JP4667665B2 - Plasma ash melting furnace and operating method thereof - Google Patents

Plasma ash melting furnace and operating method thereof Download PDF

Info

Publication number
JP4667665B2
JP4667665B2 JP2001214677A JP2001214677A JP4667665B2 JP 4667665 B2 JP4667665 B2 JP 4667665B2 JP 2001214677 A JP2001214677 A JP 2001214677A JP 2001214677 A JP2001214677 A JP 2001214677A JP 4667665 B2 JP4667665 B2 JP 4667665B2
Authority
JP
Japan
Prior art keywords
furnace
ash
electrode
plasma
melting furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001214677A
Other languages
Japanese (ja)
Other versions
JP2003028411A (en
Inventor
敬太 井上
稔 池
鉄雄 佐藤
彰 野間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Environmental and Chemical Engineering Co Ltd
Original Assignee
Mitsubishi Heavy Industries Environmental and Chemical Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Environmental and Chemical Engineering Co Ltd filed Critical Mitsubishi Heavy Industries Environmental and Chemical Engineering Co Ltd
Priority to JP2001214677A priority Critical patent/JP4667665B2/en
Publication of JP2003028411A publication Critical patent/JP2003028411A/en
Application granted granted Critical
Publication of JP4667665B2 publication Critical patent/JP4667665B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、ごみ等の焼却灰を溶融処理してスラグ化した焼却灰を、資源化若しくは減量化するプラズマ式の灰溶融炉において、溶融効率を向上することができるプラズマ式灰溶融炉およびその運転方法に関する。
【0002】
【従来の技術】
灰溶融炉は、ごみ焼却灰の有効利用を図るためのものであり、灰溶融炉により溶融した焼却灰は、低沸点の揮散物や、金属類及びその他成分のスラグに分け、無害化するとともに、そのリサイクルを図っている。こうした焼却灰の溶融炉のニーズが増加してきている。これらの灰溶融炉には、焼却灰の溶融のために重油等を燃料にするバーナ式灰溶融炉や、電気抵抗式灰溶融炉及びプラズマ式灰溶融炉等のように電気を熱源として灰を溶融するものが知られている。
【0003】
図4は、それらの灰溶融炉のうち従来のプラズマアーク式灰溶融炉1を示し、灰溶融炉1には、溶融炉本体2の周壁14に囲まれた炉室3を設けている。灰溶融炉1には、主電極4、炉底電極5及び直流電源6等を備えたプラズマ装置が設けられ、主電極4は、溶融炉本体2の天井壁7を貫通して垂下されるとともに、昇降装置8に支持されることにより炉室3内を上下動できるように構成されている。炉底電極5は、主電極4の直下の炉底壁9に炉底電極5を設置し、これらの電極4,5間に、プラズマ発生用の直流電源6を接続している。溶融炉本体2は、外壁を鉄皮10で覆い、内壁11はレンガ等の耐火材で形成し、溶融炉本体2の周壁14には、焼却灰12の投入口13が配設され、投入口13に対向する周壁14には、溶融スラグ16の排出口である出滓口17が配設され、出滓口17には出滓樋18が接続されている。
【0004】
このような構成により、灰溶融炉1の炉室3には、焼却灰の投入口13から炉底壁9上に焼却灰12が投入され、灰溶融炉1の炉室3を還元雰囲気にした状態で、直流電源6により電圧を電極4,5間に印加する。すると、該電極4,5間にプラズマアークが発生し、焼却灰12は加熱されて溶融してスラグ16となり、焼却灰中に含まれているメタル成分が溶融して溶融メタル19となり炉底に沈む。溶融スラグ16が炉底に溜まり出滓口17の高さに達すると、スラグ16が出滓口17から溢れでて出滓樋18を通って、図示しないモールドに供給され、スラグ16は次工程で冷却処理される。他方、溶融メタル19は、図示のように溶融炉本体2が傾倒式のものであれば、シリンダ25を駆動させて支軸26を回転軸として溶融炉本体2を傾倒させて、出滓口17から溶融メタル19を炉外に排出するようにしている。
【0005】
【発明が解決しようとする課題】
しかしながら、従来のプラズマ式灰溶融炉1では、処理量を大きくするために炉室3の内径を拡大するような場合は、炉室3の出滓口17付近の内壁11の温度が焼却灰12の融点以下の温度となり、図5に示すように未溶融焼却灰12aがスラグ16面上に浮いて、そのまま出滓口17から出滓樋18を通って、炉室3の外に排出されてしまう。未溶融焼却灰12aには、有害な金属が含まれていることもあり、スラグの品質の確保からも完全に溶融してから炉室3外に排出する必要がある。かかる場合に、プラズマ電極4,5の出力を大きなものにすることも考えられるが、電気消費量が大きくなる。
本発明はこのような事情に鑑みてなされたもので、灰溶融炉の灰処理量を大きくするために炉室の径を大きする場合に、溶融効率を向上することができるプラズマ式灰溶融炉を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明のプラズマ式灰溶融炉は、上記目的を達成するために、焼却灰が投入される炉本体と、該炉本体の炉室内の中心部に配設される主電極と、炉本体の炉底壁に配設される炉底電極と、前記炉本体の周壁部に配設された出滓口と、を備え、上記主電極炉底電極との間に電圧を印加してプラズマアークを発生させ、焼却灰を加熱溶融してスラグ化し溶融スラグとして前記出滓口から炉室外に排出するように構成されたプラズマ式灰溶融炉において、上記主電極と出滓口とを結ぶほぼ直線上にあって、該直線の中間点または該中間点よりも出滓口寄りの炉室内に、溶融スラグ表面を加熱するための炉室内補助電極が配設されており、前記炉室内補助電極は、前記炉底電極との間に電圧を印加してプラズマアークを発生させ、前記主電極と共に焼却灰を加熱溶融してスラグ化すべく運転可能であるとともに、前記主電極とは別に電力を調整可能である。なお、ほぼ直線上とは、その直線上と、多少のずれがある範囲を含み、多少のずれとは、本発明の効果が発揮されうる範囲である。
【0007】
また、本発明は、上記プラズマ式灰溶融炉の運転方法として、前記主電極と前記炉底電極との間、および、前記炉室内補助電極と前記炉底電極との間に、それぞれ、電圧を印加してプラズマアークを発生させ、焼却灰を加熱溶融してスラグ化するに際して、前記炉本体の炉壁に設けた赤外線透過窓を通じて前記出滓口を赤外線カメラで監視し、前記赤外線カメラに未溶融焼却灰の存在が観測されない通常運転状態では、前記炉室内補助電極の電力を小さく設定しておき、前記赤外線カメラに未溶融焼却灰の存在が観測された場合には、前記炉室内補助電極の電力を大きくする運転方法を採用したことにある。
【0008】
【発明の実施の形態】
以下、本発明の実施の形態によるプラズマ式灰溶融炉について図面を参照しながら説明する。なお、従来例と同一名称の部材については同一の符号を付して説明する。図1は、本発明に係るプラズマアーク式灰溶融炉1を示し、この灰溶融炉1は、周壁14に囲まれた炉室3を設け、周壁14は耐熱レンガ等の耐熱材により形成されている。また、灰溶融炉1には、炉室3側に配設される主電極4、炉室3の炉底壁9に配設される炉底電極5が設けられ、これらのプラズマ電極4,5は水平断面が円形である炉室3の中心軸上に配置されている。
【0009】
一方の主電極4は、溶融炉本体2の天井壁7を貫通し、かつ垂下されて配設されるとともに、昇降装置8に支持されることにより炉室3内を上下動できるように構成されている。主電極4は、金属または黒鉛製であり、内部にプラズマ用ガスを発生させる通路を形成した円筒形状のものを用いている。他方の炉底電極5は、主電極4の直下に配設され、その先端部と対向して設置されている。これらのプラズマ電極4,5間には、プラズマ発生用の直流電源6が接続されている。直流電源6は、炉底電極5側に+を接続し、主電極4側に−を接続している。溶融炉本体2の下壁部には、溶融スラグ16の排出口である出滓口17が配設され、出滓口17には、出滓樋18が接続されている。この出滓口17及び出滓樋18は、耐火材で形成されている。
【0010】
灰溶融炉本体2の天井壁7には、主電極4とは別に炉室内電極である補助電極20が配設されている。円筒状の補助電極20は、天井壁7から炉室3内に垂下され、昇降装置21により上下動が可能である。図2に示すように、補助電極20の配置場所は、本実施の形態では、補助電極20の軸心Aが主電極4の軸心Oと出滓口17の開口の幅方向に対する中心Bとを結ぶ線上に配置され、かつ主電極4と出滓口17の開口の中間部(OC=CB=L)C若しくはその中間部Cよりも出滓口17側に近い位置(CB間)に配置している。また、主電極4と補助電極20は同じ径のものを用いることができ、こうすると電極の継ぎ足し用装置の共通化を図ることができ便利である。ただし、主電極4と補助電極20は、必ずしも共通化を図ることなく例えば補助電極20の径を細くすると、炉室内空間が広くなる利点がある。
【0011】
溶融炉本体2の壁部には出滓口17の溶融スラグ16の流れを観察できる位置に覗き窓22が設けられ、覗き窓22の近傍には、赤外線カメラ23が配設されている。この赤外線カメラ23は、出滓口17の未溶融焼却灰12aを観察するものであるので、出滓口17の手前側(上流側)の溶融スラグ16の流れや出滓樋18における溶融スラグ16の流れを観察できる部位に設けてもよい。赤外線カメラ23により撮影された映像は、それに接続されているモニターを介して観察することができる。溶融炉本体2の周壁14には、焼却灰12を炉室3に投入する投入口13が設けられ、投入口13は図示しない灰供給用のホッパに連絡している。なお、この灰溶融炉1には、その他、図示されていないプラズマ制御する制御装置や周壁14部を冷却する冷却装置等の設備が多数配設されているが、それらの詳細な説明は省略する。
【0012】
次に、本発明のプラズマ灰溶融炉における実施の形態の作用について説明する。図1に示すように、灰溶融炉1の炉室3には、焼却灰12の投入口13から炉底壁上に焼却灰12が投入され、灰溶融炉1の炉室3を還元雰囲気にした状態で、直流電源6により電圧を炉室内側電極4,20と炉底電極5との間に印加する。この際、補助電極20の出力量は、小さめにしておく。このようにして、これらの電極間にプラズマアークが発生し、炉室3内が1000℃以上の雰囲気となり、焼却灰12が加熱されて溶融して溶融スラグ16となり、焼却灰12中に含まれているメタル成分もまた溶融して溶融メタル19となり炉底に沈む。その上澄みの溶融スラグ16が炉底に溜まり出滓口17の高さに達すると、スラグ16が出滓口17から溢れでて出滓樋18を通って、炉室外に排出される。主電極4及び補助電極20は、灰溶融炉1の稼働中に消耗するので、それら電極4,20の先端部が溶融スラグ16面から所定の高さに位置するように、各々の昇降装置8,21を使用して、その消耗分だけ高さ調整する。
【0013】
この灰溶融炉1の運転中では、図1に示す赤外線カメラ23が、出滓口17近傍を撮影している。赤外線カメラ23は出滓口17での溶融スラグ16の流れを撮影するものであり、未溶融焼却灰12aが炉室外に流出するか否かを観察することができる。その一方、溶融炉本体2が処理量を大きくするために炉室3の径が大きく設計されているような場合は、炉室3の中心側は高温状態が維持されるが、内壁11側に位置する壁面近傍の未溶融焼却灰12aが融点以下の温度となり、未溶融焼却灰12aが出滓口17から流出されることがある。このような場合は、赤外線カメラ23により未溶融焼却灰12aの存在を監視し、それが出滓口17から流出する前に、補助電極側20,5の電力量を大きくする。これにより、出滓口17付近の内壁11に位置する未溶融焼却灰12aの温度が高くなり、未溶融焼却灰12を溶融させてその排出を未然に防ぐことができる。未溶融焼却灰12aが流出するおそれがなくなった場合は、補助電極20の出力量を小さく調整する。なお、灰溶融炉1の運転方法としては、溶融スラグ16の出滓状況を観察しながら、主電極4及び補助電極20の出力量を交互に大きくしたり、小さく調整してもよい。さらには、主電極4及び補助電極20の両者の出力を同時に大きくしたり、小さくしてもよい。こうしたいずれの運転方法であっても、未溶融焼却灰12aの炉室3外の流出を防止することができる。
【0014】
図3は、プラズマ式灰溶融炉1の別の運転方法を示す図である。溶融炉本体2の稼働中に一方の主電極4の先端部を溶融スラグ16層に挿入し、他方の補助電極20を溶融スラグ16面上から所定の間隔を開けて、灰溶融炉本体1を稼働する。すると、炉室3の中心部に配設されている主電極4が溶融スラグ16層を拡散するように攪拌効果を発揮し、溶融スラグ16の温度の均一化を図ることができる。他方、補助電極20は溶融スラグ16の表面の温度を高くして未溶融焼却灰12aを溶融する。
【0015】
以上説明したように、本実施の形態では、一方の電極が主電極4と補助電極20とから構成されているので、未溶融焼却灰12aが炉室3の外へ流出するような場合は、補助電極20の出力を大きくして未溶融焼却灰12aを溶融することができる。また、赤外線カメラ23で炉室3内の出滓口17の上流側近傍を観察したような場合は、未溶融焼却灰12aの存在を予め知ることができ、出滓口17から未溶融焼却灰12aが流出するのを即座に防止することができる。
【0016】
以上、本発明の実施の形態について説明したが、勿論、本発明はこれに限定されることなく本発明の技術的思想に基いて種々の変形が可能である。
【0017】
【発明の効果】
以上述べたように本発明のプラズマ式灰溶融炉によれば、焼却灰が投入される炉本体と、該炉本体の炉室内の中心部に配設される主電極と、炉本体の炉底壁に配設される炉底電極と、上記主電極及び炉底電極により加熱された焼却灰が溶融してスラグ化した溶融スラグを炉室外に排出する出滓口とを備えたプラズマ式灰溶融炉において、上記主電極と出滓口とを結ぶほぼ直線上にあって、該直線の中間点または該中間点よりも出滓口寄りの炉室内に、溶融スラグ表面を加熱するための炉室内補助電極が配設されているので、炉室内補助電極の電力を調整することにより未溶融の焼却灰を出滓口からの流出を抑制することができるようになる。
【0018】
また、上記プラズマ式灰溶融炉の運転方法として、前記炉本体の炉壁に設けた赤外線透過窓を通じて前記出滓口を赤外線カメラで監視し、前記赤外線カメラに未溶融焼却灰の存在が観測されない通常運転状態では、前記炉室内補助電極の電力を小さく設定しておき、前記赤外線カメラに未溶融焼却灰の存在が観測された場合には、前記炉室内補助電極の電力を大きくして未溶融焼却灰を溶融させる運転方法を採用したので、未溶融焼却灰の炉室外への流出を未然防止することができるようになった。
【図面の簡単な説明】
【図1】本発明のプラズマアーク式灰溶融炉の概略縦断面図である。
【図2】図1のプラズマ式灰溶融炉の概略横断面図である。
【図3】図1のプラズマアーク式灰溶融炉の主電極の先端部を溶融スラグ内に挿入させた状態を示す概略断面図である。
【図4】従来のプラズマアーク式灰溶融炉の概略縦断面図である。
【図5】従来のプラズマアーク式灰溶融炉の概略横断面図である。
【符号の説明】
1 プラズマアーク式灰溶融炉
2 溶融炉本体
3 炉室
4 主電極
5 炉底電極
6 直流電源
7 天井壁
8,21 昇降装置
10 鉄皮
11 内壁
12,12a 焼却灰
13 投入口
14 周壁
16 溶融スラグ
17 出滓口
18 出滓樋
19 溶融メタル
20 補助電極
22 覗き窓
23 赤外線カメラ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a plasma-type ash melting furnace capable of improving melting efficiency in a plasma-type ash melting furnace for recycling or reducing the amount of incineration ash obtained by melting slag by incineration ash such as waste, and its It relates to the driving method .
[0002]
[Prior art]
The ash melting furnace is intended for effective use of refuse incineration ash, and the incineration ash melted by the ash melting furnace is made harmless by separating it into low boiling point volatilized materials and slag of metals and other components. , We are trying to recycle it. The need for incinerator ash melting furnaces is increasing. In these ash melting furnaces, ash is produced using electricity as a heat source, such as burner ash melting furnaces that use heavy oil as fuel to melt incinerated ash, electric resistance ash melting furnaces, and plasma ash melting furnaces. Those that melt are known.
[0003]
FIG. 4 shows a conventional plasma arc type ash melting furnace 1 among these ash melting furnaces, and the ash melting furnace 1 is provided with a furnace chamber 3 surrounded by a peripheral wall 14 of the melting furnace body 2. The ash melting furnace 1 is provided with a plasma device including a main electrode 4, a furnace bottom electrode 5, a DC power source 6, etc., and the main electrode 4 is suspended through the ceiling wall 7 of the melting furnace body 2. The inside of the furnace chamber 3 can be moved up and down by being supported by the elevating device 8. In the furnace bottom electrode 5, a furnace bottom electrode 5 is installed on a furnace bottom wall 9 immediately below the main electrode 4, and a DC power source 6 for plasma generation is connected between these electrodes 4 and 5. The melting furnace main body 2 has an outer wall covered with an iron skin 10, an inner wall 11 is formed of a refractory material such as brick, and an inlet 13 for incinerated ash 12 is disposed on the peripheral wall 14 of the melting furnace main body 2. 13 is provided with an outlet 17 that is an outlet for the molten slag 16, and an outlet 18 is connected to the outlet 17.
[0004]
With such a configuration, the incinerated ash 12 is introduced into the furnace chamber 3 of the ash melting furnace 1 from the inlet 13 of the incinerated ash onto the furnace bottom wall 9, and the furnace chamber 3 of the ash melting furnace 1 is made a reducing atmosphere. In this state, a voltage is applied between the electrodes 4 and 5 by the DC power source 6. Then, a plasma arc is generated between the electrodes 4 and 5, the incineration ash 12 is heated and melted to form a slag 16, and the metal component contained in the incineration ash is melted to form a molten metal 19 at the bottom of the furnace. Sink. When the molten slag 16 accumulates at the bottom of the furnace and reaches the height of the tap hole 17, the slag 16 overflows from the tap port 17, passes through the taphole 18, and is supplied to a mold (not shown). It is cooled with. On the other hand, if the melting furnace body 2 is tilted as shown in the figure, the molten metal 19 drives the cylinder 25 and tilts the melting furnace body 2 around the support shaft 26 as the rotation axis, so that the spout 17 The molten metal 19 is discharged from the furnace.
[0005]
[Problems to be solved by the invention]
However, in the conventional plasma ash melting furnace 1, when the inner diameter of the furnace chamber 3 is enlarged in order to increase the throughput, the temperature of the inner wall 11 near the tap outlet 17 of the furnace chamber 3 is incinerated ash 12. As shown in FIG. 5, the unmelted incinerated ash 12a floats on the surface of the slag 16 and is discharged from the outlet 17 to the outside of the furnace chamber 3 through the outlet 18 as it is. End up. The unmelted incinerated ash 12a may contain harmful metals, and it is necessary to discharge it out of the furnace chamber 3 after it is completely melted in order to ensure the quality of the slag. In such a case, it is conceivable to increase the output of the plasma electrodes 4 and 5, but the amount of electricity consumption increases.
The present invention has been made in view of such circumstances, in the case of rather large diameter of the furnace chamber in order to increase the ash amount of processing ash melting furnace, plasma ash melting capable of improving the melting efficiency The purpose is to provide a furnace.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, a plasma ash melting furnace of the present invention includes a furnace body into which incinerated ash is charged, a main electrode disposed in the center of the furnace body of the furnace body, and a furnace of the furnace body A furnace bottom electrode disposed on the bottom wall, and a tap hole disposed on the peripheral wall of the furnace body, and applying a voltage between the main electrode and the furnace bottom electrode to generate a plasma arc. is generated, the ash melted by heating and slag, in the produced plasma ash melting furnace so as to discharge into the furnace outside from the tapping port as a molten slag, approximately straight line connecting the said main electrode and tapping port A furnace chamber auxiliary electrode for heating the surface of the molten slag is arranged in the furnace chamber on the intermediate point of the straight line or closer to the outlet than the intermediate point , and the furnace chamber auxiliary electrode is A voltage is applied between the furnace bottom electrode and a plasma arc is generated, and the plasma is generated together with the main electrode. With ash heated and melted to be operated in order to slugging, the the main electrode can be separately adjusted power. Note that “substantially on a straight line” includes a range where there is a slight deviation from that on the straight line, and the slight deviation is a range in which the effect of the present invention can be exhibited.
[0007]
Further, the present invention provides a method for operating the plasma ash melting furnace in which a voltage is applied between the main electrode and the furnace bottom electrode, and between the furnace chamber auxiliary electrode and the furnace bottom electrode, respectively. When generating the plasma arc to heat and melt the incinerated ash to make slag, the outlet is monitored by an infrared camera through an infrared transmission window provided on the furnace wall of the furnace body, and the infrared camera is not yet connected to the infrared camera. In a normal operation state where the presence of molten incineration ash is not observed, the power of the furnace chamber auxiliary electrode is set small, and when the presence of unmelted incinerated ash is observed in the infrared camera, the furnace chamber auxiliary electrode This is because the operation method to increase the electric power of is adopted.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a plasma ash melting furnace according to an embodiment of the present invention will be described with reference to the drawings. In addition, about the member of the same name as a prior art example, the same code | symbol is attached | subjected and demonstrated. FIG. 1 shows a plasma arc type ash melting furnace 1 according to the present invention. The ash melting furnace 1 is provided with a furnace chamber 3 surrounded by a peripheral wall 14, and the peripheral wall 14 is formed of a heat-resistant material such as a heat-resistant brick. Yes. Further, the ash melting furnace 1 is provided with a main electrode 4 disposed on the furnace chamber 3 side and a furnace bottom electrode 5 disposed on the furnace bottom wall 9 of the furnace chamber 3, and these plasma electrodes 4, 5 are provided. Is arranged on the central axis of the furnace chamber 3 having a circular horizontal section.
[0009]
One main electrode 4 penetrates the ceiling wall 7 of the melting furnace main body 2 and is suspended and arranged so as to move up and down in the furnace chamber 3 by being supported by the lifting device 8. ing. The main electrode 4 is made of metal or graphite, and has a cylindrical shape in which a passage for generating a plasma gas is formed. The other furnace bottom electrode 5 is disposed immediately below the main electrode 4 and is disposed so as to face the tip portion thereof. A DC power source 6 for generating plasma is connected between the plasma electrodes 4 and 5. The direct current power source 6 has a + connected to the furnace bottom electrode 5 side and a − connected to the main electrode 4 side. On the lower wall portion of the melting furnace main body 2, a tap hole 17 that is a discharge port for the molten slag 16 is disposed, and a tap bar 18 is connected to the tap port 17. The spout 17 and the spout 18 are made of a refractory material.
[0010]
On the ceiling wall 7 of the ash melting furnace main body 2, an auxiliary electrode 20 that is a furnace chamber electrode is provided separately from the main electrode 4. The cylindrical auxiliary electrode 20 is suspended from the ceiling wall 7 into the furnace chamber 3 and can be moved up and down by an elevating device 21. As shown in FIG. 2, in the present embodiment, the auxiliary electrode 20 is arranged such that the axis A of the auxiliary electrode 20 is the center B of the axis O of the main electrode 4 and the width direction of the opening of the tap opening 17. Is arranged on the line connecting the main electrode 4 and the opening 17 of the main electrode 4 (OC = CB = L) C or at a position closer to the outlet 17 side than the intermediate part C (between CB) is doing. Further, the main electrode 4 and the auxiliary electrode 20 having the same diameter can be used, and this makes it possible to use a common electrode extension device, which is convenient. However, the main electrode 4 and the auxiliary electrode 20 are not necessarily made common, and for example, if the diameter of the auxiliary electrode 20 is reduced, there is an advantage that the space in the furnace chamber becomes wider.
[0011]
A viewing window 22 is provided on the wall of the melting furnace body 2 at a position where the flow of the molten slag 16 at the spout 17 can be observed, and an infrared camera 23 is disposed in the vicinity of the viewing window 22. Since this infrared camera 23 is for observing the unmelted incinerated ash 12 a at the tap outlet 17, the flow of the molten slag 16 on the front side (upstream side) of the tap outlet 17 and the molten slag 16 at the taphole 18. You may provide in the site | part which can observe the flow of this. An image taken by the infrared camera 23 can be observed through a monitor connected thereto. The peripheral wall 14 of the melting furnace body 2 is provided with a charging port 13 for charging the incinerated ash 12 into the furnace chamber 3, and the charging port 13 communicates with an ash supply hopper (not shown). The ash melting furnace 1 is provided with a number of other equipment such as a control device for controlling plasma and a cooling device for cooling the peripheral wall 14 (not shown). .
[0012]
Next, the effect | action of embodiment in the plasma ash melting furnace of this invention is demonstrated. As shown in FIG. 1, incineration ash 12 is introduced into the furnace chamber 3 of the ash melting furnace 1 from the inlet 13 of the incineration ash 12 onto the furnace bottom wall, and the furnace chamber 3 of the ash melting furnace 1 is brought into a reducing atmosphere. In this state, a voltage is applied between the furnace chamber side electrodes 4, 20 and the furnace bottom electrode 5 by the DC power source 6. At this time, the output amount of the auxiliary electrode 20 is kept small. In this way, a plasma arc is generated between these electrodes, the atmosphere in the furnace chamber 3 becomes 1000 ° C. or higher, and the incineration ash 12 is heated and melted to form molten slag 16, which is contained in the incineration ash 12. The molten metal component also melts to become molten metal 19 and sinks to the furnace bottom. When the molten slag 16 as a supernatant accumulates at the bottom of the furnace and reaches the height of the tap hole 17, the slag 16 overflows from the tap port 17, passes through the tap 18 and is discharged out of the furnace chamber. Since the main electrode 4 and the auxiliary electrode 20 are consumed during the operation of the ash melting furnace 1, the elevating devices 8 are arranged so that the tips of the electrodes 4, 20 are located at a predetermined height from the surface of the molten slag 16. , 21 is used to adjust the height by the consumed amount.
[0013]
During the operation of the ash melting furnace 1, the infrared camera 23 shown in FIG. The infrared camera 23 captures the flow of the molten slag 16 at the tap outlet 17 and can observe whether or not the unmelted incinerated ash 12a flows out of the furnace chamber. On the other hand, when the diameter of the furnace chamber 3 is designed to be large in order to increase the throughput of the melting furnace body 2, the center side of the furnace chamber 3 is maintained at a high temperature, but on the inner wall 11 side. The unmelted incinerated ash 12a in the vicinity of the located wall surface may have a temperature equal to or lower than the melting point, and the unmelted incinerated ash 12a may flow out from the tap outlet 17. In such a case, the presence of the unmelted incinerated ash 12a is monitored by the infrared camera 23, and the electric energy on the auxiliary electrode side 20 and 5 is increased before it flows out of the tap outlet 17. Thereby, the temperature of the unmelted incinerated ash 12a located on the inner wall 11 in the vicinity of the tap outlet 17 is increased, and the unmelted incinerated ash 12 can be melted and discharged. When there is no possibility that the unmelted incineration ash 12a flows out, the output amount of the auxiliary electrode 20 is adjusted to be small. As an operation method of the ash melting furnace 1, the output amounts of the main electrode 4 and the auxiliary electrode 20 may be alternately increased or decreased while observing the output state of the molten slag 16. Furthermore, the outputs of both the main electrode 4 and the auxiliary electrode 20 may be simultaneously increased or decreased. Any of these operating methods can prevent the unmelted incinerated ash 12a from flowing out of the furnace chamber 3.
[0014]
FIG. 3 is a diagram showing another operation method of the plasma ash melting furnace 1. While the melting furnace main body 2 is in operation, the tip of one main electrode 4 is inserted into the molten slag 16 layer, and the other auxiliary electrode 20 is spaced a predetermined distance from the surface of the molten slag 16 so that the ash melting furnace main body 1 is Operate. Then, the main electrode 4 disposed in the center of the furnace chamber 3 exhibits a stirring effect so that the molten slag 16 layer is diffused, and the temperature of the molten slag 16 can be made uniform. On the other hand, the auxiliary electrode 20 raises the surface temperature of the molten slag 16 and melts the unmelted incinerated ash 12a.
[0015]
As described above, in the present embodiment, since one electrode is composed of the main electrode 4 and the auxiliary electrode 20, when the unmelted incineration ash 12a flows out of the furnace chamber 3, The output of the auxiliary electrode 20 can be increased to melt the unmelted incinerated ash 12a. In addition, when the infrared camera 23 is used to observe the vicinity of the upstream side of the tap outlet 17 in the furnace chamber 3, the presence of the unmelted incineration ash 12 a can be known in advance, and the unmelted incineration ash is output from the tap outlet 17. It is possible to immediately prevent 12a from flowing out.
[0016]
The embodiment of the present invention has been described above. Of course, the present invention is not limited to this, and various modifications can be made based on the technical idea of the present invention.
[0017]
【The invention's effect】
As described above, according to the plasma ash melting furnace of the present invention, the furnace body into which the incinerated ash is charged, the main electrode disposed in the center of the furnace chamber of the furnace body, and the furnace bottom of the furnace body Plasma-type ash melting provided with a furnace bottom electrode disposed on the wall, and an outlet that discharges molten slag formed by melting the incinerated ash heated by the main electrode and furnace bottom electrode to the outside of the furnace chamber in the furnace, in the almost straight line connecting the said main electrode and tapping port, the furnace chamber of the tapping port nearer the midpoint or intermediate points of the straight line, the furnace chamber for heating the molten slag surface Since the auxiliary electrode is disposed, the outflow of unmelted incineration ash from the tap outlet can be suppressed by adjusting the power of the auxiliary electrode in the furnace chamber .
[0018]
Further, as an operation method of the plasma ash melting furnace, the outlet is monitored with an infrared camera through an infrared transmission window provided on the furnace wall of the furnace body, and the presence of unmelted incinerated ash is not observed in the infrared camera. In the normal operation state, the electric power of the auxiliary electrode in the furnace chamber is set to be small, and when the presence of unmelted incineration ash is observed in the infrared camera, the electric power of the auxiliary electrode in the furnace chamber is increased and unmelted. Since the operation method of melting the incinerated ash was adopted, it was possible to prevent the unfused incinerated ash from flowing out of the furnace chamber.
[Brief description of the drawings]
FIG. 1 is a schematic longitudinal sectional view of a plasma arc ash melting furnace of the present invention.
FIG. 2 is a schematic cross-sectional view of the plasma ash melting furnace of FIG.
3 is a schematic cross-sectional view showing a state in which a tip portion of a main electrode of the plasma arc ash melting furnace of FIG. 1 is inserted into a molten slag.
FIG. 4 is a schematic longitudinal sectional view of a conventional plasma arc ash melting furnace.
FIG. 5 is a schematic cross-sectional view of a conventional plasma arc ash melting furnace.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Plasma arc type ash melting furnace 2 Melting furnace main body 3 Furnace room 4 Main electrode 5 Furnace bottom electrode 6 DC power source 7 Ceiling wall 8, 21 Lifting device 10 Iron skin 11 Inner wall 12, 12a Incinerated ash 13 Inlet 14 Surrounding wall 16 Melting slag 17 Outlet 18 Outlet 19 Molten Metal 20 Auxiliary Electrode 22 Viewing Window 23 Infrared Camera

Claims (2)

焼却灰が投入される炉本体と、該炉本体の炉室内の中心部に配設される主電極と、炉本体の炉底壁に配設される炉底電極と、前記炉本体の周壁部に配設された出滓口と、を備え、上記主電極炉底電極との間に電圧を印加してプラズマアークを発生させ、焼却灰を加熱溶融してスラグ化し溶融スラグとして前記出滓口から炉室外に排出するように構成されたプラズマ式灰溶融炉において、上記主電極と出滓口とを結ぶほぼ直線上にあって、該直線の中間点または該中間点よりも出滓口寄りの炉室内に、溶融スラグ表面を加熱するための炉室内補助電極が配設されており、前記炉室内補助電極は、前記炉底電極との間に電圧を印加してプラズマアークを発生させ、前記主電極と共に焼却灰を加熱溶融してスラグ化すべく運転可能であるとともに、前記主電極とは別に電力を調整可能であることを特徴とするプラズマ式灰溶融炉。A furnace body into which incinerated ash is charged, a main electrode disposed in the center of the furnace body of the furnace body, a furnace bottom electrode disposed on a furnace bottom wall of the furnace body, and a peripheral wall portion of the furnace body and a is a tapping opening arranged in, the main voltage between the electrode and the furnace bottom electrode is applied to generate plasma arc, the ash melted by heating and slagging, leaving the as molten slag In a plasma type ash melting furnace configured to discharge from the throat to the outside of the furnace chamber, the ash melting furnace is substantially on a straight line connecting the main electrode and the throat, and is located at an intermediate point of the straight line or at a position higher than the intermediate point. A furnace chamber auxiliary electrode for heating the surface of the molten slag is disposed in the furnace chamber near the mouth, and the furnace chamber auxiliary electrode applies a voltage between the furnace bottom electrode and generates a plasma arc. The incinerated ash can be heated and melted together with the main electrode to operate as slag. The plasma ash melting furnace, wherein the the main electrode can be separately adjusted power. 請求項1に記載のプラズマ式灰溶融炉の運転方法であって、前記主電極と前記炉底電極との間、および、前記炉室内補助電極と前記炉底電極との間に、それぞれ、電圧を印加してプラズマアークを発生させ、焼却灰を加熱溶融してスラグ化するに際して、前記炉本体の炉壁に設けた赤外線透過窓を通じて前記出滓口を赤外線カメラで監視し、前記赤外線カメラに未溶融焼却灰の存在が観測されない通常運転状態では、前記炉室内補助電極の電力を小さく設定しておき、前記赤外線カメラに未溶融焼却灰の存在が観測された場合には、前記炉室内補助電極の電力を大きくすることを特徴とするプラズマ式灰溶融炉の運転方法。The operation method of the plasma type ash melting furnace according to claim 1 , wherein a voltage is respectively applied between the main electrode and the furnace bottom electrode and between the furnace chamber auxiliary electrode and the furnace bottom electrode. When the incinerated ash is heated and melted to form slag, the outlet is monitored by an infrared camera through an infrared transmission window provided on the furnace wall of the furnace body, and the infrared camera is connected to the infrared camera. In a normal operation state where the presence of unmelted incineration ash is not observed, the power of the auxiliary electrode in the furnace chamber is set small, and if the presence of unmelted incineration ash is observed in the infrared camera, the auxiliary in the furnace chamber the method of operating a plasma ash melting furnace, characterized in that to increase the power of the electrode.
JP2001214677A 2001-07-16 2001-07-16 Plasma ash melting furnace and operating method thereof Expired - Fee Related JP4667665B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001214677A JP4667665B2 (en) 2001-07-16 2001-07-16 Plasma ash melting furnace and operating method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001214677A JP4667665B2 (en) 2001-07-16 2001-07-16 Plasma ash melting furnace and operating method thereof

Publications (2)

Publication Number Publication Date
JP2003028411A JP2003028411A (en) 2003-01-29
JP4667665B2 true JP4667665B2 (en) 2011-04-13

Family

ID=19049450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001214677A Expired - Fee Related JP4667665B2 (en) 2001-07-16 2001-07-16 Plasma ash melting furnace and operating method thereof

Country Status (1)

Country Link
JP (1) JP4667665B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4446429B2 (en) * 2003-02-25 2010-04-07 財団法人電力中央研究所 Operating method of plasma melting treatment equipment for waste treatment
JP4917950B2 (en) * 2007-04-10 2012-04-18 株式会社タクマ Plant operation control method by omnidirectional monitoring
CN107246614B (en) * 2017-06-09 2019-02-05 加拿大艾浦莱斯有限公司 A kind of plasma fusion incinerator

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5916199B2 (en) * 1981-06-05 1984-04-13 大同特殊鋼株式会社 Melting processing equipment
JPS61268915A (en) * 1985-05-22 1986-11-28 Daido Steel Co Ltd Slag port control device for waste material melting and processing furnace
JPH07243768A (en) * 1994-03-03 1995-09-19 Daido Steel Co Ltd Burned ash melting furnace
JPH0933028A (en) * 1995-07-20 1997-02-07 Daido Steel Co Ltd Ash melting furnace
JPH09115663A (en) * 1995-10-23 1997-05-02 Hitachi Zosen Corp Ash melting method in plasma type ash melting furnace
JPH09210339A (en) * 1996-02-05 1997-08-12 Daido Steel Co Ltd Waste melting furnace
JPH09243267A (en) * 1996-03-11 1997-09-19 Takuma Co Ltd Method for preventing flow ability lowering of molten slag in plasma melting furnace
JPH10238723A (en) * 1996-12-25 1998-09-08 Kobe Steel Ltd Melting treatment device
WO1998054514A1 (en) * 1997-05-29 1998-12-03 Ebara Corporation Method and apparatus for operation control of melting furnace
JPH11230518A (en) * 1998-02-18 1999-08-27 Takuma Co Ltd Plasma arc melting furnace and melting treatment method of material to be melted using the same
JPH11270834A (en) * 1998-03-25 1999-10-05 Ishikawajima Harima Heavy Ind Co Ltd Ash melting furnace
JPH11281037A (en) * 1998-03-27 1999-10-15 Mitsubishi Heavy Ind Ltd Method for melting ash and ash melting furnace
JP2000028126A (en) * 1998-07-07 2000-01-25 Nippon Steel Corp Electric melting furnace for ash treatment and operation method thereof
JP2000291921A (en) * 1999-04-02 2000-10-20 Daido Steel Co Ltd Melting furnace for refuse incineration residue

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5916199B2 (en) * 1981-06-05 1984-04-13 大同特殊鋼株式会社 Melting processing equipment
JPS61268915A (en) * 1985-05-22 1986-11-28 Daido Steel Co Ltd Slag port control device for waste material melting and processing furnace
JPH07243768A (en) * 1994-03-03 1995-09-19 Daido Steel Co Ltd Burned ash melting furnace
JPH0933028A (en) * 1995-07-20 1997-02-07 Daido Steel Co Ltd Ash melting furnace
JPH09115663A (en) * 1995-10-23 1997-05-02 Hitachi Zosen Corp Ash melting method in plasma type ash melting furnace
JPH09210339A (en) * 1996-02-05 1997-08-12 Daido Steel Co Ltd Waste melting furnace
JPH09243267A (en) * 1996-03-11 1997-09-19 Takuma Co Ltd Method for preventing flow ability lowering of molten slag in plasma melting furnace
JPH10238723A (en) * 1996-12-25 1998-09-08 Kobe Steel Ltd Melting treatment device
WO1998054514A1 (en) * 1997-05-29 1998-12-03 Ebara Corporation Method and apparatus for operation control of melting furnace
JPH11230518A (en) * 1998-02-18 1999-08-27 Takuma Co Ltd Plasma arc melting furnace and melting treatment method of material to be melted using the same
JPH11270834A (en) * 1998-03-25 1999-10-05 Ishikawajima Harima Heavy Ind Co Ltd Ash melting furnace
JPH11281037A (en) * 1998-03-27 1999-10-15 Mitsubishi Heavy Ind Ltd Method for melting ash and ash melting furnace
JP2000028126A (en) * 1998-07-07 2000-01-25 Nippon Steel Corp Electric melting furnace for ash treatment and operation method thereof
JP2000291921A (en) * 1999-04-02 2000-10-20 Daido Steel Co Ltd Melting furnace for refuse incineration residue

Also Published As

Publication number Publication date
JP2003028411A (en) 2003-01-29

Similar Documents

Publication Publication Date Title
JP3284606B2 (en) Ash melting furnace
JP3121743B2 (en) Plasma melting method
JP4667665B2 (en) Plasma ash melting furnace and operating method thereof
JP3722674B2 (en) Method and apparatus for lowering melting furnace
JP4446429B2 (en) Operating method of plasma melting treatment equipment for waste treatment
JP4245600B2 (en) Operating method of plasma ash melting furnace
KR20010079989A (en) Direct-current arc furnace comprising a centric charging shaft for producing steel and a method therefor
JP3723100B2 (en) Furnace window structure
JP3771800B2 (en) Operating method of plasma ash melting furnace
JP3576468B2 (en) Electric ash melting furnace and method for removing solids from electric ash melting furnace
JP3534695B2 (en) Operating method of plasma ash melting furnace
KR100868506B1 (en) Combustion device for oxygen in electro furnace
JP2002090066A (en) Scrap preheating type electric steel making furnace
JP3912717B2 (en) Radioactive waste incineration melting processing apparatus and incineration melting processing method
JP3534680B2 (en) Operation method of ash melting furnace
JP3280227B2 (en) Plasma melting furnace and method for melting object to be melted
JP3764641B2 (en) Electric melting furnace operation control method
JP3505065B2 (en) Plasma melting furnace and operating method thereof
JP3648039B2 (en) Plasma arc melting furnace and method for melting a material to be melted using the same
JP3799582B2 (en) Ash melting furnace
JP2006097917A (en) Control method of plasma type melting furnace
JP3649601B2 (en) Ash melting furnace
JPH02217788A (en) Smelting of scrap in electric arc furnace and electric arc furnace therefor
JPH0639964B2 (en) Ash melting furnace
JP4185667B2 (en) Operating method of plasma ash melting furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071113

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100423

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100716

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101015

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4667665

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees