JPH04251106A - Ash melting furnace - Google Patents

Ash melting furnace

Info

Publication number
JPH04251106A
JPH04251106A JP41723590A JP41723590A JPH04251106A JP H04251106 A JPH04251106 A JP H04251106A JP 41723590 A JP41723590 A JP 41723590A JP 41723590 A JP41723590 A JP 41723590A JP H04251106 A JPH04251106 A JP H04251106A
Authority
JP
Japan
Prior art keywords
molten metal
ash
furnace body
furnace
unburned carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP41723590A
Other languages
Japanese (ja)
Inventor
Yukio Miura
幸雄 三浦
Satoshi Inoue
里志 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP41723590A priority Critical patent/JPH04251106A/en
Publication of JPH04251106A publication Critical patent/JPH04251106A/en
Pending legal-status Critical Current

Links

Landscapes

  • Gasification And Melting Of Waste (AREA)

Abstract

PURPOSE:To provide an ash melting furnace of a low cost that can be operated stably at a low running cost by using the incineration ash which contains unburned carbon as a heat source. CONSTITUTION:A molten ash storage section 63 is provided in the inside of a vessel-shaped furnace main body 27 into which incineration ash 25 containing unburned carbon is charged, a heating device is provided in the furnace main body 27, and an oxygen supply nozzle 40 that supplies combustion air or oxygen 39 to the molten ash storage section 43 is provided.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、焼却炉から排出される
焼却灰を減容等のために溶融処理するようにした灰溶融
炉に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ash melting furnace in which incinerated ash discharged from an incinerator is melted to reduce its volume.

【0002】0002

【従来の技術】近年においては、都市ごみ等の廃棄物を
焼却する焼却炉から排出された焼却灰を、減容化や無公
害化並に再資源化等のため高温で溶融し固化するのに、
灰溶融炉が用いられている。
[Prior Art] In recent years, incineration ash discharged from incinerators that incinerate municipal waste and other wastes has been melted and solidified at high temperatures in order to reduce volume, make it non-polluting, and recycle resources. To,
Ash melting furnaces are used.

【0003】従来の灰溶融炉の一例を図2を用いて説明
すると、上部に形成された供給口1から炉本体2内部へ
図示しない焼却炉からの焼却灰3を投入し、炉本体2内
部に上方から装入されたアーク電極4によりアークを発
生させて該アークの熱により焼却灰3を溶融させ、炉本
体2底部にたまった焼却灰3の溶湯5を炉本体2下部に
形成された排出口6から排出させ図示しない固化装置へ
供給するようになっている。又、溶融の進行に伴ってア
ーク電極4を溶湯5中に浸漬し、溶湯5に通電させて溶
湯5の電気抵抗熱を利用して溶融を継続させる方式もあ
る。
An example of a conventional ash melting furnace will be described with reference to FIG. An arc is generated by an arc electrode 4 charged from above, and the incinerated ash 3 is melted by the heat of the arc, and a molten metal 5 of the incinerated ash 3 accumulated at the bottom of the furnace body 2 is formed at the bottom of the furnace body 2. The liquid is discharged from a discharge port 6 and supplied to a solidification device (not shown). There is also a method in which the arc electrode 4 is immersed in the molten metal 5 as the melting progresses, and electricity is applied to the molten metal 5 to continue the melting using the electric resistance heat of the molten metal 5.

【0004】図3は従来の灰溶融炉の他の例であり、上
部に形成された供給口7,8から炉本体9内部へ図示し
ない焼却炉からの焼却灰3を投入し、炉本体9内部に上
方から装入されたバーナ10の火炎によって炉本体9内
部に貯溜された焼却灰3の表面を溶融させ、溶融した焼
却灰3表面の溶湯5を炉本体9底部に形成された排出口
11から排出させ図示しない固化装置へ供給するように
なっている。
FIG. 3 shows another example of a conventional ash melting furnace, in which incinerated ash 3 from an incinerator (not shown) is fed into the furnace body 9 from supply ports 7 and 8 formed at the top, and the furnace body 9 The surface of the incinerated ash 3 stored inside the furnace body 9 is melted by the flame of the burner 10 charged into the interior from above, and the molten metal 5 on the surface of the molten incinerated ash 3 is discharged through a discharge port formed at the bottom of the furnace body 9. 11 and supplied to a solidification device (not shown).

【0005】これら2つの従来例はいずれも、廃棄物を
完全燃焼させて未燃炭素がほとんど残留しない状態とし
た焼却灰3を、他の熱源に依存して溶融させる装置であ
り、既に各方面で実施されている。上記図2の灰溶融炉
では、焼却灰3を溶融させるアーク電極4(或いは電気
抵抗用電極)へ多量の電力を常時投入し続けなければな
らず、又、図3の灰溶融炉では、焼却灰3を溶融させる
ために、バーナ10へ多量の燃料を常時投入し続けなけ
ればならないので、共にランニングコストが高くなって
しまう。
[0005] Both of these two conventional examples are devices that rely on other heat sources to melt the incinerated ash 3, which has been completely burned to leave almost no unburned carbon, and have already been used in various fields. It is being carried out in In the ash melting furnace shown in Fig. 2 above, a large amount of electric power must be constantly input to the arc electrode 4 (or electrical resistance electrode) that melts the incinerated ash 3, and in the ash melting furnace shown in Fig. 3, the incineration In order to melt the ash 3, a large amount of fuel must be constantly fed into the burner 10, which increases running costs.

【0006】そこで、図4に示すように、廃棄物13の
燃焼度合いを制御することにより、焼却灰3中に所要割
合で未燃炭素が残留するようにし、焼却炉12から排出
される焼却灰3に含まれる未燃炭素の燃焼熱を熱源とし
て溶融させる灰溶融炉14が開発されている。尚、焼却
灰3中に未燃炭素を残留させるために、例えば、回転式
円筒型の焼却炉12が用いられているが、その詳細は、
特願昭62−232646号に開示されている。
Therefore, as shown in FIG. 4, by controlling the degree of combustion of the waste 13, a desired proportion of unburned carbon remains in the incinerated ash 3, and the incinerated ash discharged from the incinerator 12 is An ash melting furnace 14 has been developed that uses combustion heat of unburned carbon contained in ash as a heat source to melt the ash. Incidentally, in order to leave unburned carbon in the incineration ash 3, for example, a rotary cylindrical incinerator 12 is used, the details of which are as follows.
It is disclosed in Japanese Patent Application No. 62-232646.

【0007】又、上記灰溶融炉14の代表的な構造例は
図4に示すように、焼却炉12から排出された未燃炭素
を含有する焼却灰3は灰溶融炉14内へ導入され、灰溶
融炉14入口にて燃焼用の空気15により未燃炭素が燃
焼され、この燃焼熱でもって焼却灰13が加熱溶融され
る。この際生成される溶湯5は炉床16を斜め下方へ流
下しつつ排出端17から次工程の図示しない固化装置へ
排出される。
Further, a typical structural example of the ash melting furnace 14 is shown in FIG. 4, in which the incinerated ash 3 containing unburned carbon discharged from the incinerator 12 is introduced into the ash melting furnace 14. At the inlet of the ash melting furnace 14, unburned carbon is combusted by the combustion air 15, and the incinerated ash 13 is heated and melted by this combustion heat. The molten metal 5 generated at this time flows diagonally downward through the hearth 16 and is discharged from the discharge end 17 to a solidification device (not shown) in the next step.

【0008】ところで、この種従来例にあっては、灰溶
融炉14入口にて燃焼用の空気15により未燃炭素を燃
焼することとしているため、炉床16を流れる溶湯5に
充分な熱量が供給されずこの溶湯5が炉床16に付着固
化して灰溶融炉14内を閉塞する問題があった。また、
この現象は炉床16のみならず炉壁にも現れ、操業の安
定化が得られなかった。そのため、以降も改善が進み、
近年、開発されている灰溶融炉としては、図5に示すよ
うに、上端に未燃炭素を含む焼却灰3の供給口18を形
成され、下端に溶湯5の排出口19を形成されて、全体
が下方に傾斜する耐火材製の炉本体20と、炉本体20
内部に階段状に配設された複数のセラミックス製の炉床
板21と、各炉床板21内部に設けられた高温電気ヒー
タ22と、燃焼空気23を噴出する空気ノズル24とで
構成されて、供給口18から投入された未燃炭素を含む
焼却灰3を炉床板21内部に設けられた高温電気ヒータ
22で高温加熱すると共に、空気ノズル24から高温の
燃焼空気23を焼却灰3中へ噴出させることにより、焼
却灰3に含まれる未燃炭素を燃焼させ、炉内雰囲気温度
が燃焼を継続できる高温になったら以後は高温電気ヒー
タ22による加熱を停止し、未燃炭素の燃焼熱のみを熱
源として焼却灰3を燃焼させ、燃焼して溶融された溶湯
5を階段状に配設された各火床板21に沿って上方から
下方へ順に流下させると共に、溶湯5の流下に伴って焼
却灰3を下方へ移送させ、最下部の炉床板21から溶湯
5を排出口19へ排出させて、図示しない外部の固化装
置へ供給させるようにしている。更に炉本体20にはプ
ッシャー24’が組み込まれ、炉本体20内部に溶湯5
が付着固化した場合、プッシャー24’を用いて付着物
を剥離して排出させるようにしている。
By the way, in this type of conventional example, unburned carbon is burned by the combustion air 15 at the inlet of the ash melting furnace 14, so that the molten metal 5 flowing through the hearth 16 has a sufficient amount of heat. There was a problem in that the molten metal 5 that was not supplied adhered to the hearth 16 and solidified, thereby clogging the inside of the ash melting furnace 14. Also,
This phenomenon appeared not only on the hearth 16 but also on the furnace wall, making it impossible to stabilize the operation. As a result, improvements have continued since then,
As shown in FIG. 5, the ash melting furnace that has been developed in recent years has a supply port 18 for the incinerated ash 3 containing unburned carbon at the upper end, and an outlet 19 for the molten metal 5 at the lower end. Furnace body 20 made of refractory material whose entire body is slanted downward, and furnace body 20
It is composed of a plurality of ceramic hearth plates 21 arranged in a stepped manner inside, a high-temperature electric heater 22 provided inside each hearth plate 21, and an air nozzle 24 that blows out combustion air 23. The incinerated ash 3 containing unburned carbon introduced from the port 18 is heated to a high temperature by a high-temperature electric heater 22 provided inside the hearth plate 21, and high-temperature combustion air 23 is ejected into the incinerated ash 3 from the air nozzle 24. By doing so, the unburned carbon contained in the incineration ash 3 is combusted, and once the atmospheric temperature in the furnace reaches a high enough temperature to continue combustion, heating by the high-temperature electric heater 22 is stopped and the combustion heat of the unburned carbon is used as the only heat source. The incinerated ash 3 is combusted, and the molten metal 5 that has been combusted and melted is made to flow down from above to the bottom along each grate plate 21 arranged in a stepwise manner, and as the molten metal 5 flows down, the incinerated ash 3 The molten metal 5 is transferred downward, and the molten metal 5 is discharged from the lowest hearth plate 21 to the discharge port 19, and is supplied to an external solidification device (not shown). Furthermore, a pusher 24' is incorporated in the furnace body 20, and the molten metal 5 is pushed inside the furnace body 20.
When the adhered matter is solidified, the pusher 24' is used to peel off the adhered matter and discharge it.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、上記図
5の灰溶融炉には、以下のような問題があった。
However, the ash melting furnace shown in FIG. 5 has the following problems.

【0010】即ち、炉本体20内部全体に階段状に設け
られた各炉床板21ごとに未燃炭素の燃焼熱を熱源とし
て焼却灰3の溶融を継続的に生じさせ、生じた溶湯5を
階段状の各炉床板21に沿って上方から下方へと順に流
下させるようにするためには、炉本体20内部全体が常
に高温雰囲気となるように保ち、且つ、焼却灰3に均等
に燃焼空気23を供給させることが必要であるが、この
ように炉本体20内部全体を常に高温雰囲気となるよう
に保ち、且つ、焼却灰3に均等に燃焼空気23を供給さ
せることができない場合には燃焼が継続されず、稼働中
に炉本体20内部に部分的な低温部が生じ、これによっ
て一度溶融した溶湯5が凝固して前記プッシャー24’
による強制的な排出作業を行わなければならなくなり、
又、焼却灰3の移送が均等に行われず、炉本体20内部
で焼却灰3の溶融が連続的に持続されなくなるので、灰
溶融炉14の安定操業が困難となっていた。
That is, the combustion heat of unburned carbon is used as a heat source to continuously melt the incinerated ash 3 on each hearth plate 21 provided stepwise throughout the inside of the furnace body 20, and the resulting molten metal 5 is transferred stepwise. In order to cause the flow to flow sequentially from above to below along each of the hearth plates 21, the entire inside of the furnace body 20 must be kept in a high temperature atmosphere at all times, and the combustion air 23 must be distributed evenly over the incinerated ash 3. However, if it is not possible to maintain the entire interior of the furnace body 20 in a high-temperature atmosphere at all times and to uniformly supply the combustion air 23 to the incinerated ash 3, combustion will not occur. During operation, a partial low-temperature area is generated inside the furnace main body 20, and as a result, the molten metal 5 that has been melted once solidifies, and the pusher 24'
We had to carry out compulsory discharge work due to
Furthermore, the incinerated ash 3 is not transferred evenly, and the incinerated ash 3 cannot be continuously melted inside the furnace body 20, making stable operation of the ash melting furnace 14 difficult.

【0011】本発明は、上述の実情に鑑み、未燃炭素を
含む焼却灰を熱源とすることによって低いランニングコ
ストで、安定操業が可能で低価格な灰溶融炉を提供する
ことを目的とするものである。
[0011] In view of the above-mentioned circumstances, an object of the present invention is to provide a low-cost ash melting furnace that uses incinerated ash containing unburned carbon as a heat source and is capable of stable operation at low running costs. It is something.

【0012】0012

【課題を解決するための手段】内部に溶湯貯溜部を備え
た容器状の炉本体を設け、該炉本体の上部に未燃炭素を
含む焼却灰の供給口を形成すると共に、炉本体の溶湯貯
溜部に前記焼却灰が溶融してなる溶湯の排出口を形成し
、炉本体に発熱装置を設け、炉本体内部に空気あるいは
酸素を供給する酸素供給ノズルを設けたことを特徴とす
る灰溶融炉にかかるものである。
[Means for Solving the Problems] A container-shaped furnace body having a molten metal reservoir inside is provided, a supply port for incineration ash containing unburned carbon is formed in the upper part of the furnace body, and the molten metal in the furnace body is Ash melting characterized in that a discharge port for the molten metal obtained by melting the incinerated ash is formed in the storage part, a heat generating device is provided in the furnace body, and an oxygen supply nozzle for supplying air or oxygen is provided inside the furnace body. It is something that goes into the furnace.

【0013】[0013]

【作用】先ず灰溶融炉の初期起動として供給口から未燃
炭素を含む焼却灰を炉本体内部に供給して、発熱装置と
して例えば通電用電極を介して通電すると、焼却灰中の
未燃炭素に電流が流れて、未燃炭素のもつ電気抵抗値に
より焼却灰が電気抵抗加熱され、高温化し溶融する。炉
本体内が溶湯で満たされると、炉本体に新しい焼却灰を
供給して溶融炉を本格的稼動状態とする。その後は、通
電用電極への通電を中止して酸素供給ノズルから空気あ
るいは酸素を供給することにより焼却灰中の未燃炭素が
燃焼して焼却灰が溶融し、溶湯は溶湯貯溜部に貯溜され
た後、排出口から排出される。その後供給される焼却灰
は溶湯で満ちた溶融炉に直接供給されこの高温雰囲気や
溶湯中で空気あるいは酸素と接触し燃焼する。
[Operation] First, as an initial start-up of the ash melting furnace, incinerated ash containing unburned carbon is supplied from the supply port into the furnace main body, and when electricity is applied as a heat generating device, for example, through a current-carrying electrode, the unburned carbon in the incinerated ash is Electric current flows through the incineration ash, and the electric resistance of the unburned carbon heats the incinerated ash, raising the temperature and melting it. Once the furnace body is filled with molten metal, new incinerated ash is supplied to the furnace body to bring the melting furnace into full operation. After that, the energization to the energizing electrode is stopped and air or oxygen is supplied from the oxygen supply nozzle to burn the unburned carbon in the incinerated ash and melt the incinerated ash, and the molten metal is stored in the molten metal storage section. After that, it is discharged from the outlet. The incinerated ash then supplied is directly supplied to a melting furnace filled with molten metal, where it comes into contact with air or oxygen in this high-temperature atmosphere and molten metal, and combusts.

【0014】[0014]

【実施例】以下、本発明の実施例として発熱装置に通電
用電極を用いた場合を図面を参照しつつ説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, examples of the present invention in which current-carrying electrodes are used in a heat generating device will be described with reference to the drawings.

【0015】図1は、本発明の一実施例である。FIG. 1 shows one embodiment of the present invention.

【0016】内部に焼却灰25が溶融してなる溶湯26
を所定の量だけ貯溜可能な溶湯貯溜部43を有する、耐
火物製の密閉容器型をした炉本体27を設け、該炉本体
27の上部に焼却灰25の供給口28を形成して、該供
給口28に焼却炉29からの焼却灰25を落下投入可能
なシュート30の下端部を接続する。
Molten metal 26 with incinerated ash 25 melted inside
A furnace body 27 is provided in the form of a closed container made of refractory material and has a molten metal storage section 43 capable of storing a predetermined amount of molten metal. The lower end of a chute 30 into which incinerated ash 25 from an incinerator 29 can be dropped is connected to the supply port 28 .

【0017】炉本体27下部に排出口33を形成し、該
排出口33に、溶湯貯溜部43における最大液面レベル
34を超えた溶湯26を図示しない外部の固化装置へ排
出させるための堰板35を備えたオーバーフロー装置3
6を接続する。
A discharge port 33 is formed in the lower part of the furnace body 27, and a weir plate is provided at the discharge port 33 for discharging the molten metal 26 exceeding the maximum liquid level 34 in the molten metal storage section 43 to an external solidification device (not shown). Overflow device 3 with 35
Connect 6.

【0018】炉本体27の内部に発熱装置として例えば
上方から複数本の通電用電極37を下端部が前記最大液
面レベル34以下となるよう装入配置し、該炉本体27
の内部に下方から前記通電用電極37と対をなす通電用
電極38を対向させて装入配置し、通電用電極37,3
8が互いに異なる極性となるように図示しない電源に接
続する。
For example, a plurality of current-carrying electrodes 37 are inserted into the furnace body 27 as a heat generating device from above so that their lower ends are below the maximum liquid level 34, and the furnace body 27
A current-carrying electrode 38, which is paired with the current-carrying electrode 37, is inserted and arranged to face the current-carrying electrode 37 from below.
8 are connected to a power source (not shown) so that they have different polarities.

【0019】尚通電用電極37を装入配置する方向は必
ずしも上下方向でなくとも炉本体27の側壁から水平方
向に配置しても良い。
The current-carrying electrode 37 is not necessarily placed vertically, but may be placed horizontally from the side wall of the furnace body 27.

【0020】炉本体27の側面の前記最大液面レベル3
4よりも低い位置に適宜間隔を置いて高温の空気或いは
酸素39を噴射する酸素供給ノズル40を設け、炉本体
27の上部に炉本体27内部で発生した排ガス41を排
気する排気口42を設ける。排ガス41と前記酸素供給
ノズル40へ供給される空気または酸素39との間で熱
交換を行なう熱交換器45を設ける。
The maximum liquid level 3 on the side surface of the furnace body 27
Oxygen supply nozzles 40 for injecting high-temperature air or oxygen 39 are provided at appropriate intervals at positions lower than the furnace body 27, and an exhaust port 42 for exhausting exhaust gas 41 generated inside the furnace body 27 is provided in the upper part of the furnace body 27. . A heat exchanger 45 is provided to exchange heat between the exhaust gas 41 and the air or oxygen 39 supplied to the oxygen supply nozzle 40.

【0021】次に、作動について説明する。Next, the operation will be explained.

【0022】焼却炉29で燃焼度合いを制御しつつ都市
ごみ等の廃棄物を焼却することにより生成される、所要
割合の未燃炭素を含む焼却灰25を、焼却炉29からシ
ュート30へ排出する。そして、シュート30から焼却
灰25を炉本体27へ供給する。
Incineration ash 25 containing a required proportion of unburned carbon, which is generated by incinerating waste such as municipal garbage while controlling the degree of combustion in the incinerator 29, is discharged from the incinerator 29 into a chute 30. . Then, the incinerated ash 25 is supplied from the chute 30 to the furnace body 27.

【0023】次いで、図示しない電源から通電用電極3
7,38を介して、導電性の未燃炭素を含む焼却灰25
に電流を流させることにより、焼却灰25が持つ電気抵
抗値によって焼却灰25を加熱(電気抵抗加熱)し、更
に、酸素供給ノズル40から高温の空気或いは酸素39
を炉本体27の焼却灰25中へ噴出させることにより、
加熱された焼却灰25に含まれる未燃炭素を燃焼させた
燃焼熱で焼却灰25を溶融し炉本体27を初期起動させ
る。尚、炉本体27の初期起動は焼却灰25の代りに、
コークス等の燃料あるいは導電性金属スクラップを炉本
体27に装入し又はこれらの混合物を装入して行なうこ
とも可能である。
Next, the current-carrying electrode 3 is connected to a power supply (not shown).
Incineration ash 25 containing conductive unburned carbon via 7, 38
By passing a current through the incinerated ash 25, the incinerated ash 25 is heated by the electrical resistance value of the incinerated ash 25 (electrical resistance heating), and furthermore, high temperature air or oxygen is supplied from the oxygen supply nozzle 40.
By spewing out into the incineration ash 25 of the furnace body 27,
The incinerated ash 25 is melted by combustion heat generated by burning unburned carbon contained in the heated incinerated ash 25, and the furnace main body 27 is initially activated. In addition, in the initial startup of the furnace body 27, instead of the incineration ash 25,
It is also possible to charge fuel such as coke or conductive metal scrap into the furnace body 27, or to charge a mixture thereof.

【0024】一旦、炉本体27が起動されたら、通電用
電極37,38の通電による焼却灰25の電気抵抗加熱
を停止し、空気或いは酸素39の供給量を調整すること
により、未燃炭素の燃焼が持続されるように制御する。
Once the furnace body 27 has been started, the electrical resistance heating of the incinerated ash 25 by energization of the energizing electrodes 37 and 38 is stopped, and the amount of air or oxygen 39 supplied is adjusted to remove unburned carbon. Control so that combustion is sustained.

【0025】その結果、未燃炭素の燃焼熱を熱源とした
焼却灰25の溶融が継続し低いランニングコストでの運
転が可能となる。この時、発生する燃焼ガス41は排気
口42から外部へ排出される。
As a result, the incineration ash 25 continues to be melted using the combustion heat of unburned carbon as a heat source, making it possible to operate at low running costs. At this time, the generated combustion gas 41 is discharged to the outside from the exhaust port 42.

【0026】そして、焼却灰25の溶融によって生成さ
れた溶湯26は炉本体27の溶湯貯溜部43へ貯溜され
て行き、溶湯貯溜部43には最大液面レベル34に達す
るまで溶湯26が貯溜される。溶湯貯溜部43の溶湯2
6が最大液面レベル34まで達したら、以後溶湯26は
、最大液面レベル34を超える分が炉本体27の排出口
33からオーバーフロー装置36へと流れ、オーバーフ
ロー装置36から外部の図示しない固化装置へ排出され
る。
The molten metal 26 generated by melting the incinerated ash 25 is stored in the molten metal storage section 43 of the furnace body 27, and the molten metal 26 is stored in the molten metal storage section 43 until the maximum liquid level 34 is reached. Ru. Molten metal 2 in molten metal storage section 43
6 reaches the maximum liquid level 34, the molten metal 26 that exceeds the maximum liquid level 34 flows from the outlet 33 of the furnace body 27 to the overflow device 36, and from the overflow device 36 to an external solidification device (not shown). is discharged to.

【0027】このように、炉本体27に溶湯貯溜部43
を設けて、溶湯貯溜部43で溶湯26を所定の時間だけ
滞留されるようにしているので、焼却灰25の完全溶融
が可能となり、又、炉本体27の排出口33にオーバー
フロー装置36を設けたので、排出口33からは溶湯貯
溜部43下部の完全溶融した溶湯26のみがオーバーフ
ロー装置36を介して連続的に外部へ排出されることと
なり、溶湯貯溜部43上部の溶融が不完全な溶湯26が
排出されることが防止される。
In this way, the molten metal reservoir 43 is provided in the furnace body 27.
Since the molten metal 26 is retained in the molten metal storage part 43 for a predetermined time by providing a Therefore, only the completely melted molten metal 26 in the lower part of the molten metal storage part 43 is continuously discharged to the outside from the discharge port 33 via the overflow device 36, and the incompletely melted molten metal in the upper part of the molten metal storage part 43 is continuously discharged to the outside. 26 is prevented from being discharged.

【0028】又、内部の溶湯26の温度を制御する場合
には、補助的に通電用電極37,38に通電して溶湯2
6に電流を流す(焼却灰25の溶湯26のような溶融ス
ラグは導電性が確認されており、既に種々の応用例があ
る)。溶湯26は溶湯26の持つ電気抵抗値によって発
熱され、これによって溶湯26の温度が制御される。
In addition, when controlling the temperature of the molten metal 26 inside, the molten metal 2
6 (molten slag, such as the molten metal 26 of the incinerated ash 25, has been confirmed to be electrically conductive, and has already been used in various applications). The molten metal 26 generates heat depending on the electrical resistance value of the molten metal 26, and the temperature of the molten metal 26 is controlled thereby.

【0029】尚、本発明は、上述の実施例にのみ限定さ
れるものではなく、必要な場合には未燃炭素を含まない
焼却灰25であっても溶融させることが可能であること
(この場合空気あるいは酸素は不要である)、発熱装置
として電気アークや誘導加熱や油又はガスバーナ等の設
備を使用し得ること、シュートの途中に焼却灰の供給量
を調整するための調整ゲートを設けても良いこと、その
他、本発明の要旨を逸脱しない範囲内において種々変更
を加え得ることは勿論である。
[0029] The present invention is not limited only to the above-mentioned embodiments, and it is possible to melt even incinerated ash 25 that does not contain unburned carbon if necessary (this (air or oxygen is not required), equipment such as electric arc, induction heating, oil or gas burner can be used as a heat generating device, and an adjustment gate is provided in the middle of the chute to adjust the amount of incinerated ash supplied. Of course, various modifications may be made without departing from the spirit of the present invention.

【0030】[0030]

【発明の効果】以上説明したように、本発明の灰溶融炉
によれば、炉本体の溶湯貯留部に上部から未燃炭素を含
む焼却灰を投入し、溶湯貯留部に空気あるいは酸素を供
給して未燃炭素を燃焼させ、その燃焼熱を熱源として投
入した焼却灰の溶融を継続させることができ、しかも簡
単な構造及び低ランニングコストで安定操業を可能にし
たという優れた効果を奏し得る。
As explained above, according to the ash melting furnace of the present invention, incineration ash containing unburned carbon is charged into the molten metal storage section of the furnace body from above, and air or oxygen is supplied to the molten metal storage section. It is possible to continue melting of the incinerated ash that has been input by burning the unburned carbon and using the combustion heat as a heat source, and it has the excellent effect of enabling stable operation with a simple structure and low running cost. .

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の実施例の全体側方断面図である。FIG. 1 is an overall side sectional view of an embodiment of the invention.

【図2】アークおよび電気抵抗熱を利用した従来例の概
略側断面図である。
FIG. 2 is a schematic side sectional view of a conventional example that utilizes arc and electrical resistance heat.

【図3】バーナを利用した従来例の概略側断面図である
FIG. 3 is a schematic side sectional view of a conventional example using a burner.

【図4】未燃炭素を含む焼却灰を利用した従来例の全体
概略側面図である。
FIG. 4 is an overall schematic side view of a conventional example using incineration ash containing unburned carbon.

【図5】未燃炭素を含む焼却床を利用した他の従来例の
側方断面図である。
FIG. 5 is a side sectional view of another conventional example using an incinerator bed containing unburned carbon.

【符号の説明】[Explanation of symbols]

25    焼却灰 26    溶湯 27    炉本体 28    供給口 33    排出口 37,38    発熱装置としての通電用電極39 
   空気あるいは酸素 40    酸素供給ノズル 43    溶湯貯溜部
25 Incineration ash 26 Molten metal 27 Furnace body 28 Supply port 33 Discharge port 37, 38 Current-carrying electrode 39 as a heat generating device
Air or oxygen 40 Oxygen supply nozzle 43 Molten metal reservoir

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  内部に溶湯貯溜部を備えた容器状の炉
本体を設け、該炉本体の上部に未燃炭素を含む焼却灰の
供給口を形成すると共に、炉本体の溶湯貯溜部に前記焼
却灰が溶融してなる溶湯の排出口を形成し、炉本体に発
熱装置を設け、、炉本体内部に空気あるいは酸素を供給
する酸素供給ノズルを設けたことを特徴とする灰溶融炉
1. A container-shaped furnace body with a molten metal reservoir inside is provided, a supply port for incineration ash containing unburned carbon is formed in the upper part of the furnace body, and the molten metal reservoir of the furnace body is provided with An ash melting furnace characterized by forming an outlet for molten metal obtained by melting incinerated ash, providing a heat generating device in the furnace main body, and providing an oxygen supply nozzle for supplying air or oxygen into the furnace main body.
JP41723590A 1990-12-29 1990-12-29 Ash melting furnace Pending JPH04251106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP41723590A JPH04251106A (en) 1990-12-29 1990-12-29 Ash melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP41723590A JPH04251106A (en) 1990-12-29 1990-12-29 Ash melting furnace

Publications (1)

Publication Number Publication Date
JPH04251106A true JPH04251106A (en) 1992-09-07

Family

ID=18525360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP41723590A Pending JPH04251106A (en) 1990-12-29 1990-12-29 Ash melting furnace

Country Status (1)

Country Link
JP (1) JPH04251106A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5567396A (en) * 1978-11-17 1980-05-21 Hiroshi Kobayashi Method and furnace for melting treatment of urban refuge incinerated ash, sewage sludge, etc.

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5567396A (en) * 1978-11-17 1980-05-21 Hiroshi Kobayashi Method and furnace for melting treatment of urban refuge incinerated ash, sewage sludge, etc.

Similar Documents

Publication Publication Date Title
KR890004291B1 (en) Method and apparatus for reclaiming metals from metallic scrap material
JPH0518526A (en) Method and device for burning waste
JPH04251106A (en) Ash melting furnace
JP3722674B2 (en) Method and apparatus for lowering melting furnace
JP3280265B2 (en) Apparatus and method for melting incineration residue and fly ash
JP2003042429A (en) Ash melting furnace equipment for gasifying/melting plasma, and method for its control
JPH04251107A (en) Ash melting furnace
JPH0926124A (en) Melting treatment method of refuse incineration ash and melting treatment installation
JPH0346723B2 (en)
JP3535727B2 (en) Plasma melting furnace and operating method thereof
JP4667665B2 (en) Plasma ash melting furnace and operating method thereof
JP2896562B2 (en) Waste melting furnace
JPH10132229A (en) Waste melting furnace and waste melting method
JP3305491B2 (en) Melting furnace apparatus for granular material and melting furnace combustion method
JP3764641B2 (en) Electric melting furnace operation control method
JP3568351B2 (en) Restart method of plasma melting furnace
JPH0519277B2 (en)
JP3505065B2 (en) Plasma melting furnace and operating method thereof
JP3575570B2 (en) Ash melting furnace
JPH0480513A (en) Method and apparatus for actuation of fluidized bed type incinerator
JP2004169999A (en) Incineration/melting furnace
JPH0372889B2 (en)
JP4972458B2 (en) Ash melting furnace combustion chamber
JP2002031323A (en) Electric ash melting furnace and method for removing solidified material from the same
JP3611348B2 (en) Electric melting furnace