JP4185667B2 - Operating method of plasma ash melting furnace - Google Patents

Operating method of plasma ash melting furnace Download PDF

Info

Publication number
JP4185667B2
JP4185667B2 JP2001012971A JP2001012971A JP4185667B2 JP 4185667 B2 JP4185667 B2 JP 4185667B2 JP 2001012971 A JP2001012971 A JP 2001012971A JP 2001012971 A JP2001012971 A JP 2001012971A JP 4185667 B2 JP4185667 B2 JP 4185667B2
Authority
JP
Japan
Prior art keywords
main electrode
furnace
electrode
tip
ash melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001012971A
Other languages
Japanese (ja)
Other versions
JP2002213725A (en
Inventor
敬太 井上
鉄雄 佐藤
和彦 冨脇
Original Assignee
三菱重工環境エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工環境エンジニアリング株式会社 filed Critical 三菱重工環境エンジニアリング株式会社
Priority to JP2001012971A priority Critical patent/JP4185667B2/en
Publication of JP2002213725A publication Critical patent/JP2002213725A/en
Application granted granted Critical
Publication of JP4185667B2 publication Critical patent/JP4185667B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Gasification And Melting Of Waste (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Furnace Details (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、下水汚泥、都市ごみ及び産業廃棄物等の焼却灰及び事業用火力発電プラント等の焼却炉から排出される焼却灰を高温プラズマで溶融するプラズマ灰溶融炉の運転方法に関するものである。
【0002】
【従来の技術】
従来から、下水汚泥、都市ごみ及び産業廃棄物等の焼却灰(粉体無機物)は、その資源化、減容化及び無害化を図るために、例えば、図2に示すようなプラズマ灰溶融炉51によって溶融され、溶融スラグ52及び溶融メタル53として取り出されている。
すなわち、このような灰溶融炉51を使用して炉本体54内で焼却灰を溶融するには、例えば、ごみ焼却炉から排出された焼却灰を各種搬送手段及び供給手段等を経て炉本体54内に投入し、投入された焼却灰を炉底電極55及び昇降可能な主電極56間に発生させた高温プラズマで溶融する。炉本体54内で生成された溶融スラグ52及び溶融メタル53は、出滓口57から出滓樋58を通って排出され、図示しないコンベヤを介してスラグピット及びメタルピットに導かれ、種々の利用に供されることになる。なお、炉底電極55及び主電極56間には、プラズマアークを発生させる直流電源装置59が接続されている。
【0003】
ところで、上記主電極56は、灰溶融炉1の運転により消耗することから、複数本の電極棒を互いに連結し、主電極56の先端部付近の電極棒が消耗すると、炉本体54の上方位置において、新たな電極棒を逐次継いでいくように構成されている。このため、各電極棒の先端には、雌ねじを形成した凹部が設けられ、該凹部に雄ねじを形成した継ぎ目(ニップル部)60が螺入されており、該ニップル部60によって隣接する上下2本の電極棒が結合されるようになっている。
【0004】
【発明が解決しようとする課題】
しかしながら、上述した従来の灰溶融炉51の運転方法では、その運転中において主電極56を構成する電極棒のニップル部60が、図2に示すように、主電極56の先端部近くになると、ニップル部60が自重等で主電極56から離脱して溶融スラグ52の層に落下することがあった。これに伴い、主電極56と溶融スラグ52との間隔が広がり、突然アーク長が長くなるので、直流電源装置59の電圧が急上昇し、当該直流電源装置59の能力を越えて電源が切れてしまい、アーク切れを起こすことにより、安定した溶融処理を行うことができないという不具合を有していた。
【0005】
本発明はこのような実状に鑑みてなされたものであり、その目的は、運転中に直流電源装置の電圧が急上昇することを防ぎ、安定した溶融処理を行うことが可能なプラズマ灰溶融炉の運転方法を提供することにある。
【0006】
【課題を解決するための手段】
上記従来技術の有する課題を解決するために、本発明においては、炉天井壁に設けられる昇降可能な主電極を備えた炉本体内に焼却灰を投入し、該焼却灰をプラズマアークで加熱して溶融することによって、溶融スラグ及び溶融メタルを生成するプラズマ灰溶融炉の運転方法において、前記主電極を構成する各電極棒の継ぎ目が前記主電極の先端部近くに位置した際、前記主電極の先端部を下降させて前記溶融スラグ層中に挿入することにより、前記主電極の先端部を強制的に消耗させ、その後、前記主電極を上昇させて元の位置に復帰させている。
また、本発明においては、前記主電極の先端部位置の確認が、該主電極を昇降させる昇降装置の送り量で行われることが好ましい。
【0007】
【発明の実施の形態】
以下、本発明におけるプラズマ灰溶融炉の運転方法を図示の実施の形態に基づいて詳細に説明する。ここで、図1は本発明の実施形態に係るプラズマ灰溶融炉において、主電極の先端部を溶融スラグ層中に挿入させた状態を示す概略断面図である。
本実施形態のプラズマ灰溶融炉1は、図1に示す如く、有底円筒状に形成された耐火構造の炉本体2を有しており、該炉本体2内は耐火物11に囲まれた炉室6となっている。また、灰溶融炉1の炉本体2は、炉天井壁3の中央に垂下して設けられる主電極4と、該主電極4に対向して炉底壁5の中央に設けられる炉底電極7と、主電極4及び炉底電極7間に接続され、これら電極間にプラズマアークを発生させる直流電源装置8とを備えている。この直流電源装置8は、炉底電極7側に+を接続し、主電極4側に−を接続している。
【0008】
上記主電極4は、炉室6内を上下動すべく、クランプ手段を有する昇降装置15に昇降可能に支持されている。この昇降装置15は、図示しない電極昇降油圧ユニットで移動自在に支柱に取付けられ、上部には主電極4の位置検出手段であるロータリエンコーダ(図示せず)が付設されており、主電極4の先端部位置の確認は、当該ロータリエンコーダで昇降装置15の送り量を検出することによって、行われるように構成されている。
なお、主電極4には、図示しない窒素ガス発生装置から窒素ガスが送給されるように構成されており、投入された焼却灰を高温プラズマで加熱することによって溶融するようになっている。したがって、主電極4としては、内部に窒素ガスを流す通路が形成された円筒形状のものが使用されている。
【0009】
また、上記主電極4は、灰溶融炉1の運転に伴って消耗する消耗品であるため、従来例と同様、複数本の電極棒4a,4bを互いに連結し、主電極4の先端部付近の電極棒が消耗すると、炉本体2の上方位置において、新たな電極棒を逐次継いでいくように構成されている。
このため、各電極棒4a,4bの先端面には、雌ねじを内周面に形成した凹部9a,9bが設けられ、これら凹部9a,9bに雄ねじを外周面に形成したコーン状の継ぎ目(ニップル部)14がそれぞれ螺入されており、該ニップル部14によって隣接する上下2本の電極棒4a,4bが結合されるようになっている。
【0010】
一方、炉本体2の外周壁は鉄皮10で覆われ、その内周壁は耐火煉瓦等の耐火物11で形成されており、それらの間には、耐火物11を冷却する図示しない冷却ジャケットが配設されている。そして、炉本体2の下部側面には、溶融スラグ12、溶融メタル13及び排ガス16を排出する出滓口17とこれに接続した下り傾斜の出滓樋18が設けられている。
【0011】
溶融スラグ12及び溶融メタル13は、溶融処理されている間に、比重差で溶融メタル13が溶融スラグ12の層の下に積層されていき、溶融スラグ12は、炉本体2から出滓口17を経て溢れ出るオーバフロー方式で排出されるようになっている。また、溶融メタル13は、油圧シリンダ20の作動ロッド21を伸縮させることにより、回動軸22を中心にして炉本体2を傾倒させ、出滓口17側を低くして排出されるようになっている。なお、炉本体2の出滓口17と反対側の上部側面には、廃棄物などの焼却灰を炉本体2内に投入する灰投入口等(図示せず)が設けられている。そして、溶融スラグ12と炉室6のガス雰囲気との境界線は、スラグラインLとして示されている。
【0012】
次に、本実施形態の灰溶融炉1の運転方法について説明する。
図1に示す如く、灰溶融炉1の炉本体2内の炉室6には、図示しない灰投入口から焼却灰が投入され、炉本体2の炉室6を還元雰囲気にした状態で、直流電源装置8により電圧を主電極4及び炉底電極7間に印加する。すると、主電極4及び炉底電極7間にプラズマアークが発生し、炉室6内が1000゜C以上の雰囲気となり、焼却灰が加熱されて溶融する。
焼却灰は、溶融して溶融スラグ12と、この溶融スラグ12の下に沈む溶融メタル13となって上下に積層される。溶融スラグ12及び溶融メタル13が炉底に所定量溜まると、既述のように、溶融スラグ12は出滓口17から溢れ出て出滓樋18を通り、図示しないコンベアを経て排出され、溶融メタル13は炉本体2を傾倒させることにより出滓口17及び出滓樋18を経て排出される。
【0013】
また、溶融スラグ12及び溶融メタル13が炉本体2内の炉底に所定量溜まった状態で、本実施形態の主電極4を構成する電極棒4a,4bのニップル部14が、当該主電極4の先端部近くに位置した際、図1に示す如く、昇降装置15により主電極4を下降させて溶融スラグ12層中に挿入する。すると、主電極4の先端部の電極棒4b及びニップル部14は、溶融スラグ12によって溶融され、強制的に消耗させられる。なお、電極棒4a,4bのニップル部14が主電極4の先端部近くに位置したか否かの確認は、図示しないロータリエンコーダで昇降装置15の送り量を検出することにより行う。
主電極4の先端部の電極棒4b及びニップル部14を消耗させた後、昇降装置15により主電極4を上昇させ、元の位置に復帰させれば、主電極4及び炉底電極7間にプラズマアークが発生し、通常の溶融処理が行われる。
【0014】
本発明の実施形態に係るプラズマ灰溶融炉1の運転方法では、当該灰溶融炉1の運転中に、主電極4を構成する電極棒4a,4bのニップル部14が主電極4の先端部近くに位置した際、昇降装置15により主電極4を下降させて溶融スラグ12層中に挿入し、主電極4の先端部の電極棒4b及びニップル部14を溶融スラグ12により強制的に消耗させ、その後、昇降装置15により主電極4を上昇させて元の位置に復帰させてから、通常の溶融処理を行っているため、灰溶融炉1の運転中に、従来のようにニップル部14等が落下することにより突然アーク長が長くなり、直流電源装置8の電圧が急上昇してアーク切れを起こすということがなくなり、これにより灰溶融炉1を安定して運転でき、生産性の向上を図ることができる。しかも、主電極4の先端部位置の確認は、付設したロータリエンコーダ等で昇降装置15の送り量を検出することによって行っているため、主電極4の先端部の電極棒4b及びニップル部14のみを容易かつ確実に消耗させることができる。
【0015】
以上、本発明の実施形態につき述べたが、本発明は既述の実施形態に限定されるものではなく、本発明の技術的思想に基づいて各種の変更が可能である。例えば、既述の実施形態では、溶融スラグ12がオーバフロー方式で排出され、溶融メタル13が炉本体2を傾倒させる傾倒方式で排出されているが、本発明の運転方法は、これ以外の方式で溶融スラグ12及び溶融メタル13を排出するプラズマ灰溶融炉に適用しても良い。また、主電極4の先端部位置は、昇降装置15の送り量以外の他の手段で確認しても良い。
【0016】
【発明の効果】
上述の如く、本発明に係るプラズマ灰溶融炉の運転方法は、炉天井壁に設けられる昇降可能な主電極を備えた炉本体内に焼却灰を投入し、該焼却灰をプラズマアークで加熱して溶融することによって、溶融スラグ及び溶融メタルを生成するものであり、前記主電極を構成する各電極棒の継ぎ目が前記主電極の先端部近くに位置した際、前記主電極の先端部を下降させて前記溶融スラグ層中に挿入することにより、前記主電極の先端部を強制的に消耗させ、その後、前記主電極を上昇させて元の位置に復帰させているので、灰溶融炉の運転中に、従来のようにニップル部等が落下して突然アーク長が長くなり、直流電源装置の電圧が急上昇するということを防止でき、アーク切れの発生を防ぐことにより灰溶融炉を安定して運転でき、生産性の向上を図ることができる。
【図面の簡単な説明】
【図1】本発明の実施形態に係るプラズマ灰溶融炉において、主電極の先端部を溶融スラグ層中に挿入させた状態を示す概略断面図である。
【図2】従来のプラズマ灰溶融炉において、主電極を構成する電極棒のニップル部が先端部近くに位置している状態を示す概略断面図である。
【符号の説明】
1 プラズマ灰溶融炉
2 炉本体
3 炉天井壁
4 主電極
4a,4b 電極棒
5 炉底壁
7 炉底電極
8 直流電源装置
9a,9b 凹部
12 溶融スラグ
13 溶融メタル
14 ニップル部(継ぎ目)
15 昇降装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for operating a plasma ash melting furnace that melts incineration ash such as sewage sludge, municipal waste and industrial waste, and incineration ash discharged from an incinerator such as a commercial thermal power plant with high-temperature plasma. .
[0002]
[Prior art]
Conventionally, incineration ash (powder inorganic matter) such as sewage sludge, municipal waste, and industrial waste, for example, a plasma ash melting furnace as shown in FIG. The molten slag 52 and the molten metal 53 are taken out.
That is, in order to melt the incineration ash in the furnace main body 54 using such an ash melting furnace 51, for example, the incineration ash discharged from the waste incinerator is passed through various conveying means and supply means, etc. And the incinerated ash is melted by high-temperature plasma generated between the furnace bottom electrode 55 and the main electrode 56 that can be moved up and down. The molten slag 52 and the molten metal 53 generated in the furnace body 54 are discharged from the outlet 57 through the outlet 58 and guided to the slag pit and metal pit via a conveyor (not shown) for various uses. Will be served. A DC power supply 59 for generating a plasma arc is connected between the furnace bottom electrode 55 and the main electrode 56.
[0003]
By the way, the main electrode 56 is consumed by the operation of the ash melting furnace 1, so that when a plurality of electrode bars are connected to each other and the electrode bars near the tip of the main electrode 56 are consumed, In FIG. 3, the new electrode rods are successively connected. For this reason, the tip of each electrode rod is provided with a recess formed with an internal thread, and a seam (nipple part) 60 formed with an external thread is screwed into the recess. The electrode rods are coupled.
[0004]
[Problems to be solved by the invention]
However, in the operation method of the conventional ash melting furnace 51 described above, when the nipple portion 60 of the electrode rod constituting the main electrode 56 is close to the tip of the main electrode 56 as shown in FIG. The nipple portion 60 may be separated from the main electrode 56 due to its own weight or the like and fall into the molten slag 52 layer. Accordingly, the distance between the main electrode 56 and the molten slag 52 is widened and the arc length is suddenly increased. Therefore, the voltage of the DC power supply 59 is suddenly increased, and the power is cut off beyond the capability of the DC power supply 59. In addition, there was a problem that stable melting treatment could not be performed by causing arc breakage.
[0005]
The present invention has been made in view of such a situation, and an object of the present invention is to provide a plasma ash melting furnace capable of preventing a sudden increase in the voltage of a DC power supply device during operation and performing a stable melting process. It is to provide a driving method.
[0006]
[Means for Solving the Problems]
In order to solve the above-described problems of the prior art, in the present invention, incineration ash is put into a furnace main body provided with a vertically movable main electrode provided on a furnace ceiling wall, and the incineration ash is heated with a plasma arc. In the operation method of the plasma ash melting furnace that generates molten slag and molten metal by melting the main electrode, when the seam of each electrode rod constituting the main electrode is located near the tip of the main electrode The tip of the main electrode is lowered and inserted into the molten slag layer to forcibly consume the tip of the main electrode, and then the main electrode is raised and returned to its original position.
Moreover, in this invention, it is preferable that confirmation of the front-end | tip part position of the said main electrode is performed with the feed amount of the raising / lowering apparatus which raises / lowers this main electrode.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the operation method of the plasma ash melting furnace in the present invention will be described in detail based on the illustrated embodiment. Here, FIG. 1 is a schematic cross-sectional view showing a state in which the tip of the main electrode is inserted into the molten slag layer in the plasma ash melting furnace according to the embodiment of the present invention.
As shown in FIG. 1, the plasma ash melting furnace 1 of the present embodiment has a furnace body 2 having a refractory structure formed in a bottomed cylindrical shape, and the inside of the furnace body 2 is surrounded by a refractory 11. It is a furnace chamber 6. The furnace body 2 of the ash melting furnace 1 includes a main electrode 4 provided to hang down in the center of the furnace ceiling wall 3 and a furnace bottom electrode 7 provided in the center of the furnace bottom wall 5 so as to face the main electrode 4. And a DC power supply device 8 connected between the main electrode 4 and the furnace bottom electrode 7 and generating a plasma arc between these electrodes. The DC power supply 8 has a + connected to the furnace bottom electrode 7 side and a − connected to the main electrode 4 side.
[0008]
The main electrode 4 is supported by an elevating device 15 having clamping means so as to be movable up and down in order to move up and down in the furnace chamber 6. The elevating device 15 is attached to a support column movably by an electrode elevating hydraulic unit (not shown), and a rotary encoder (not shown) serving as a position detecting means for the main electrode 4 is attached to the upper portion of the elevating device 15. The confirmation of the position of the tip end portion is performed by detecting the feed amount of the lifting device 15 with the rotary encoder.
The main electrode 4 is configured to be supplied with nitrogen gas from a nitrogen gas generator (not shown), and is melted by heating the incinerated ash charged with high-temperature plasma. Therefore, as the main electrode 4, a cylindrical electrode having a passage through which nitrogen gas flows is formed.
[0009]
Further, since the main electrode 4 is a consumable item that is consumed as the ash melting furnace 1 is operated, a plurality of electrode rods 4a and 4b are connected to each other in the same manner as in the conventional example, and the vicinity of the tip of the main electrode 4 When the electrode rod is consumed, new electrode rods are successively connected in the upper position of the furnace body 2.
For this reason, concave portions 9a and 9b in which female threads are formed on the inner peripheral surface are provided on the tip surfaces of the electrode rods 4a and 4b, and cone-shaped seams (nipples) in which male screws are formed on the outer peripheral surfaces in the concave portions 9a and 9b. Part) 14 are screwed in, and the adjacent two upper and lower electrode rods 4a and 4b are connected by the nipple part 14.
[0010]
On the other hand, the outer peripheral wall of the furnace body 2 is covered with an iron skin 10, and the inner peripheral wall is formed of a refractory material 11 such as a refractory brick. Between them, a cooling jacket (not shown) for cooling the refractory material 11 is provided. It is arranged. Further, on the lower side surface of the furnace body 2, a tap outlet 17 for discharging the molten slag 12, the molten metal 13 and the exhaust gas 16 and a downwardly inclined tap bar 18 connected thereto are provided.
[0011]
While the molten slag 12 and the molten metal 13 are being melted, the molten metal 13 is laminated under the layer of the molten slag 12 due to the difference in specific gravity. It will be discharged by the overflow method that overflows through. Further, the molten metal 13 is discharged by extending and retracting the operating rod 21 of the hydraulic cylinder 20 to tilt the furnace body 2 around the rotation shaft 22 and lowering the tap hole 17 side. ing. Note that an ash charging port (not shown) for charging incineration ash such as waste into the furnace body 2 is provided on the upper side surface of the furnace body 2 opposite to the tap hole 17. A boundary line between the molten slag 12 and the gas atmosphere in the furnace chamber 6 is shown as a slag line L.
[0012]
Next, the operation method of the ash melting furnace 1 of this embodiment is demonstrated.
As shown in FIG. 1, incineration ash is charged into a furnace chamber 6 in the furnace body 2 of the ash melting furnace 1 from an ash charging port (not shown), and direct current is applied in a state where the furnace chamber 6 of the furnace body 2 is in a reducing atmosphere. A voltage is applied between the main electrode 4 and the furnace bottom electrode 7 by the power supply device 8. Then, a plasma arc is generated between the main electrode 4 and the furnace bottom electrode 7, and the atmosphere in the furnace chamber 6 becomes 1000 ° C or higher, and the incinerated ash is heated and melted.
The incinerated ash is laminated in the vertical direction as molten slag 12 and molten metal 13 that sinks under the molten slag 12. When a predetermined amount of molten slag 12 and molten metal 13 accumulates in the furnace bottom, as described above, the molten slag 12 overflows from the tap 17 and passes through the tap 18 and is discharged via a conveyor (not shown) to be melted. The metal 13 is discharged through the tap hole 17 and the tap bar 18 by tilting the furnace body 2.
[0013]
Further, in a state where a predetermined amount of molten slag 12 and molten metal 13 are accumulated on the furnace bottom in the furnace body 2, the nipple portions 14 of the electrode rods 4 a and 4 b constituting the main electrode 4 of the present embodiment are connected to the main electrode 4. 1, the main electrode 4 is lowered by the lifting device 15 and inserted into the molten slag 12 layer, as shown in FIG. Then, the electrode rod 4b and the nipple portion 14 at the tip of the main electrode 4 are melted by the molten slag 12 and are forcibly consumed. Whether or not the nipple portion 14 of the electrode rods 4a and 4b is located near the tip of the main electrode 4 is confirmed by detecting the feed amount of the elevating device 15 with a rotary encoder (not shown).
After the electrode rod 4b and the nipple portion 14 at the tip of the main electrode 4 are consumed, the main electrode 4 is lifted by the lifting device 15 and returned to the original position. A plasma arc is generated and a normal melting process is performed.
[0014]
In the operation method of the plasma ash melting furnace 1 according to the embodiment of the present invention, the nipple portion 14 of the electrode rods 4 a and 4 b constituting the main electrode 4 is near the tip of the main electrode 4 during the operation of the ash melting furnace 1. The main electrode 4 is lowered by the lifting device 15 and inserted into the molten slag 12 layer, and the electrode rod 4b and the nipple portion 14 at the tip of the main electrode 4 are forcibly consumed by the molten slag 12, After that, since the main electrode 4 is raised by the elevating device 15 and returned to the original position, the normal melting process is performed. Therefore, during the operation of the ash melting furnace 1, the nipple portion 14 or the like is provided as in the past. The arc length is suddenly increased by dropping, and the voltage of the DC power supply 8 is not suddenly increased to cause an arc break. This makes it possible to stably operate the ash melting furnace 1 and improve productivity. Can do. Moreover, since the position of the tip of the main electrode 4 is confirmed by detecting the feed amount of the lifting device 15 with an attached rotary encoder or the like, only the electrode rod 4b and the nipple portion 14 at the tip of the main electrode 4 are used. Can be consumed easily and reliably.
[0015]
As mentioned above, although embodiment of this invention was described, this invention is not limited to above-mentioned embodiment, Various changes are possible based on the technical idea of this invention. For example, in the above-described embodiment, the molten slag 12 is discharged by an overflow method, and the molten metal 13 is discharged by a tilting method that tilts the furnace body 2, but the operation method of the present invention is a method other than this. The present invention may be applied to a plasma ash melting furnace that discharges the molten slag 12 and the molten metal 13. Further, the position of the tip of the main electrode 4 may be confirmed by means other than the feed amount of the lifting device 15.
[0016]
【The invention's effect】
As described above, the operation method of the plasma ash melting furnace according to the present invention is to put incineration ash into a furnace main body provided with a vertically movable main electrode provided on the furnace ceiling wall, and heat the incineration ash with a plasma arc. When the seam of each electrode rod constituting the main electrode is located near the tip of the main electrode, the tip of the main electrode is lowered. By inserting the molten slag layer into the molten slag layer, the tip of the main electrode is forcibly consumed, and then the main electrode is raised and returned to its original position. During this process, it is possible to prevent the nipple part, etc., from falling and suddenly increasing the arc length and suddenly increasing the DC power supply voltage. Driveable and productive It is possible to achieve the above.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing a state in which a tip portion of a main electrode is inserted into a molten slag layer in a plasma ash melting furnace according to an embodiment of the present invention.
FIG. 2 is a schematic cross-sectional view showing a state in which a nipple portion of an electrode rod constituting a main electrode is located near a tip in a conventional plasma ash melting furnace.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Plasma ash melting furnace 2 Furnace main body 3 Furnace ceiling wall 4 Main electrode 4a, 4b Electrode rod 5 Furnace bottom wall 7 Furnace bottom electrode 8 DC power supply device 9a, 9b Recess 12 Molten slag 13 Molten metal 14 Nipple part (seam)
15 Lifting device

Claims (2)

炉天井壁に設けられる昇降可能な主電極を備えた炉本体内に焼却灰を投入し、該焼却灰をプラズマアークで加熱して溶融することによって、溶融スラグ及び溶融メタルを生成するプラズマ灰溶融炉の運転方法において、前記主電極を構成する各電極棒の継ぎ目が前記主電極の先端部近くに位置した際、前記主電極の先端部を下降させて前記溶融スラグ層中に挿入することにより、前記主電極の先端部を強制的に消耗させ、その後、前記主電極を上昇させて元の位置に復帰させることを特徴とするプラズマ灰溶融炉の運転方法。Plasma ash melting that generates molten slag and molten metal by charging incinerated ash into a furnace body equipped with a main electrode that can be moved up and down provided on the furnace ceiling wall, and heating the incinerated ash with a plasma arc In the operation method of the furnace, when the joint of each electrode rod constituting the main electrode is located near the tip of the main electrode, the tip of the main electrode is lowered and inserted into the molten slag layer. A method for operating a plasma ash melting furnace, wherein the tip of the main electrode is forcibly consumed, and then the main electrode is raised and returned to its original position. 前記主電極の先端部位置の確認は、該主電極を昇降させる昇降装置の送り量で行うことを特徴とする請求項1に記載のプラズマ灰溶融炉の運転方法。The method for operating a plasma ash melting furnace according to claim 1, wherein the position of the tip of the main electrode is confirmed by a feed amount of a lifting device that lifts and lowers the main electrode.
JP2001012971A 2001-01-22 2001-01-22 Operating method of plasma ash melting furnace Expired - Fee Related JP4185667B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001012971A JP4185667B2 (en) 2001-01-22 2001-01-22 Operating method of plasma ash melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001012971A JP4185667B2 (en) 2001-01-22 2001-01-22 Operating method of plasma ash melting furnace

Publications (2)

Publication Number Publication Date
JP2002213725A JP2002213725A (en) 2002-07-31
JP4185667B2 true JP4185667B2 (en) 2008-11-26

Family

ID=18879900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001012971A Expired - Fee Related JP4185667B2 (en) 2001-01-22 2001-01-22 Operating method of plasma ash melting furnace

Country Status (1)

Country Link
JP (1) JP4185667B2 (en)

Also Published As

Publication number Publication date
JP2002213725A (en) 2002-07-31

Similar Documents

Publication Publication Date Title
RU2096706C1 (en) Electric arc furnace for steel production, steel production from scrap, and/or from sponge iron, and/or from blast-furnace cast iron in electric arc furnace, and method for steel production from scrap in electric arc furnace
CN216346296U (en) Electric melting plasma torch composite furnace device for treating hazardous waste materials
CN108302941B (en) A kind of full-automatic continuous feed is slagged tap and topples over metal recovery electricity melting plant
JP4185667B2 (en) Operating method of plasma ash melting furnace
KR101669135B1 (en) Hybrid smelting furnace
JP4095774B2 (en) How to restart the plasma ash melting furnace
JP2001242291A (en) Device and method for incineration melting disposal of radioactive waste
CN113834077A (en) Electric melting plasma torch composite furnace device and method for treating hazardous waste materials
JP3576468B2 (en) Electric ash melting furnace and method for removing solids from electric ash melting furnace
JP4667665B2 (en) Plasma ash melting furnace and operating method thereof
JP4245600B2 (en) Operating method of plasma ash melting furnace
JP3732676B2 (en) Melting furnace outlet structure
JP3912717B2 (en) Radioactive waste incineration melting processing apparatus and incineration melting processing method
JP3542300B2 (en) Method and apparatus for supplying molten material to melting furnace
JP3568351B2 (en) Restart method of plasma melting furnace
JP3534680B2 (en) Operation method of ash melting furnace
JPS5840791A (en) Sludge exhausting method
JP3505065B2 (en) Plasma melting furnace and operating method thereof
JPH10288321A (en) Electrical resistance melting furnace of refuse incinerated ash
RU2007463C1 (en) Plasma reverse-flow furnace for melting of small fraction materials
JPH10318522A (en) Melting furnace for incineration residue of waste
JP2002303416A (en) Induction heating type continuous melting furnace
JPH1019230A (en) Method for melting treatment of refuse inclineration ash and melting furnace therefor
JP4090086B2 (en) Melting furnace and method for melting processing object
JP3743473B2 (en) Ash melting furnace tapping apparatus and tapping method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080829

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080908

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees