by 20 mV or more compared to the battery voltage at the 10th cycle, and even at a large current discharge of 5C, it did not decrease significantly compared to IC discharge.

×・・・■2サイクル目の電池電圧が10サイクル目の
電池電圧に対して2hV以上低下した、■5C放電の大
電流放電でIC放電に対して大きく低下した、のうちの
少なくとも一つに該当する。
×...■The battery voltage at the 2nd cycle has decreased by 2 hV or more compared to the battery voltage at the 10th cycle, and at least one of the following has occurred: ■The battery voltage at the 2nd cycle has decreased by 2 hV or more compared to the battery voltage at the 10th cycle; Applicable.

(2)電池寿命 放電容量が2サイクル目の放電容量の80%以下にまで
低下したときの充放電のサイクル数を示す。
(2) Battery life indicates the number of charging/discharging cycles when the discharge capacity decreases to 80% or less of the second cycle discharge capacity.

(3)電池内圧 O・・・電池内圧の最大値が15kg/cm2以下であ
った。
(3) Battery internal pressure O: The maximum value of the battery internal pressure was 15 kg/cm2 or less.

×・・・電池内圧の最大値が15kg/cm2を越えた
×...The maximum value of the battery internal pressure exceeded 15 kg/cm2.

(4)総合評価 0・・・第1表中でOであり、第2表中のサイクル数が
500サイクル程度以上であり、第3表中でOである。
(4) Overall rating: 0: 0 in Table 1, the number of cycles in Table 2 is approximately 500 cycles or more, and 0 in Table 3.

X・・・■第1表中で×1■第2表中のサイクル数が5
00サイクル程度より大幅に小さい、■第3表中で×、
のうちの少なくとも一つに該当する。
X...■×1 in Table 1■Number of cycles in Table 2 is 5
Significantly smaller than about 00 cycles, ■ × in Table 3,
At least one of the following applies.

第 表 第 表 第 3 表 第  4 表(総合評価) 第1表より明らかなようにサイクル初期より高い電圧を
出すためには、放置温度を70度以下にし、放置時間を
長くした方が良いことがわかった。なお、実用上はほぼ
3時間以上放置することで満足できる結果を得ることが
わかった。
Table 3 Table 4 Table 4 (Comprehensive evaluation) As is clear from Table 1, in order to generate a higher voltage than at the beginning of the cycle, it is better to keep the storage temperature at 70 degrees or lower and increase the storage time. I understand. In addition, it has been found that, in practice, satisfactory results can be obtained by leaving it for approximately 3 hours or more.

第2表より明らかなようにアルカリニ次電池に望まれる
寿命である 500サイクル程度以上の寿命を得るため
には、温度が35〜70℃の範囲内で3時間以上放置す
ればよいことがわかった。放置温度が25℃の場合には
放置時間が長(なるほど寿命の延びが認められるが、1
20時間放置した場合においても 200サイクル程度
にしか達しなかった。また、放置温度80℃の場合には
放置時間が6時間までは寿命の延びが認められたが、そ
れ以上放置した場合は逆に寿命が低下してしまった。こ
の原因を検討するために80℃で放置した電池を解体し
、電極の充放電挙動をサイクリックポルタモメトリーに
より調べたところ、表面に被膜の形成が認められた。こ
れより、80”Cで放置すると電極と電解液との間でな
んらかの反応が起こり、正負極の容量バランスが変化し
寿命が低下するのがわかった。
As is clear from Table 2, in order to obtain a life of about 500 cycles or more, which is the desired life for an alkaline secondary battery, it was found that it is only necessary to leave it at a temperature within the range of 35 to 70°C for 3 hours or more. . If the storage temperature is 25℃, the storage time will be longer (it is true that the lifespan will be extended, but 1
Even when left for 20 hours, only about 200 cycles were achieved. Furthermore, when the temperature was 80° C., the lifespan was extended up to 6 hours, but when left for longer than that, the lifespan was shortened. In order to investigate the cause of this, a battery that had been left at 80°C was disassembled and the charging and discharging behavior of the electrodes was examined by cyclic portamometry, and the formation of a film on the surface was observed. From this, it was found that if left at 80''C, some kind of reaction would occur between the electrode and the electrolyte, changing the capacity balance of the positive and negative electrodes and reducing the lifespan.

第3表より明らかなように放置温度が25℃であったり
、放置時間が2時間以下である場合には電池内圧が大幅
に上昇しているのがわかった。なお、電池内圧が高い電
池は安全弁が作動し易くなり、電池を収納する機器内部
をアルカリ性の電解液で19染する恐れがあるほか、電
解液不足に起因する電池容量低下を招き、実用に供せら
れるものではない。
As is clear from Table 3, when the temperature at which the battery was left was 25°C or the time at which it was left for two hours or less, the internal pressure of the battery increased significantly. In addition, batteries with high internal pressure tend to operate the safety valve, which may stain the inside of the device that houses the battery with alkaline electrolyte, and also cause a decrease in battery capacity due to a lack of electrolyte, making it difficult to use for practical use. It's not something you can do.

以上の結果を総合的に評価した第4表より明らかなよう
に、電解液を注入し35〜70℃の温度範囲で少なくと
も3時間以上放置後に初充電を行なう本発明の方法では
、充放電サイクル初期より高い電池電圧が得られ、電池
寿命が充分に長く、かつ充放電サイクルの進行にともな
う電池内圧の上昇が小さくて電解液の漏れ出しが防止さ
れたニッケル水素二次電池を得ることができるのがわか
った。
As is clear from Table 4, which comprehensively evaluates the above results, in the method of the present invention, in which the initial charge is performed after injecting the electrolyte and leaving it for at least 3 hours in the temperature range of 35 to 70°C, the charge/discharge cycle It is possible to obtain a nickel-metal hydride secondary battery that can obtain a higher battery voltage than the initial one, has a sufficiently long battery life, and has a small increase in battery internal pressure as the charge/discharge cycle progresses, thereby preventing electrolyte leakage. I realized that.

[発明の効果] 以上詳述した如く、本発明によれば充放電サイクルの比
較的早い段階での電池内圧の大幅な上昇を抑制して、電
解液が安全弁から漏れ出すのを防止でき、かつ高容量化
に充分に対応することができるニッケル水素二次電池を
安全かつ低コストで製造し得る方法を提供できる。
[Effects of the Invention] As detailed above, according to the present invention, it is possible to suppress a significant increase in battery internal pressure at a relatively early stage of a charge/discharge cycle, and prevent leakage of electrolyte from a safety valve. It is possible to provide a method for safely and inexpensively manufacturing a nickel-metal hydride secondary battery that can sufficiently handle increased capacity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例で用いた試験セルを示す断面図
である。 1・・・ケース本体、2・・・キャップ、4・・・電極
群、5・・・圧力検出器。
FIG. 1 is a sectional view showing a test cell used in an example of the present invention. 1... Case body, 2... Cap, 4... Electrode group, 5... Pressure detector.

Claims (2)

【特許請求の範囲】[Claims] (1)水素吸蔵合金電極及び非焼結式ニッケル酸化物電
極を収納した電池容器内に電解液を注入し、温度35〜
70℃で3時間以上放置した後に初充電を行なうことを
特徴とするニッケル水素二次電池の製造方法。
(1) Inject the electrolyte into the battery container containing the hydrogen storage alloy electrode and the non-sintered nickel oxide electrode, and
A method for manufacturing a nickel-metal hydride secondary battery, characterized in that the first charge is carried out after being left at 70°C for 3 hours or more.
(2)前記水素吸蔵合金電極がAB_X(ただし、Aは
Laを含む少なくとも一種の希土類元素であり、BはN
i、Co、Mn、Al、B、Cu、Zr及びりよりなる
群から選択される少なくとも一種の元素であり、Xは4
.8〜5.2である。)で示される組成の水素吸蔵合金
を含有することを特徴とする請求項1記載のニッケル水
素二次電池の製造方法。
(2) The hydrogen storage alloy electrode is AB_X (where A is at least one rare earth element including La, and B is N
at least one element selected from the group consisting of i, Co, Mn, Al, B, Cu, Zr, and X is 4
.. 8 to 5.2. 2. The method for manufacturing a nickel-metal hydride secondary battery according to claim 1, further comprising a hydrogen storage alloy having a composition represented by:
JP1243307A 1989-09-21 1989-09-21 Method for manufacturing nickel-hydrogen secondary battery Expired - Fee Related JP2875822B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1243307A JP2875822B2 (en) 1989-09-21 1989-09-21 Method for manufacturing nickel-hydrogen secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1243307A JP2875822B2 (en) 1989-09-21 1989-09-21 Method for manufacturing nickel-hydrogen secondary battery

Publications (2)

Publication Number Publication Date
JPH03108273A true JPH03108273A (en) 1991-05-08
JP2875822B2 JP2875822B2 (en) 1999-03-31

Family

ID=17101889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1243307A Expired - Fee Related JP2875822B2 (en) 1989-09-21 1989-09-21 Method for manufacturing nickel-hydrogen secondary battery

Country Status (1)

Country Link
JP (1) JP2875822B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0645003A (en) * 1992-06-09 1994-02-18 Furukawa Battery Co Ltd:The Manufacture of sealed storage battery by using hydrogen storage electrode and hydrogen storage alloy for this electrode
JP2001236986A (en) * 2000-02-22 2001-08-31 Matsushita Electric Ind Co Ltd Method of inspecting gastightness of battery
JP2007123228A (en) * 2005-09-28 2007-05-17 Sanyo Electric Co Ltd Hydrogen storage alloy electrode, alkaline storage battery and manufacturing method of the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0645003A (en) * 1992-06-09 1994-02-18 Furukawa Battery Co Ltd:The Manufacture of sealed storage battery by using hydrogen storage electrode and hydrogen storage alloy for this electrode
EP0577991A3 (en) * 1992-06-09 1994-06-08 Furukawa Battery Co Ltd Method of manufacturing sealed type storage battery using hydrogen-occlusion electrode, and hydrogen-occlusion alloy for electrode thereof
US5384210A (en) * 1992-06-09 1995-01-24 Furukawa Denchi Kabusiki Kaisha Hydrogen-occlusion alloy for the electrodes of a sealed-type storage battery
JP2001236986A (en) * 2000-02-22 2001-08-31 Matsushita Electric Ind Co Ltd Method of inspecting gastightness of battery
JP4671462B2 (en) * 2000-02-22 2011-04-20 パナソニック株式会社 Airtight inspection method for nickel metal hydride secondary battery
JP2007123228A (en) * 2005-09-28 2007-05-17 Sanyo Electric Co Ltd Hydrogen storage alloy electrode, alkaline storage battery and manufacturing method of the same

Also Published As

Publication number Publication date
JP2875822B2 (en) 1999-03-31

Similar Documents

Publication Publication Date Title
US5571636A (en) Nickel positive electrode for alkaline storage battery and sealed nickel-hydrogen storage battery using nickel positive electrode
JP2730121B2 (en) Alkaline secondary battery and manufacturing method thereof
US5032475A (en) Nickel-metal hydride secondary cell
US4994334A (en) Sealed alkaline storage battery and method of producing negative electrode thereof
KR100224464B1 (en) Alkaline secondary battery manufacturing method, alkaline secondary battery positive electrode, alkaline secondary battery, and a method of manufacturing an initially charged alkaline secondary battery
JP3092222B2 (en) Nickel hydroxide active material and nickel positive electrode and alkaline storage battery using the same
US6524746B2 (en) Hydrogen absorbing alloy powder and process for producing same
US5492543A (en) Preparation of electrodes and Ni/MHx electrochemical storage cell
JPS62139255A (en) Manufacture of hydrogen absorbing electrode
CN108199009B (en) Low-temperature nickel-hydrogen battery with negative electrode double-sided coating
JP2875822B2 (en) Method for manufacturing nickel-hydrogen secondary battery
JPH08264174A (en) Hydrogen storage alloy cathode and its preparation
JP2989877B2 (en) Nickel hydride rechargeable battery
JP2926732B2 (en) Alkaline secondary battery
JPH02250260A (en) Hydrogen storage electrode and manufacture thereof
JPS60109174A (en) Manufacture of hydrogen absorption electrode
JP3012658B2 (en) Nickel hydride rechargeable battery
JPS63264863A (en) Sealed nickel-cadmium storage battery and its manufacture
JP2857148B2 (en) Construction method of sealed nickel-hydrogen storage battery
JP2004095475A (en) Cylindrical battery
JPH0756800B2 (en) Method for manufacturing hydrogen storage electrode
JP2940952B2 (en) Method for manufacturing nickel-hydrogen alkaline storage battery
JPH06168719A (en) Negative electrode plate for nickel-hydrogen battery, manufacture thereof, and nickel-hydrogen battery
JPH04264362A (en) Hydrogen storage alloy electrode
JPH03145053A (en) Nickel-hydrogen alkaline storage battery

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees