JP2002303416A - Induction heating type continuous melting furnace - Google Patents

Induction heating type continuous melting furnace

Info

Publication number
JP2002303416A
JP2002303416A JP2001105044A JP2001105044A JP2002303416A JP 2002303416 A JP2002303416 A JP 2002303416A JP 2001105044 A JP2001105044 A JP 2001105044A JP 2001105044 A JP2001105044 A JP 2001105044A JP 2002303416 A JP2002303416 A JP 2002303416A
Authority
JP
Japan
Prior art keywords
furnace
heating element
melting furnace
melted
melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001105044A
Other languages
Japanese (ja)
Inventor
Yasushi Maeno
裕史 前野
Katsumi Azuma
勝美 東
幸治 ▲あべ▼松
Koji Abematsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2001105044A priority Critical patent/JP2002303416A/en
Publication of JP2002303416A publication Critical patent/JP2002303416A/en
Pending legal-status Critical Current

Links

Landscapes

  • Gasification And Melting Of Waste (AREA)
  • Tunnel Furnaces (AREA)
  • Furnace Details (AREA)
  • General Induction Heating (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an induction heating type continuous melting furnace which is optimum to melt in a small scale and which can continuously melting without necessity of a special knowledge and a skill by a simple operation of the furnace. SOLUTION: The induction heating type continuous melting furnace inputs a material to be melted from one end of the furnace, melts the material to be melted therein and discharges the molten material from another one end of the furnace. The furnace comprises a tubular heating material 1 containing ZrB2 of 50 mass% or more. In this furnace, the length of the tube of the heating material is 5 times as large as the inner diameter of the tube of the heating material or more.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、廃棄物などの溶融
炉、特には小規模で連続処理に適する灰溶融炉に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a furnace for melting waste and the like, and more particularly to a ash melting furnace suitable for small-scale continuous processing.

【0002】[0002]

【従来の技術】一般廃棄物や産業廃棄物のごみ焼却炉の
集塵装置から回収された飛灰や、焼却炉下から排出され
る燃え殻(主灰)には、ダイオキシン類や有害な金属が含
まれ、それらの灰の減容化、無害化の手段として灰溶融
炉が注目されている。
2. Description of the Related Art Dioxins and harmful metals are contained in fly ash collected from dust collectors of municipal waste and industrial waste incinerators, and ashes (main ash) discharged from under incinerators. Ash melting furnaces are attracting attention as a means for reducing the volume and detoxifying the ash.

【0003】灰溶融炉としては、酸素不足雰囲気下で加
熱することによりごみの一部をガス化して分離し、その
ガスを燃焼させることで灰を溶融させるガス化溶融炉、
重油や燃料ガスを燃焼させその輻射熱で溶融する燃焼式
溶融炉、アークやプラズマ等を利用する電気式溶融炉、
またはコークスベッド型溶融炉等が知られている。
[0003] As a ash melting furnace, a gasification melting furnace in which a part of refuse is gasified and separated by heating in an oxygen-deficient atmosphere, and the ash is melted by burning the gas,
Combustion melting furnace that burns heavy oil and fuel gas and melts by the radiant heat, electric melting furnace that uses arc and plasma,
Alternatively, a coke bed type melting furnace or the like is known.

【0004】これらの溶融炉は大量の被溶融物を連続的
に処理するには適しているが、1日当りの処理量が数ト
ンレベルの小型の溶融炉として使用するには問題があ
る。例えば、燃焼式溶融炉には排気ガスが大量に排出さ
れ、その処理をするための設備コストや運用コストが増
えるなどの問題があり、また、ガス化溶融炉、プラズマ
式溶融炉、アーク式溶融炉などは設備上小規模のものを
作りにくい、コークスベッド型溶融炉も副原料として、
コークスを必要とするため、小規模では現実的ではない
等である。
[0004] These melting furnaces are suitable for continuously processing a large amount of material to be melted, but there is a problem when used as a small melting furnace having a throughput of several tons per day. For example, combustion-type melting furnaces have a problem in that a large amount of exhaust gas is emitted, which increases equipment costs and operating costs for the treatment.In addition, gasification and melting furnaces, plasma-type melting furnaces, and arc-type melting furnaces have problems. Furnaces are difficult to make on a small scale because of the equipment.
Because it requires coke, it is not practical on a small scale.

【0005】小規模の溶融にも適する方式としては誘導
加熱式溶融炉がある。誘導加熱式溶融炉は制御がしやす
い利点があるものの、焼却灰などの電気絶縁体を誘導加
熱で溶融するには、炭素や炭素−SiC複合体などの発
熱体を炉内に投入する必要がある。このような炉内に投
入される発熱体の損耗は早くランニングコストがかかる
問題がある。さらに、発熱体を炉内に投入するには炉の
構造がルツボ形状に限定されるため連続溶融は難しく、
処理量の面でも問題があった。
As a method suitable for small-scale melting, there is an induction heating type melting furnace. Although the induction heating type melting furnace has the advantage of being easy to control, it is necessary to put a heating element such as carbon or a carbon-SiC composite into the furnace to melt electric insulators such as incineration ash by induction heating. is there. Such a heating element introduced into the furnace has a problem in that the running element is quickly worn out. Furthermore, since the structure of the furnace is limited to a crucible shape in order to put the heating element into the furnace, continuous melting is difficult,
There was also a problem in terms of throughput.

【0006】炉内への発熱体の投入問題を解消するた
め、特開平9−206797号には炉本体を導電性セラ
ミックスで耐食性もあるZrB2製とし、炉本体を発熱
体とする誘導加熱方式を利用した汚泥の溶融固化方法が
提案されている。
In order to solve the problem of introducing a heating element into a furnace, Japanese Patent Application Laid-Open No. 9-206797 discloses an induction heating method in which the furnace body is made of conductive ceramics and made of ZrB 2 having corrosion resistance, and the furnace body is a heating element. There has been proposed a method of melting and solidifying sludge using the above method.

【0007】しかし、提案された装置では、発熱体が筒
状ではなくルツボ形状であるため連続溶融ができず処理
量の面で問題があるほか、昇温、温度保持、排出等の各
工程で目視による確認作業が必要となり、人件費などの
運用コスト面での問題もある。さらに連続処理ではなく
バッチ処理であるため1回毎の昇温のための熱量がロス
になり、被溶融物当りの電力消費量が多くなる問題もあ
る。
However, in the proposed apparatus, the heating element has a crucible shape instead of a cylindrical shape, so that it cannot be continuously melted and has a problem in terms of processing amount. Visual confirmation work is required, and there is a problem in operation costs such as labor costs. Furthermore, since the process is a batch process rather than a continuous process, there is a problem that the amount of heat for raising the temperature each time is lost, and the power consumption per melt is increased.

【0008】[0008]

【発明が解決しようとする課題】本発明は、小規模の溶
融に最適で、しかも炉の操作が簡便で特別な知識や熟練
を必要とせず、かつ連続的に溶融処理ができる、管状の
発熱体からなる誘導加熱式連続溶融炉の提供を目的とす
る。
DISCLOSURE OF THE INVENTION The present invention relates to a tubular heat generating apparatus which is most suitable for small-scale melting, is simple in furnace operation, does not require special knowledge and skill, and can be continuously melted. An object of the present invention is to provide an induction heating continuous melting furnace made of a body.

【0009】[0009]

【課題を解決するための手段】本発明は、被溶融物が炉
の一端から入り内部で溶融されて炉の別の一端から排出
される誘導加熱式連続溶融炉であって、ZrB2を50
質量%以上含む管状の発熱体を有し、該発熱体の管の長
さが管の内径の5倍以上であり、かつ該発熱体の内壁面
で被溶融物を溶融することを特徴とする誘導加熱式連続
溶融炉を提供する。
The present invention SUMMARY OF] is a induction heating type continuous melting furnace which the melt is discharged from another end of which is melted internally enters from one end of the furnace the furnace, the ZrB 2 50
A tubular heating element containing at least 5% by mass of the heating element, wherein the length of the tube of the heating element is at least 5 times the inner diameter of the tube, and the material to be melted is melted on the inner wall surface of the heating element. An induction heating type continuous melting furnace is provided.

【0010】[0010]

【発明の実施の形態】本発明の誘導加熱式連続溶融炉
(以下、単に本溶融炉という)は、ZrB2を50質量
%(以下、単に%と略す)以上含む管状の発熱体を有
し、該発熱体の内壁面で被溶融物を溶融することを特徴
とする。
BEST MODE FOR CARRYING OUT THE INVENTION The induction heating type continuous melting furnace of the present invention (hereinafter simply referred to as the present melting furnace) has a tubular heating element containing 50% by mass or more of ZrB 2 (hereinafter simply referred to as “%”). And melting the object to be melted on the inner wall surface of the heating element.

【0011】管状の発熱体のZrB2の含有量が50%
未満であると導電性が不充分となるおそれがある。Zr
2の含有量が50〜99.5%であると好ましい。さ
らに好ましくはZrB2の含有量が70〜99%であ
る。ZrB2としては、耐食性、導電性、機械的強度な
どの点から焼結体が好ましく、キャスタブルなどを併用
してもよい。
The content of ZrB 2 in the tubular heating element is 50%
If it is less than 3, the conductivity may be insufficient. Zr
It is preferable that the content of B 2 is 50 to 99.5%. More preferably a content of ZrB 2 70 to 99%. As ZrB 2 , a sintered body is preferable in terms of corrosion resistance, conductivity, mechanical strength, and the like, and castable or the like may be used in combination.

【0012】本溶融炉の基本的な構成を図1に示す。図
1は本溶融炉の縦断面図の概略図である。図中、1はZ
rB2を50%以上含有する管状の発熱体(以下、本発
熱体という)、2は被溶融物である主灰や飛灰の投入方
向、3は溶融物の排出方向、4は銅管などからなる誘導
コイルで、通例、銅管内部には冷却水が流れる。5は断
熱材、6は外部炉体である。なお、主灰や飛灰などの被
溶融物は図示しない供給装置により一定量ずつ供給され
る。なお、図1では本発熱体は軸方向に4分割されてい
る場合を示す。
FIG. 1 shows the basic configuration of the present melting furnace. FIG. 1 is a schematic diagram of a vertical sectional view of the present melting furnace. In the figure, 1 is Z
a tubular heating element containing 50% or more of rB 2 (hereinafter referred to as the present heating element); In general, cooling water flows inside the copper tube. 5 is a heat insulating material, 6 is an outer furnace body. It should be noted that the material to be melted, such as main ash and fly ash, is supplied in a fixed amount by a supply device (not shown). FIG. 1 shows a case where the heating element is divided into four parts in the axial direction.

【0013】溶融は誘導コイル4に電流を流すことによ
り本発熱体1に誘導電流が流れて被溶融物を1300〜
1500℃に加熱する。なお、灰中のダイオキシンは分
解され、有害な金属はガラスに固溶し無害化される。ま
た溶融物は、排出された後に必要に応じて水で急冷・固
化されてスラグとなる。なお、灰中の未燃分は溶融過程
で燃焼して排気ガスが発生するが、排気ガスは下流に向
けて排気される。
In the melting, an electric current is caused to flow through the induction coil 4 to cause an induced current to flow through the heating element 1 so that the material to be melted is set to 1300 to 1300.
Heat to 1500 ° C. Note that dioxin in the ash is decomposed, and harmful metals are dissolved in glass to make them harmless. Further, after being discharged, the melt is quenched and solidified with water as required, and becomes slag. The unburned components in the ash are burned in the melting process to generate exhaust gas, but the exhaust gas is exhausted downstream.

【0014】本発熱体は、管の長さが管の内径の5倍以
上である。管の長さが管の内径の5倍未満であると、管
の表面で溶融した灰と、管の中央付近の未溶融灰との混
合がされにくく、未溶融の灰が排出されるおそれがあ
り、それを防止するために必要以上に長時間溶融しなけ
ればならない。
In the present heating element, the length of the tube is at least five times the inner diameter of the tube. If the length of the tube is less than 5 times the inner diameter of the tube, it is difficult for the ash melted on the surface of the tube to mix with the unmelted ash near the center of the tube, and the unmelted ash may be discharged. Yes, it must be melted longer than necessary to prevent it.

【0015】本発熱体は、おおむねストレートな管であ
ると管内部での滞留防止などの点で好ましいが、必ずし
もこれに限定されるものではない。本発熱体において、
管の内径は20〜160mmであると好ましい。さらに
好ましくは、40〜100mmである。管の内径が20
mm未満になると処理量が少なくなりその分発熱体の本
数が必要となり、灰の投入装置が複雑になり、また溶融
物の凝集の問題などがある。一方、内径が160mmを
超えると管の製作が難しくなるため、それぞれ好ましく
ない。
The heating element is preferably a straight pipe in order to prevent stagnation inside the pipe, but is not necessarily limited to this. In this heating element,
The inner diameter of the tube is preferably between 20 and 160 mm. More preferably, it is 40 to 100 mm. The inner diameter of the tube is 20
If the diameter is less than mm, the amount of processing is reduced and the number of heating elements is required accordingly, the ash charging device becomes complicated, and there is a problem of aggregation of the melt. On the other hand, when the inner diameter exceeds 160 mm, it becomes difficult to manufacture the pipe, and thus each is not preferable.

【0016】また、本発熱体は全体を一体物としてもよ
いが熱応力を緩和するためと、発熱体の製作コストを下
げるために発熱体を分割してもよい。発熱体を分割する
場合には、図1に例示するように管を軸と直角方向にリ
ング状(輪切り状)に分割すると周方向に流れる誘導電
流に影響を与えないため好ましい。また、あらかじめ軸
と直角方向に分割しておけば、万一そのうちの一部が軸
と平行な方向に破断して誘導電流が流れなくなり発熱し
なくなってもその影響は全体に及ばないため好ましい。
分割している場合の管の長さは、それらを合わせた長さ
をいう。
The heating element may be formed as a single unit, but the heating element may be divided to reduce thermal stress and to reduce the manufacturing cost of the heating element. When the heating element is divided, it is preferable to divide the tube into a ring shape (ring shape) in a direction perpendicular to the axis as illustrated in FIG. 1 since the induction current flowing in the circumferential direction is not affected. In addition, it is preferable to divide in advance in the direction perpendicular to the axis, because even if one of them breaks in the direction parallel to the axis and the induced current stops flowing and no heat is generated, the influence is not exerted on the whole.
When divided, the length of the pipe refers to the combined length.

【0017】本発熱体の内径が大きい場合には、発熱体
を周方向にも複数に分割してもよい。一例を図2に示
す。図2では、棒状の導電性耐火物7を平行に並べて筒
を形成し、非導電性耐火物8で取り囲んでいる。導電性
耐火物7はZrB2を55%以上含むのが好ましく、導
電性耐火物7と非導電性耐火物8を合わせたときZrB
2が50%以上含まれる必要がある。なお、この場合、
必要に応じて軸と直角方向に分割してもよい。
When the inner diameter of the heating element is large, the heating element
May also be divided into a plurality in the circumferential direction. An example is shown in FIG.
You. In FIG. 2, a rod-shaped conductive refractory 7 is arranged in parallel to a cylinder.
And is surrounded by a non-conductive refractory 8. Conductivity
Refractory 7 is ZrBTwoIs preferably 55% or more.
ZrB when conductive refractory 7 and non-conductive refractory 8 are combined
TwoMust be contained at least 50%. In this case,
It may be divided in the direction perpendicular to the axis as needed.

【0018】溶融を効率的に行うために、本発熱体の内
面に凹凸や邪魔板のようなものを設けると、溶融物と未
溶融の被溶融物との混合が促進され、未溶融の被溶融物
の残留を防止できるため好ましい。
If an uneven surface or a baffle plate is provided on the inner surface of the heating element for efficient melting, mixing of the molten material with the unmelted material is promoted, and the unmelted material is accelerated. It is preferable because the residual of the melt can be prevented.

【0019】なお、本発明において、本発熱体の本数は
1本に限定されるものではなく、処理量に応じて2本以
上を平行に組み合わせて使用してもよい。この場合、図
3と図4に示すように1個の誘導コイル内に複数の本発
熱体を配置することもできる。図3と図4は本発熱体の
本数が4本の場合で、図3は本溶融炉の横断面図の概略
図であり、図4は本溶融炉の縦断面図の概略図である。
In the present invention, the number of the heating elements is not limited to one, and two or more heating elements may be used in parallel in accordance with the processing amount. In this case, as shown in FIGS. 3 and 4, a plurality of main heating elements can be arranged in one induction coil. 3 and 4 show the case where the number of the heating elements is four. FIG. 3 is a schematic view of a transverse sectional view of the present melting furnace, and FIG. 4 is a schematic view of a longitudinal sectional view of the present melting furnace.

【0020】本発熱体を複数本並べて使用する場合に
は、誘導コイルの周波数や電圧を適切に選らぶと複数本
を同時に均一な温度で加熱できる。また複数の発熱体を
誘導コイルから等距離、すなわち同一周上に配列すると
発熱体間の温度の違いを少なくできるため好ましい。
When a plurality of the heating elements are used side by side, if the frequency and voltage of the induction coil are appropriately selected, the plurality of heating elements can be simultaneously heated at a uniform temperature. Further, it is preferable to arrange a plurality of heating elements at the same distance from the induction coil, that is, on the same circumference, because a difference in temperature between the heating elements can be reduced.

【0021】本発明において、発熱体は水平に近い状態
で使用されるが、溶融物の粘性や灰の流動性により、下
り勾配または上り勾配など、任意に選定される。また、
本発明では、炉内に発熱体を投入する必要のないもので
あるが、補助的な目的で被溶融物にカーボンや金属など
の発熱体を一部混入させてもよい。
In the present invention, the heating element is used in a nearly horizontal state, but it is arbitrarily selected depending on the viscosity of the melt and the fluidity of the ash, such as a downward slope or an upward slope. Also,
In the present invention, it is not necessary to put the heating element into the furnace, but a heating element such as carbon or metal may be partially mixed into the material to be melted for auxiliary purposes.

【0022】さらに、本溶融炉を運転するにあたり、被
溶融物の発熱体に対する流速を早くすると、被溶融物と
発熱体との間の熱交換が促進されるため好ましい。な
お、発熱体の外側の断熱材としては特に制限はないが、
炭化ケイ素、窒化ケイ素、カーボン、高ジルコニア質電
鋳耐火物、アルミナ系耐火物、マグネシア系耐火物など
が例示される。
Further, when operating the present melting furnace, it is preferable to increase the flow rate of the material to be melted to the heating element because heat exchange between the material to be melted and the heating element is promoted. There is no particular limitation on the heat insulating material outside the heating element,
Examples thereof include silicon carbide, silicon nitride, carbon, high-zirconia electroformed refractories, alumina-based refractories, and magnesia-based refractories.

【0023】また、断熱材の外側の外部炉体としては特
に制限はないが炭化ケイ素質キャスタブル、アルミナ質
キャスタブル、アルミナムライト質キャスタブル、断熱
シャモット質キャスタブル、断熱レンガなどが例示され
る。
The outer furnace body outside the heat insulating material is not particularly limited, and examples thereof include silicon carbide castables, alumina castables, aluminum mullite castables, heat-insulated chamotte castables, and heat-insulated bricks.

【0024】[0024]

【実施例】ホウ化ジルコニウム製(ZrB298%を含
む)の、外径100mm、内径78mm、長さ150m
mのパイプ4本を直列に接続し、長さ600mmの発熱
体を準備した。なお、パイプのつなぎ目から溶融物が漏
れないように、軸方向に圧縮力がかかるようにした。こ
の管状の発熱体をほぼ水平に保持し、片端から産業廃棄
物の焼却灰を15kg/h投入し、残りの片端から溶融
物を溶融スラグ(約400℃)として排出した。なお、誘
導コイルには周波数3kHzの高周波電流を流した。
EXAMPLE Zirconium boride (including 98% of ZrB 2 ) has an outer diameter of 100 mm, an inner diameter of 78 mm, and a length of 150 m.
Four pipes of m were connected in series to prepare a heating element having a length of 600 mm. Note that a compressive force was applied in the axial direction so that the melt did not leak from the joint of the pipes. The tubular heating element was held substantially horizontally, and incineration ash of industrial waste was charged at 15 kg / h from one end, and the molten material was discharged as molten slag (about 400 ° C.) from the other end. A high-frequency current having a frequency of 3 kHz was passed through the induction coil.

【0025】比較のため、同じ材質で内径200mm、
外径224mm、深さ240mmのルツボを製作した。
なお、ルツボの内面表面積とパイプの内面表面積はほぼ
同じようにしてある。
For comparison, the same material has an inner diameter of 200 mm,
A crucible having an outer diameter of 224 mm and a depth of 240 mm was manufactured.
The inner surface area of the crucible and the inner surface area of the pipe are almost the same.

【0026】残留物の影響をみるため、溶融物の一部を
残留させて、起動停止、再加熱を5回繰り返した。その
結果、パイプを使用した場合は特に問題なく再加熱でき
た。しかし、ルツボを使用した場合では、中心付近の残
留物が溶融するのに時間がかかったほか、5回目の加熱
時に小さなクラックが数箇所ルツボに入った。なお、両
方の装置を5時間ずつ運転して処理量を比較したとこ
ろ、ルツボの処理量を1とした場合のパイプの処理量は
約3であった。
In order to check the influence of the residue, the starting and stopping and reheating were repeated 5 times while leaving a part of the melt. As a result, when the pipe was used, reheating could be performed without any problem. However, when the crucible was used, it took time for the residue near the center to melt, and several small cracks entered the crucible during the fifth heating. In addition, when the both apparatuses were operated for 5 hours and the processing amounts were compared, the processing amount of the pipe was about 3 when the processing amount of the crucible was set to 1.

【0027】[0027]

【発明の効果】本発明において、発熱体はZrB2を5
0%以上含むため耐食性に優れ、導電性もあるため管状
の発熱体として溶融炉を構成できる。したがって、誘導
加熱方式による連続溶融処理ができ、処理量も大きい。
According to the present invention, the heating element is composed of 5 ZrB 2 .
Since it contains 0% or more, it has excellent corrosion resistance and also has conductivity, so that a melting furnace can be configured as a tubular heating element. Therefore, the continuous melting process by the induction heating method can be performed, and the processing amount is large.

【0028】さらに、管状の発熱体の長さを内径の5倍
以上にするため、被溶融物と発熱体との熱交換を促進
し、効率的に加熱溶融できる。溶融炉内に残留する溶融
物の量も少なくできる。また、溶融物を連続的に排出で
きるのでルツボ方式のように被溶融物の投入、排出作業
の度に容器を傾動させる必要がなく生産性も高い。
Furthermore, since the length of the tubular heating element is set to be at least five times the inner diameter, heat exchange between the object to be melted and the heating element is promoted, and the heating and melting can be performed efficiently. The amount of the melt remaining in the melting furnace can be reduced. Further, since the molten material can be continuously discharged, the container does not need to be tilted every time the molten material is charged and discharged, unlike the crucible method, so that the productivity is high.

【0029】また、発熱体を軸方向に分割することによ
り、熱応力などで破損することを防ぎ、また万一破損し
てもその影響を局所的なものとし、炉全体が誘導加熱で
きなくなることを防ぐ。
Further, by dividing the heating element in the axial direction, damage due to thermal stress or the like is prevented, and even if the element is damaged, the influence is localized and the entire furnace cannot be induction-heated. prevent.

【0030】また、溶融方式が誘導加熱式のため制御盤
の出力調整で簡単に溶融状態を制御できるため、これま
でのように運転操作に特別な知識や熟練を必要とせず、
簡便な操作で運転できる。
Further, since the melting method is of the induction heating type, the melting state can be easily controlled by adjusting the output of the control panel, so that special knowledge and skill are not required for the operation as in the past.
It can be operated with simple operation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】分割した発熱体を使用した本溶融炉の概略断面
図。
FIG. 1 is a schematic cross-sectional view of a melting furnace using divided heating elements.

【図2】周方向に分割した発熱体の概略斜視図。FIG. 2 is a schematic perspective view of a heating element divided in a circumferential direction.

【図3】分割していない発熱体を使用した本溶融炉の横
断面の概略断面図。
FIG. 3 is a schematic cross-sectional view of a cross section of the present melting furnace using an undivided heating element.

【図4】分割していない発熱体を使用した本溶融炉の縦
断面の概略断面図。
FIG. 4 is a schematic cross-sectional view of a vertical section of the present melting furnace using a heating element that is not divided.

【符号の説明】[Explanation of symbols]

1:管状の発熱体 2:灰(被溶融物)の投入方向 3:溶融物の排出方向 4:誘導コイル 5:断熱材 6:外部炉体 7:導電性耐火物 8:非導電性耐火物 1: Tubular heating element 2: Injection direction of ash (molten material) 3: Discharge direction of melt 4: Induction coil 5: Insulation material 6: External furnace body 7: Conductive refractory 8: Non-conductive refractory

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H05B 6/10 371 H05B 6/10 371 Fターム(参考) 3K059 AA08 AB16 AD03 AD32 AD40 3K061 AB03 AC03 NB01 4K050 AA07 BA06 CA05 CD07 CD08 CF01 CF11 CG27 4K063 AA04 AA12 AA19 BA13 CA08 FA36 FA43 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (reference) H05B 6/10 371 H05B 6/10 371 F term (reference) 3K059 AA08 AB16 AD03 AD32 AD40 3K061 AB03 AC03 NB01 4K050 AA07 BA06 CA05 CD07 CD08 CF01 CF11 CG27 4K063 AA04 AA12 AA19 BA13 CA08 FA36 FA43

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】被溶融物が炉の一端から入り内部で溶融さ
れて炉の別の一端から排出される誘導加熱式連続溶融炉
であって、ZrB2を50質量%以上含む管状の発熱体
を有し、該発熱体の管の長さが管の内径の5倍以上であ
り、かつ該発熱体の内壁面で被溶融物を溶融することを
特徴とする誘導加熱式連続溶融炉。
1. A induction heating type continuous melting furnace is discharged from another end of the melt is melted internally enters from one end of the furnace the furnace, heating elements of the tubular containing ZrB 2 50 mass% Wherein the length of the tube of the heating element is at least 5 times the inner diameter of the tube, and the material to be melted is melted on the inner wall surface of the heating element.
【請求項2】管状の発熱体が分割されていることを特徴
とする請求項1記載の誘導加熱式連続溶融炉。
2. The induction heating type continuous melting furnace according to claim 1, wherein the tubular heating element is divided.
JP2001105044A 2001-04-03 2001-04-03 Induction heating type continuous melting furnace Pending JP2002303416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001105044A JP2002303416A (en) 2001-04-03 2001-04-03 Induction heating type continuous melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001105044A JP2002303416A (en) 2001-04-03 2001-04-03 Induction heating type continuous melting furnace

Publications (1)

Publication Number Publication Date
JP2002303416A true JP2002303416A (en) 2002-10-18

Family

ID=18957808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001105044A Pending JP2002303416A (en) 2001-04-03 2001-04-03 Induction heating type continuous melting furnace

Country Status (1)

Country Link
JP (1) JP2002303416A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006138509A (en) * 2004-11-10 2006-06-01 Taiheiyo Kinzoku Kk Melting device of incinerated ash
CN101556112B (en) * 2009-05-21 2010-12-29 岳阳市巴陵节能炉窑工程有限公司 High temperature energy-saving tunnel kiln for physical thermal circulation application
JP7178148B1 (en) 2022-08-15 2022-11-25 浜松ヒートテック株式会社 Lattice structure type crucible for non-ferrous metal melting

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006138509A (en) * 2004-11-10 2006-06-01 Taiheiyo Kinzoku Kk Melting device of incinerated ash
CN101556112B (en) * 2009-05-21 2010-12-29 岳阳市巴陵节能炉窑工程有限公司 High temperature energy-saving tunnel kiln for physical thermal circulation application
JP7178148B1 (en) 2022-08-15 2022-11-25 浜松ヒートテック株式会社 Lattice structure type crucible for non-ferrous metal melting
JP2024025915A (en) * 2022-08-15 2024-02-28 浜松ヒートテック株式会社 Lattice-like structure form non-ferrous metal melting crucible

Similar Documents

Publication Publication Date Title
CN1626293A (en) Equipment and method of combined plasma arc and electric heat for cracking organic waste
JP2002303416A (en) Induction heating type continuous melting furnace
JP2001263620A (en) Plasma arc melting furnace
JP2001242291A (en) Device and method for incineration melting disposal of radioactive waste
CN110695056B (en) Oil sludge cracking treatment device
JPH0355410A (en) Melting and disposing method for incinerated ash
JP3196918B2 (en) Waste melting method and waste melting equipment
JP2002048322A (en) Melting processing method and melting processing furnace for waste
JP2002295979A (en) Structure of furnace wall of electric melting furnace and method for suppressing wear of fireproof material of furnace wall
JP4667665B2 (en) Plasma ash melting furnace and operating method thereof
CN218972671U (en) Plasma melting furnace
JP2006046824A (en) Discharge nozzle for melting furnace and discharge method of melt
JP2000297921A (en) Slag discharging device and slag discharging method from waste melting furnace
JP3912717B2 (en) Radioactive waste incineration melting processing apparatus and incineration melting processing method
JPH10132229A (en) Waste melting furnace and waste melting method
RU2157795C1 (en) Method and apparatus for preparing melt silicate
CN102935349A (en) High-temperature plasma cracking reaction kettle
JP3732676B2 (en) Melting furnace outlet structure
JP3623395B2 (en) How to replace the spout and spout
CN219674228U (en) Solid waste gas melting furnace
JP3797954B2 (en) Replacing refractories on melting furnace side walls
JP3764641B2 (en) Electric melting furnace operation control method
JPH0519277B2 (en)
JP2002013719A (en) Ash melting furnace and method of melting ashes
JP4090086B2 (en) Melting furnace and method for melting processing object