JPH0425176A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0425176A
JPH0425176A JP2129767A JP12976790A JPH0425176A JP H0425176 A JPH0425176 A JP H0425176A JP 2129767 A JP2129767 A JP 2129767A JP 12976790 A JP12976790 A JP 12976790A JP H0425176 A JPH0425176 A JP H0425176A
Authority
JP
Japan
Prior art keywords
polycrystalline silicon
impurities
silicon
type
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2129767A
Other languages
Japanese (ja)
Inventor
Kunihiro Takahashi
邦博 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2129767A priority Critical patent/JPH0425176A/en
Publication of JPH0425176A publication Critical patent/JPH0425176A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28035Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3215Doping the layers
    • H01L21/32155Doping polycristalline - or amorphous silicon layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To restrain polycrystalline silicon grains from growing in a thermal process by a method wherein impurities such as nitrogen, fluorine, argon, silicon, germanium, or the like are introduced into polycrystalline silicon through an ion implantation method before P-type impurity ions are implanted. CONSTITUTION:When a polycrystalline silicon 13 formed of P-type impurities is used as the gate electrode of a P-type MIS transistor, one or more elements selected from impurities such as nitrogen, fluorine, argon, silicon, germanium, and the like are introduced into the polycrystalline silicon 13 through an ion implantation method before P-type impurities such as boron or the like are introduced into the silicon 13. That is, by introducing the impurities concerned into the polycrystalline silicon 13, the polycrystalline silicon 13 grains are restrained from growing in a thermal process which is carried out for the formation of the P-type MIS transistor. By this setup, P-type impurities are prevented from diffusing along grains in polycrystalline silicon, so that a gate electrode stable in transistor characteristics can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の製造方法に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to a method of manufacturing a semiconductor device.

〔発明の概要〕[Summary of the invention]

P型M■Sトランジスタのゲート電極としてP型不純物
から成る多結晶シリコンを使う場合、ボロン等のP型不
純物を多結晶シリコンに導入する前に、チッ素、フッ素
、アルゴン、シリコン、ゲルマニウム等の何れか1つ又
は複数の不純物をイオン注入あるいは化学的堆積法によ
り多結晶シリコン中へ導入しておく。
When using polycrystalline silicon made of P-type impurities as the gate electrode of a P-type M■S transistor, before introducing P-type impurities such as boron into the polycrystalline silicon, nitrogen, fluorine, argon, silicon, germanium, etc. One or more impurities are introduced into polycrystalline silicon by ion implantation or chemical deposition.

多結晶シリコン中へこれらの不純物を導入すると、多結
晶シリコン中へP型不純物を導入した後、M T S 
l−ランジスタ形成までに経る熱工程による多結晶シリ
コンのダレインの成長が抑制される。
When these impurities are introduced into polycrystalline silicon, after introducing P-type impurities into polycrystalline silicon, MTS
The growth of polycrystalline silicon dalein due to the thermal process required to form the l-transistor is suppressed.

この結果、多結晶シリコン中のダレインに沿うP型不純
物の拡散が抑制され、P型不純物がMTSトランジスタ
の絶縁膜を通過し、シリコン表面にまで達することが抑
制される。その結果、スレッショルド電圧の変動、1−
ランジスタ特性の不安定性のないP型不純物を導入した
多結晶シリコンをゲート電極として持つP型MISトラ
ンジスタを得ることができる。
As a result, the diffusion of the P-type impurity along the dale in the polycrystalline silicon is suppressed, and the P-type impurity is suppressed from passing through the insulating film of the MTS transistor and reaching the silicon surface. As a result, the threshold voltage variation, 1-
A P-type MIS transistor having a gate electrode made of polycrystalline silicon into which P-type impurities are introduced without causing instability in transistor characteristics can be obtained.

[11f−来の技術〕 [)型不純物をノリ人した多結晶シリJJンをMISト
ランジスタのり−I・電極として使う場合、従来、多結
晶シリコン中・・、■)型不純物(最も一般的にはポ「
Jン)をイ」ン注入又は化学的堆積法で導入していた。
[11f - Current technology] When using polycrystalline silicon containing [) type impurities as an MIS transistor glue/electrode, conventionally, polycrystalline silicon containing..., ■) type impurities (most commonly is po'
J) was introduced by ion implantation or chemical deposition.

導入後、M 、I S l−ランジスタが形成されるま
でに複数回の熱二「程を経る。それらの熱工程により多
結晶シリコンのグレインは成長し、大きいもの6,11
ミク1.−Iン稈度にまで成長する。
After introduction, multiple thermal cycles are required to form the M,I S l-transistor.Through these thermal processes, the polycrystalline silicon grains grow, and large grains6,11
Miku 1. -Grows to culm size.

第2図はIiA来のP型不純物から成る多結晶シリンを
う−l−電(彼とずろlvl I S l・ランノスク
の最a3的な熱1−程を経た後の断面+111造を示す
。21はN型T勇体シリ−1ン基板、22i;Iケ−1
・酸化膜、23はう一−l−電極となる多結晶シリコン
膜、24は多結晶シリコンのグレイン、25の大い線は
グLツインの境界を示′づ。グレインが非常に大きく成
長しているのか分かる。多結晶シリ1:1ン中・\導入
された不純物G;1、クリ?工程により拡散する場合、
多く 1,1グレインの境界25に沿っ、て拡iB4 
シていく。タレ・インか大きくなればなる程、グ[/イ
ンの境界1−1短い距翻[て多結晶シリコンの1−面か
ら下面に到達し、不純物の多結晶シリコン中での拡j1
9.が容易となる。
Figure 2 shows a cross section of polycrystalline silane made of P-type impurities from IiA after it has been subjected to the most a3 heat treatment. 21 is an N type T body series 1 board, 22i; I case 1
・An oxide film, 23 is a polycrystalline silicon film serving as another L-electrode, 24 is a grain of polycrystalline silicon, and a large line 25 indicates the boundary of the G-L twin. It can be seen that the grains have grown very large. In polycrystalline silicon 1:1 \Introduced impurity G; 1, clear? If it is diffused due to the process,
Many 1,1 grains along the boundary 25, expanded iB4
I'm going to go. The larger the slope becomes, the shorter the distance between the boundary 1-1 of the slope and the lower surface of the polycrystalline silicon.
9. becomes easier.

又、MISI・ランシスクの代表的な構造である全屈・
酸化膜、半導体(MOS)l−ランジスタの場合、ボロ
ンは酸化膜中ても拡散し、ゲート電極となる多結晶シリ
コン中にあるP型不純物のボロンは酸化膜を通過し、第
2図におりるシリコン表面26にまで容易に到達する。
In addition, full flexion, which is a typical structure of MISI/Lansisk,
In the case of an oxide film, semiconductor (MOS) l-transistor, boron diffuses into the oxide film, and boron, which is a P-type impurity in the polycrystalline silicon that serves as the gate electrode, passes through the oxide film, as shown in Figure 2. easily reaches the silicon surface 26.

その結果、スレノショルl電圧が変動し易い、あるいは
不安定なl−ランジスタ特性を持つMIS)ランシスタ
になるという欠点を持っていた。
As a result, the MIS transistor has the drawback that the threshold voltage easily fluctuates or has unstable l-transistor characteristics.

〔発明か解決しようとする課題〕[Invention or problem to be solved]

前記した従来の欠点を改善するため、P型不純物のボl
Jンが多結晶シリコン中で容易に拡散しないように、本
発明はMISI・ランジスタが形成されるまでに経る多
くの熱工程によっても多結晶シリコンのグし・インの成
長を抑制することを目的としたものである。以下、図面
を参照し、本発明の詳細な説明する。
In order to improve the above-mentioned conventional drawbacks, the volume of P-type impurity
The purpose of the present invention is to suppress the growth of nitrogen in polycrystalline silicon even during the many thermal processes that go through before MISI transistors are formed, so that silicon does not easily diffuse into polycrystalline silicon. That is. Hereinafter, the present invention will be described in detail with reference to the drawings.

〔課題を解決するだめの手段〕[Failure to solve the problem]

M[S]・フンシスタのり”−1・電極となる多結晶ソ
リ丁lンにP型不純物をイオン注入あるいは化学的11
1積法により多結晶シリコンに導入する前に、チッ素、
フッ48、アルゴン、シリコン、ケルマニ・:J J、
、雪の不純物の何れか1つ又は複数の不純物をイオン注
入又は化学的llI積法により多結晶ンリコン中−2m
入する。
P-type impurity is ion-implanted or chemically applied to the polycrystalline silicate that will become the electrode.
Before introducing nitrogen into polycrystalline silicon using the one product method,
Fu48, argon, silicon, kermani: J J,
, one or more of snow impurities is added to polycrystalline silicon by ion implantation or chemical III product method.
Enter.

〔作用〕[Effect]

MISI・ランシスタか形成されるまで経る多くの熱に
稈によっても、それらの不純物を多結晶シリニJン中・
\!n大することにより、多結晶シリコン中のグレイン
の成長を抑制することかできる。その結果、多結晶シリ
′:1ン中てのP型不純物ボロンの拡散を抑制し、史に
りm=1・絶縁膜中をjm過してMISI・ランシスタ
のチャネル領域へのボロンの侵入をIVj <ごとかて
きる。
The culm undergoes a lot of heat to form MISI and lancista, and these impurities are removed from the polycrystalline silicone.
\! By increasing n, the growth of grains in polycrystalline silicon can be suppressed. As a result, the diffusion of P-type impurity boron in polycrystalline silicon':1 is suppressed, and boron is prevented from penetrating into the channel region of MISI/Lancistor through m = 1 insulating film. IVj < is written.

〔実施例〕〔Example〕

第1図(・」)〜((:)に、本発明の31′導体装置
の製造方法の実施例を示す。第1図(i])において1
1は半導体、/す′1ンノ1(]反、12 Letツノ
−1・絶8イl模となる熱酸化■榮、13はケート電極
となる多結晶シリコン膜を表わす。
Fig. 1(・'') to ((:) show an embodiment of the method for manufacturing a 31' conductor device of the present invention. In Fig. 1(i), 1
Reference numeral 1 represents a semiconductor, 12 represents a thermal oxidation process that becomes an absolute model, and 13 represents a polycrystalline silicon film that becomes a gate electrode.

まず多結晶ンリコン膜13中へ窒素14のイオン注入を
行う。イオン注入直後の窒素の分布が、ゲート酸化膜1
2やシリコン基板11には達しないようにする。次に第
1図(blに示すように、多結晶シリコンゲート電極を
P型化するため、ボロン15をイオン注入する。更に、
第1図(C1に示すように〕第1・リソグラフィ工程に
より多結晶シリコンの一部をエツチングし、ゲート電極
16が形成する。
First, ions of nitrogen 14 are implanted into the polycrystalline silicon film 13. The distribution of nitrogen immediately after ion implantation is similar to that of gate oxide film 1.
2 and the silicon substrate 11. Next, as shown in FIG. 1 (bl), boron 15 is ion-implanted to make the polycrystalline silicon gate electrode P-type.Furthermore,
In FIG. 1 (as shown in C1), a part of the polycrystalline silicon is etched by a first lithography step, and a gate electrode 16 is formed.

なお、多結晶シリコン中ヘボロンをイオン注入する前に
、イオン注入又は化学的堆積法で多結晶シリコン中へ導
入する不純物は、前記した窒素以外にフッ素、アルゴン
、シリコン、ゲルマニウム等の何れか又はそれらの複数
の組み合ねゼでも良い。
Before ion-implanting Heboron into polycrystalline silicon, the impurity introduced into polycrystalline silicon by ion implantation or chemical deposition may be fluorine, argon, silicon, germanium, etc., or any of them in addition to the nitrogen mentioned above. It may be a combination of multiple.

ボロンのイオン注入111J、多結晶シリコン中に窒素
、フッ素、アルゴン等の不純物を導入すると、それらの
不純物を導入しない場合におけるグレイン24(第2図
)に比べ、1−ランジスタ形成までに終わる熱工程によ
る多結晶シリコンのグレイン17(第1図)の成長は抑
えられる。グレインI7が小さいと、不純物の多結晶シ
リコンの拡散は抑えられる。このため、窒素やフッ素を
ホロンのイオン注入前に多結晶シリコン中へ導入してお
くと、熱工程による多結晶シリコン中のボロンの拡散が
抑えられ、ひいてはゲート絶縁膜中を通過し、P型M 
I S +−ランジスタのチャネル領域(第J図FC)
18)へのボ1−zンの拡散が抑制される。
Boron ion implantation 111J, when impurities such as nitrogen, fluorine, and argon are introduced into polycrystalline silicon, the thermal process ends before the formation of 1-transistor, compared to the grain 24 (Fig. 2) when these impurities are not introduced. The growth of polycrystalline silicon grains 17 (FIG. 1) due to the oxidation is suppressed. If the grain I7 is small, diffusion of impurity polycrystalline silicon can be suppressed. Therefore, if nitrogen or fluorine is introduced into polycrystalline silicon before holon ion implantation, the diffusion of boron in polycrystalline silicon due to the thermal process will be suppressed, and the boron will pass through the gate insulating film and become P-type. M
Channel region of I S +- transistor (Figure J FC)
18), the diffusion of balls 1-z to 18) is suppressed.

〔発明の効果〕〔Effect of the invention〕

以上、詳細に説明したように、本発明の半導体装置の製
造方法においては、熱工程による多結晶ノリコンのグレ
イン成長を抑え、ボロンの多結晶シリコン中の拡1)k
を卯え、その結果、ボロンのゲ1箱オ子)膜中“(の拡
散も(…え、MISトランジスタのヂ→・ネル領域への
侵入を防く効果を有する。
As described above in detail, in the method of manufacturing a semiconductor device of the present invention, grain growth of polycrystalline silicon due to a thermal process is suppressed, and boron is expanded in polycrystalline silicon.
As a result, the diffusion of boron into the film also has the effect of preventing its intrusion into the genus region of the MIS transistor.

このため、スレソショルト電圧の変動が少ない、しかも
安定な!・ランジスタ特性を持つ、P型不純物から成る
多結晶シリコンをゲート電極として持つI)型MISI
〜ランシスタを得ることができる多大な効果を持ってい
る。
For this reason, there is little fluctuation in the threshold voltage, and it is stable!・I) type MISI that has transistor characteristics and has polycrystalline silicon made of P-type impurities as a gate electrode
~Rancista can be obtained and has a great effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図fa)〜(C1は本発明の半導体装置の製造方法
を示す工程順断面図、第2図は従来の半導体装置の1析
面図である。 半導体基板 ゲート絶縁膜 多結晶シリコン チッ素イオン注入 ボロンイオン注入 グレイン 以 」二
Figures 1 (fa) to (C1) are step-by-step cross-sectional views showing the method of manufacturing a semiconductor device of the present invention, and Figure 2 is a cross-sectional view of a conventional semiconductor device. Semiconductor substrate Gate insulating film Polycrystalline silicon nitride Ion-implanted boron ion-implanted grain

Claims (1)

【特許請求の範囲】[Claims] (1)P型MISトランジスタ(金属・絶縁膜・半導体
トランジスタ)のゲート電極をP型不純物を導入した多
結晶シリコンで形成する半導体装置の形成方法において
、P型不純物をイオン注入あるいは化学的堆積法により
多結晶シリコンに導入する前に、チッ素、フッ素、アル
ゴン、シリコン、ゲルマニウム等の不純物の何れか1つ
又は複数の不純物をイオン注入又は化学的堆積法により
多結晶シリコン中へ導入することを特徴とする半導体装
置の製造方法。
(1) In a method for forming a semiconductor device in which the gate electrode of a P-type MIS transistor (metal/insulating film/semiconductor transistor) is formed of polycrystalline silicon doped with P-type impurities, the P-type impurity is ion-implanted or chemically deposited. Before introducing into polycrystalline silicon, one or more impurities such as nitrogen, fluorine, argon, silicon, germanium, etc. are introduced into polycrystalline silicon by ion implantation or chemical deposition method. A method for manufacturing a featured semiconductor device.
JP2129767A 1990-05-18 1990-05-18 Manufacture of semiconductor device Pending JPH0425176A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2129767A JPH0425176A (en) 1990-05-18 1990-05-18 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2129767A JPH0425176A (en) 1990-05-18 1990-05-18 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0425176A true JPH0425176A (en) 1992-01-28

Family

ID=15017704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2129767A Pending JPH0425176A (en) 1990-05-18 1990-05-18 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0425176A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07226510A (en) * 1993-10-28 1995-08-22 Lg Semicon Co Ltd Doping of semiconductor polysilicon layer and manufacture of pmosfet using this
WO1998013880A1 (en) * 1996-09-25 1998-04-02 Advanced Micro Devices, Inc. POLY-Si/POLY-SiGe GATE FOR CMOS DEVICES
EP0859402A2 (en) * 1997-01-21 1998-08-19 Texas Instruments Incorporated Method of manufacturing a MOS electrode
US5866930A (en) * 1995-08-25 1999-02-02 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing the same
US5901084A (en) * 1997-03-10 1999-05-04 Mitsubishi Denki Kabushiki Kaisha Nonvolatile semiconductor memory device having floating gate electrode
US6300664B1 (en) 1993-09-02 2001-10-09 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and method of fabricating the same
US6720626B1 (en) 1998-01-26 2004-04-13 Renesas Technology Corp. Semiconductor device having improved gate structure
US6744104B1 (en) 1998-11-17 2004-06-01 Kabushiki Kaisha Toshiba Semiconductor integrated circuit including insulated gate field effect transistor and method of manufacturing the same
WO2008078363A1 (en) * 2006-12-22 2008-07-03 Renesas Technology Corp. Process for producing semiconductor device and semiconductor device
JP2008218661A (en) * 2007-03-02 2008-09-18 Fujitsu Ltd Field-effect semiconductor device and manufacturing method therefor
JP2009010417A (en) * 2008-09-05 2009-01-15 Renesas Technology Corp Manufacturing method of semiconductor device
JP2011029661A (en) * 1993-09-02 2011-02-10 Renesas Electronics Corp Semiconductor device and method of manufacturing the same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6300664B1 (en) 1993-09-02 2001-10-09 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and method of fabricating the same
JP2011029661A (en) * 1993-09-02 2011-02-10 Renesas Electronics Corp Semiconductor device and method of manufacturing the same
US6521527B1 (en) 1993-09-02 2003-02-18 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and method of fabricating the same
JPH07226510A (en) * 1993-10-28 1995-08-22 Lg Semicon Co Ltd Doping of semiconductor polysilicon layer and manufacture of pmosfet using this
US5866930A (en) * 1995-08-25 1999-02-02 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing the same
WO1998013880A1 (en) * 1996-09-25 1998-04-02 Advanced Micro Devices, Inc. POLY-Si/POLY-SiGe GATE FOR CMOS DEVICES
EP0859402A3 (en) * 1997-01-21 1999-08-25 Texas Instruments Incorporated Method of manufacturing a MOS electrode
EP0859402A2 (en) * 1997-01-21 1998-08-19 Texas Instruments Incorporated Method of manufacturing a MOS electrode
US5901084A (en) * 1997-03-10 1999-05-04 Mitsubishi Denki Kabushiki Kaisha Nonvolatile semiconductor memory device having floating gate electrode
US6720626B1 (en) 1998-01-26 2004-04-13 Renesas Technology Corp. Semiconductor device having improved gate structure
US6744104B1 (en) 1998-11-17 2004-06-01 Kabushiki Kaisha Toshiba Semiconductor integrated circuit including insulated gate field effect transistor and method of manufacturing the same
WO2008078363A1 (en) * 2006-12-22 2008-07-03 Renesas Technology Corp. Process for producing semiconductor device and semiconductor device
JPWO2008078363A1 (en) * 2006-12-22 2010-04-15 株式会社ルネサステクノロジ Semiconductor device manufacturing method and semiconductor device
JP2008218661A (en) * 2007-03-02 2008-09-18 Fujitsu Ltd Field-effect semiconductor device and manufacturing method therefor
JP2009010417A (en) * 2008-09-05 2009-01-15 Renesas Technology Corp Manufacturing method of semiconductor device

Similar Documents

Publication Publication Date Title
JPS63255968A (en) Manufacture of field effect transistor
EP0258394B1 (en) Fabrication of solid-state devices having thin dielectric layers
KR100550196B1 (en) Method of improving gate activation by employing atomic oxygen oxidation
JPH0425176A (en) Manufacture of semiconductor device
US5106768A (en) Method for the manufacture of CMOS FET by P+ maskless technique
JP2669333B2 (en) Method for manufacturing semiconductor device
US5115296A (en) Preferential oxidization self-aligned contact technology
US5132757A (en) LDD field effect transistor having a large reproducible saturation current
JP3077760B2 (en) Solid phase diffusion method
JP3247242B2 (en) Method for manufacturing semiconductor device
JPH03227516A (en) Manufacture of semiconductor device
JPH0897202A (en) Manufacture of semiconductor device
JPS60124972A (en) Manufacture of semiconductor device
JPS62137854A (en) Manufacture of semiconductor device
JPS61248476A (en) Manufacture of semiconductor device
JPS63261879A (en) Manufacture of semiconductor device
JPH05315318A (en) Formation of oxidized silicon film and manufacture of field-effect transistor using same
JPH03102875A (en) Semiconductor device and manufacture thereof
JPH0794578A (en) Fabrication of semiconductor device
JP3260311B2 (en) Method for manufacturing semiconductor device
JPS62250673A (en) Manufacture of semiconductor device
JPS6074681A (en) Manufacture of semiconductor device
JPH0590574A (en) Semiconductor device
JPS59105367A (en) Manufacture of metal oxide semiconductor type transistor
JPH02103966A (en) Manufacture of semiconductor memory device