JP2006046824A - Discharge nozzle for melting furnace and discharge method of melt - Google Patents

Discharge nozzle for melting furnace and discharge method of melt Download PDF

Info

Publication number
JP2006046824A
JP2006046824A JP2004229660A JP2004229660A JP2006046824A JP 2006046824 A JP2006046824 A JP 2006046824A JP 2004229660 A JP2004229660 A JP 2004229660A JP 2004229660 A JP2004229660 A JP 2004229660A JP 2006046824 A JP2006046824 A JP 2006046824A
Authority
JP
Japan
Prior art keywords
melt
discharge
nozzle
melting furnace
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004229660A
Other languages
Japanese (ja)
Inventor
Yasushi Ono
泰史 小野
幸治 ▲あべ▼松
Koji Abematsu
Shuichi Kinoshita
秀一 木下
Kinichi Sato
金一 佐藤
Takashi Kitamura
隆 北村
亨 ▲くわ▼原
Toru Kuwahara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Ceramics Co Ltd
Tanabe Corp
Original Assignee
Tanabe Corp
Asahi Glass Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanabe Corp, Asahi Glass Ceramics Co Ltd filed Critical Tanabe Corp
Priority to JP2004229660A priority Critical patent/JP2006046824A/en
Publication of JP2006046824A publication Critical patent/JP2006046824A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Gasification And Melting Of Waste (AREA)
  • Furnace Charging Or Discharging (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a discharge nozzle for melting furnace facilitating the start of discharge, adjustment of discharge quantity and stop of discharge of a melt, and excellent in durability. <P>SOLUTION: This discharge nozzle comprises a cylindrical nozzle part 20 having a through-hole for discharging a melt molten in a melting furnace, at least part of which is formed of a heating element 21 of induction heating; a fixing plate 31 connected to the nozzle part and having a tap hole 35; and an opening and closing plate 40 variably adjusting the opening area of the tap hole of the fixing plate 31. The start of discharge, adjustment of discharge quantity, and stop of discharge of the melt are performed by using either or both of the heating control by an induction heating means of the nozzle part 20 and the opening area control of the tap hole by the opening and closing plate. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、各種廃棄物等を溶融する溶融炉の溶融物を排出するための排出ノズルおよび溶融物の排出方法に関する。   The present invention relates to a discharge nozzle for discharging a melt of a melting furnace for melting various wastes and the like, and a discharge method of the melt.

近年、廃棄物の処理方法として、単に廃棄物を焼却するだけでなく、焼却により発生する焼却灰を減容、無害化することも求められている。廃棄物の焼却灰には、有害重金属、放射性物質、感染性物質、ダイオキシン類などの環境汚染物質(以下、総称して環境汚染物質という)が含まれていることが多い。環境汚染物質を含む焼却灰は、特別管理廃棄物に指定されており、一般的な管理型最終処分場に埋め立てるには、中間処理により所定レベルまで無害化することが要求される。この中間処理の方法としては、溶融、セメント固化、薬剤処理および酸抽出の4種類が法的に認められている。中でも溶融は、減量化、長期安定性またはリサイクルの可能性の点から最も有望視されている。   In recent years, as a waste disposal method, it is required not only to incinerate waste, but also to reduce the volume of incinerated ash generated by incineration and make it harmless. Waste incineration ash often contains environmental pollutants (hereinafter collectively referred to as environmental pollutants) such as hazardous heavy metals, radioactive substances, infectious substances, and dioxins. Incinerated ash containing environmental pollutants is designated as specially managed waste, and it is required to be detoxified to a predetermined level by intermediate treatment in order to be reclaimed in a general managed final disposal site. As an intermediate treatment method, four types of melting, cement solidification, chemical treatment and acid extraction are legally recognized. Among them, melting is regarded as most promising in terms of weight reduction, long-term stability, and possibility of recycling.

溶融炉で溶融された溶融物の排出方法としては、溶融炉自体を傾動して排出する方法と、溶融炉自体は固定して炉の底部または側面下部に排出ノズルを設け、この排出ノズルを通して溶融物を排出する方法とがある。前記傾動して排出する方法では、傾動させるための設備が必要であるほか、溶融物の排出が不完全で残留物が多い、連続的な溶融処理が出来ない、処理量に大きな制約がある、作業性が悪い等の問題がある。これに対して排出ノズルによる方法では、溶融炉を傾動させるための設備が不要であり、溶融物の排出を充分にできるため残留物が実質的になく、しかも連続処理ができる等の利点がある。   There are two methods for discharging the melt melted in the melting furnace: tilting and discharging the melting furnace itself, fixing the melting furnace itself, and providing a discharge nozzle at the bottom or lower side of the furnace, and melting through this discharge nozzle There is a method of discharging things. In the method of tilting and discharging, equipment for tilting is necessary, the discharge of the melt is incomplete and there are many residues, continuous melting cannot be performed, and the processing amount is greatly limited. There are problems such as poor workability. On the other hand, the method using the discharge nozzle does not require equipment for tilting the melting furnace, and can sufficiently discharge the melt, so that there is substantially no residue and can be continuously processed. .

排出ノズルによる溶融物(スラグ)の排出方法として、例えば特許文献1が知られている。すなわち、溶融炉の炉底に導電性セラミックスからなるスラグ排出口(排出ノズル)を設け、スラグ排出口を誘導加熱により加熱することで、予めスラグ排出口を閉塞させるために、排出口内に便宜的に設けたスラグの固化物を溶融し、溶融炉内部にあるスラグを排出するものである。さらに、この方法によれば、炉内の被溶融物を所定の加熱手段により完全溶融した後に排出を一度に行い、その排出の末期に誘導加熱を停止し排出ノズルに残留したスラグを冷却固化して栓とすることにより、次回に被溶融物を投入したときこの被溶融物が未溶融の状態で流出するのを防止している。   As a method for discharging a melt (slag) by a discharge nozzle, for example, Patent Document 1 is known. That is, a slag discharge port (discharge nozzle) made of conductive ceramics is provided at the furnace bottom of the melting furnace, and the slag discharge port is heated by induction heating, so that the slag discharge port is closed in advance. The solidified product of slag provided in is melted, and the slag in the melting furnace is discharged. Further, according to this method, after the molten material in the furnace is completely melted by a predetermined heating means, the discharge is performed at one time, and induction heating is stopped at the end of the discharge, and the slag remaining in the discharge nozzle is cooled and solidified. By using a plug, the molten material is prevented from flowing out in an unmelted state when the molten material is charged next time.

しかしながら、この方法ではスラグの成分、粘性および溶融温度等の条件によって栓の生成が不完全となるために、被溶融物の一部が未溶融の状態で排出されるという問題を有していた。さらに、溶融段階において、溶融炉の上部の被溶融物は、相対的に温度が低く、未溶融の状態である場合があり、このような状態でスラグを排出ノズルにより排出した場合、排出終了段階でこの未溶融物が排出ノズルの中に残留し、その後に未溶融の状態で排出されるという問題を有していた。
そのうえ、この方法は、炉内の被溶融物を溶融した後に排出を一度に行うバッチ式の溶融方法で、スラグの排出量を調整する機能がないため、連続的な運転は困難であった。
However, this method has a problem that part of the material to be melted is discharged in an unmelted state because the generation of the plug is incomplete due to conditions such as slag components, viscosity, and melting temperature. . Furthermore, in the melting stage, the material to be melted in the upper part of the melting furnace may be in a relatively low temperature and unmelted state, and when slag is discharged by the discharge nozzle in such a state, the discharge end stage This unmelted matter remains in the discharge nozzle and is then discharged in an unmelted state.
In addition, this method is a batch-type melting method in which the material to be melted in the furnace is discharged after being melted, and since there is no function for adjusting the discharge amount of slag, continuous operation is difficult.

また、特許文献2には、排出ノズルによる溶融物の他の排出方法について記載されている。この方法は、溶融炉内の溶融物を炉壁に設けた出湯口から出湯し、該出湯口にその開口面積を変えるためのゲート部材を設け、炉内の溶融物の出湯に伴いゲート部材を昇降させて、出湯口の開口面積を溶融物の出湯量が常に一定になるように制御するものである。しかしながら、ゲート部材で溶融物の排出を停止した後では、溶融物の成分、粘性および溶融温度等の条件によっては、溶融物が排出ノズルや出湯口の中で冷却固化して閉塞することがしばしばあり、その後にゲート部材を開けて排出を行う場合に排出が困難になる等の問題を有していた。
特開2001−343108号公報 特開平2−188435号公報
Further, Patent Document 2 describes another method for discharging the melt using a discharge nozzle. In this method, the molten material in the melting furnace is discharged from a hot water outlet provided on the furnace wall, and a gate member for changing the opening area is provided at the hot water outlet, and the gate member is attached to the molten metal in the furnace. By raising and lowering, the opening area of the hot water outlet is controlled so that the amount of hot water discharged from the melt is always constant. However, after the discharge of the melt is stopped at the gate member, the melt is often cooled and solidified in the discharge nozzle and the outlet, depending on conditions such as the composition of the melt, the viscosity, and the melting temperature. However, when the gate member is opened and discharged after that, there is a problem that the discharge becomes difficult.
JP 2001-343108 A JP-A-2-188435

このように従来の排出ノズルでは、排出ノズルにおける溶融物の加熱手段と排出ノズルの開閉手段とを併用しながら溶融物の排出(出湯)を行うようになっていないため、排出ノズル内の溶融物を加熱手段で温度制御しながら排出ノズルの開口を開閉手段で制御して、溶融物の排出の開始、排出量の調整、排出の停止を行うことが実質的に困難である。このため、溶融物の出湯作業が制約を受けて不具合を生じ、作業性が劣るものである。   As described above, in the conventional discharge nozzle, the melt in the discharge nozzle is not discharged (bath out) while using both the heating means of the melt in the discharge nozzle and the opening / closing means of the discharge nozzle. It is substantially difficult to start the discharge of the melt, adjust the discharge amount, and stop the discharge by controlling the opening of the discharge nozzle with the opening / closing means while controlling the temperature with the heating means. For this reason, the hot water discharge operation of the melt is restricted and causes problems, and the workability is inferior.

本発明の目的は、溶融物の排出の開始、排出量の調整、排出の停止が容易で、耐久性に優れる溶融炉用排出ノズルおよび溶融物の排出方法を提供することにある。   An object of the present invention is to provide a melting furnace discharge nozzle and a melt discharge method that are easy to start discharge of a melt, adjust the discharge amount, and stop discharge, and have excellent durability.

本発明は、溶融炉に設けた誘導加熱の発熱体からなる筒状のノズル部に、出湯口の開口面積を可変に調整させる流量調整部を設けて、ノズル部の誘導加熱手段による加熱制御または流量調整部による出湯口の開口面積制御のいずれか、または両方を用いて、溶融炉内の溶融物の、排出の開始、排出量の調整、排出の停止を行うことができる次の溶融炉用排出ノズルおよび溶融物の排出方法を提供する。
(1)溶融炉で溶融された溶融物を排出するための貫通孔を有し、少なくとも一部が誘導加熱の発熱体からなる筒状のノズル部と、該ノズル部と連接し出湯口を備えた接続部と、該接続部の出湯口の開口面積を可変に調整する流量調整部と、前記ノズル部の誘導加熱手段とを具備することを特徴とする溶融炉用排出ノズル。
(2)接続部の主要部がセラミックス、耐火物および黒鉛からなる群から選ばれる1種以上からなる上記(1)の溶融炉用排出ノズル。
(3)接続部の主要部が、電気絶縁性を有する、セラミックスまたは耐火物のいずれか、または両方からなる上記(1)または(2)の溶融炉用排出ノズル。
(4)発熱体がZrBを90〜100質量%含む焼結体である上記(1)、(2)または(3)の溶融炉用排出ノズル。
(5)流量調整部が、接続部の出湯口と連通する出湯口を備えた固定板と、該固定板と摺動可能に連接し前記出湯口の開口面積を可変に調整する開閉板とからなり、固定板および開閉板が金属構造体、セラミックス、耐火物および黒鉛からなる群から選ばれる1種以上からなる上記(1)〜(4)のいずれかの溶融炉用排出ノズル。
(6)固定板および/または開閉板が、水冷構造を有する金属構造体である上記(1)〜(5)のいずれかの溶融炉用排出ノズル。
(7)溶融炉内の溶融物を、少なくとも一部が誘導加熱の発熱体からなる筒状のノズル部に連通する出湯口から、該出湯口の開口面積を流量調整部で可変して排出する方法であって、溶融物の排出の開始、排出の停止および排出量調整を、前記ノズル部の加熱制御または流量調整部による出湯口の開口面積制御のいずれか、または両方を用いることにより行うことを特徴とする溶融物の排出方法。
(8)ノズル部の誘導加熱を継続または停止した状態で、流量調整部で溶融物の排出量を調整しながら溶融炉内の溶融物を出湯口から排出し、かつ排出される溶融物に見合う被溶融物を溶融炉内に投入し連続的に溶融する上記(7)の溶融物の排出方法。
The present invention provides a flow rate adjustment unit that variably adjusts the opening area of the outlet in a cylindrical nozzle portion formed of an induction heating heating element provided in a melting furnace, and performs heating control by induction heating means of the nozzle portion or For the next melting furnace that can start discharge, adjust the discharge amount, and stop discharge of the melt in the melting furnace by using either or both of the opening area control of the hot water outlet by the flow rate adjustment unit Discharge nozzle and melt discharge method are provided.
(1) A through-hole for discharging a melt melted in a melting furnace, a cylindrical nozzle portion at least partially made of a heating element of induction heating, and a tap outlet connected to the nozzle portion A melting furnace discharge nozzle, comprising: a connecting portion; a flow rate adjusting portion that variably adjusts the opening area of the outlet of the connecting portion; and an induction heating means for the nozzle portion.
(2) The discharge nozzle for a melting furnace according to (1), wherein the main part of the connection part is composed of one or more selected from the group consisting of ceramics, refractories and graphite.
(3) The discharge nozzle for a melting furnace according to (1) or (2), wherein the main part of the connection part is made of either ceramics or refractory or both having electrical insulation.
(4) the heating body is a sintered body containing ZrB 2 90 to 100% by weight (1), (2) or (3) the melting furnace exhaust nozzles.
(5) From the fixing plate provided with the hot water outlet that communicates with the hot water outlet of the connecting portion, and the opening and closing plate that is slidably connected to the fixing plate and variably adjusts the opening area of the hot water outlet. The discharge nozzle for a melting furnace according to any one of the above (1) to (4), wherein the fixing plate and the opening / closing plate are at least one selected from the group consisting of a metal structure, ceramics, refractory, and graphite.
(6) The discharge nozzle for a melting furnace according to any one of (1) to (5), wherein the fixed plate and / or the opening / closing plate is a metal structure having a water cooling structure.
(7) The molten material in the melting furnace is discharged from the hot water outlet communicating with the cylindrical nozzle part, at least a part of which is a heating element of induction heating, with the flow rate adjusting part varying the opening area of the hot water outlet. In this method, the discharge of the melt is started, stopped, and the discharge amount is adjusted by using either or both of the heating control of the nozzle portion and the opening area control of the outlet by the flow rate adjusting portion. A method for discharging a melt characterized by the above.
(8) While the induction heating of the nozzle part is continued or stopped, the melt in the melting furnace is discharged from the hot water outlet while adjusting the discharge amount of the melt in the flow rate adjusting part, and it matches the discharged melt. The method for discharging a melt as described in (7) above, wherein the material to be melted is put into a melting furnace and continuously melted.

本発明の溶融炉用排出ノズルは、上記したようにノズル部の誘導加熱手段による加熱制御または流量調整部による出湯口の開口面積制御のいずれか、または両方を用いて、溶融炉内の溶融物の、排出の開始、排出量の調整、排出の停止を行うので、溶融物の出湯作業を的確かつ円滑に実施でき作業性が優れている。   As described above, the discharge nozzle for the melting furnace of the present invention uses either or both of the heating control by the induction heating means of the nozzle part and the opening area control of the outlet by the flow rate adjusting part, or both. Since the start of the discharge, the adjustment of the discharge amount, and the stop of the discharge are performed, the molten metal can be discharged accurately and smoothly, and the workability is excellent.

また、溶融物の出湯作業をノズル部の誘導加熱手段による加熱制御または流量調整部による出湯口の開口面積制御のいずれか、または両方を用いて行うので、1回の溶融ごとに被溶融物を溶融炉内に投入し、これを繰り返すことにより半連続溶融運転でき、また排出される溶融物に見合う被溶融物を溶融炉内に連続的に投入することにより連続溶融運転が容易にできる。   In addition, since the molten metal pouring operation is performed using either or both of the heating control by the induction heating means of the nozzle portion and the opening area control of the pouring gate by the flow rate adjusting portion, the melted material is melted for each melting. A semi-continuous melting operation can be performed by charging the molten material into the melting furnace and repeating this, and a continuous melting operation can be facilitated by continuously charging the melted material corresponding to the discharged melt into the melting furnace.

また、ノズル部に接続部を介して流量調整部を設けることにより、誘導加熱されるノズル部と流量調整部とが接続部の断熱層によって隔置されるので、流量調整部に対するノズル部の電磁誘導加熱の影響およびノズル部に対する流量調整部の冷却の影響を少なくでき、また誘導加熱されるノズル部に流量調整部を電気的に絶縁しかつ誘電磁場の影響を少なくして設置できる。   In addition, by providing the flow rate adjustment unit in the nozzle unit via the connection unit, the nozzle unit to be induction-heated and the flow rate adjustment unit are separated by the heat insulating layer of the connection unit. The influence of induction heating and the influence of cooling of the flow rate adjusting unit on the nozzle part can be reduced, and the flow rate adjusting part can be electrically insulated from the nozzle part to be induction heated and the influence of the dielectric magnetic field can be reduced.

本発明において溶融炉は、被溶融物を溶融できるものであれば特に制限はなく、溶融手段および被溶融物の如何を問わない。溶融手段としては、例えば誘導加熱、電気溶融加熱、バーナー加熱等が使用できる。また、被溶融物としては、生活および産業廃棄物の焼却灰、金属、金属合金、ガラス、セラミックスなど高温で溶融処理するものが例示される。   In the present invention, the melting furnace is not particularly limited as long as it can melt the material to be melted, and the melting means and the material to be melted are not limited. As the melting means, for example, induction heating, electric melting heating, burner heating or the like can be used. Examples of the material to be melted include those which are melted at a high temperature such as incineration ash, metal, metal alloy, glass, ceramics of daily life and industrial waste.

本発明の溶融炉用排出ノズル(以下、本ノズルという)は、該溶融炉の炉底または炉側面の任意の位置に設けられる溶融物の排出孔に合わせて設置可能であり、炉側面に設けるときには、底部に近い側壁の下部に設けるのが好ましい。本ノズルは、溶融炉内の溶融物を排出するための貫通孔を有する筒状のノズル部を具備している。このノズル部の形体は、貫通孔を有する筒状であれば特に制限されず、例えば円筒パイプ、多角柱パイプなどである。また、これらのパイプは軸方向にストレートまたはテーパー(彎曲を含む)つきの何れでもよく、貫通孔の形状も特に制限されず円形、楕円または多角形などのいずれでもよい。本発明において筒状のノズル部は、一体物に限らず複数の部品を組み立てて筒状に構成したノズル部も含んでいる。   The melting furnace discharge nozzle of the present invention (hereinafter referred to as the present nozzle) can be installed in accordance with the melt discharge hole provided at any position on the bottom or side of the melting furnace, and is provided on the side of the furnace. Sometimes, it is preferable to be provided in the lower part of the side wall near the bottom. This nozzle includes a cylindrical nozzle portion having a through hole for discharging the melt in the melting furnace. The shape of the nozzle part is not particularly limited as long as it has a cylindrical shape having a through hole, and is, for example, a cylindrical pipe, a polygonal pipe, or the like. In addition, these pipes may be either straight or tapered (including folds) in the axial direction, and the shape of the through hole is not particularly limited, and may be any of a circle, an ellipse, or a polygon. In the present invention, the cylindrical nozzle portion is not limited to a single unit, but also includes a nozzle portion configured by assembling a plurality of components into a cylindrical shape.

本ノズルは、ノズル部の少なくとも一部を誘導加熱の発熱体(以下、単に発熱体という)で構成し、該発熱体によって溶融物を排出するための貫通孔を実質的に形成している。つまり、発熱体の外側に後述する保温層や断熱層を設けてもよい。このようにノズル部の溶融物と接触する貫通孔部を発熱体で形成することにより、溶融物の出湯時にノズル部内の被溶融物を加熱して固化状態から溶融状態にし、溶融炉内の溶融物を排出可能にし、また必要に応じて排出中の溶融物が冷却し固まるのを防止できる。   In the present nozzle, at least a part of the nozzle portion is constituted by an induction heating heating element (hereinafter, simply referred to as a heating element), and the heating hole substantially forms a through-hole for discharging the melt. That is, you may provide the heat retention layer and heat insulation layer which are mentioned later outside a heat generating body. In this way, by forming a through-hole portion that contacts the melt of the nozzle portion with a heating element, the melted material in the nozzle portion is heated to melt from the solidified state when the melt is discharged, and the melt in the melting furnace The material can be discharged, and the melted material can be prevented from cooling and solidifying as necessary.

この発熱体の材料は、耐熱性、耐食性があれば特に制限されないが、ZrBを90〜100質量%含む焼結体は、耐食性、耐熱性、導電性のバランスが良いため特に好ましい。なお、以下の説明において、特に断りがない限り、%はすべて質量%である。 The material of the heating element is not particularly limited as long as it has heat resistance and corrosion resistance, but a sintered body containing 90 to 100% by mass of ZrB 2 is particularly preferable because it has a good balance of corrosion resistance, heat resistance, and conductivity. In the following description, all percentages are by mass unless otherwise specified.

本ノズルにおいて、上記発熱体の外側には前記したように保温層や断熱層を設けることができる。発熱体の外側に保温層や断熱層を設けると、発熱体による加熱効果が高められる、発熱体が断熱層等で保護されるため耐久性が向上する、などの効果が得られるので好ましい。この場合、保温層と断熱層の一方だけでも効果は得られるが、保温層の上に断熱層を重ねて設けることによって、より大きい効果が得られる。誘導加熱用の誘導コイルはこの断熱層等の外側に捲着される。前記保温層の材質としては、耐熱性、耐熱衝撃性を有する、例えばアルミナ含有の低セメントキャスタブルが好適し、また断熱層の材質としては、アルミナファイバー、シリカファイバー、カーボンファイバー、セラミックスファイバー、等を例示できる。   In this nozzle, a heat insulating layer and a heat insulating layer can be provided outside the heating element as described above. It is preferable to provide a heat insulating layer or a heat insulating layer on the outside of the heat generating element because the heating effect of the heat generating element is enhanced, and the durability is improved because the heat generating element is protected by the heat insulating layer or the like. In this case, the effect can be obtained by only one of the heat insulating layer and the heat insulating layer, but a larger effect can be obtained by providing the heat insulating layer on the heat insulating layer. An induction coil for induction heating is attached to the outside of the heat insulating layer or the like. As the material of the heat retaining layer, heat-resistant and thermal shock resistance, for example, alumina-containing low cement castable is suitable, and as the material of the heat insulating layer, alumina fiber, silica fiber, carbon fiber, ceramic fiber, etc. It can be illustrated.

本ノズルは、上記ノズル部のほかにノズル部の先端部に連接しノズル部の貫通孔と連通する出湯口を備えた接続部と、該接続部の出湯口の開口面積を可変に調整する流量調整部を有している。すなわち、主要部が誘導加熱の発熱体で構成されたノズル部の先端部に、出湯口を備えた接続部を介在して流量調整部が設けられており、誘導加熱手段によるノズル部の加熱制御と流量調整部による出湯口の開口面積制御により出湯作業を行うようになっている。   In addition to the nozzle part, this nozzle is connected to the tip part of the nozzle part, and has a connecting part provided with a hot water outlet that communicates with the through hole of the nozzle part, and a flow rate that variably adjusts the opening area of the hot water outlet of the connecting part It has an adjustment part. That is, a flow rate adjusting part is provided at the tip of the nozzle part, the main part of which is composed of a heating element for induction heating, with a connecting part provided with a hot water outlet, and heating control of the nozzle part by induction heating means. And the hot water discharge operation is performed by controlling the opening area of the hot water outlet by the flow rate adjusting unit.

本ノズルにおいて、前記接続部は中心部に出湯口を有する板状体または環状体で、ノズル部の発熱体と流量調整部の固定板との間に主に断熱層として設けられる。ノズル部が発熱体を有する排出ノズルでは、この接続部は断熱層として重要な役割を持っている。すなわち、この接続部は高温になる発熱体と固定板とに接して設けられており、これら両者を相互に断熱して、急激に冷却されることによって発生する熱応力で発熱体が損傷するのを防止する。さらに、固定板を発熱体から隔置して電気的に絶縁し、かつ発熱体の電磁誘導の影響を回避または軽減できるようにする。したがって、この接続部の主要部は耐熱性、耐熱衝撃性および/または電気絶縁性を有している断熱材で形成するのが好ましい。この断熱材としては、セラミックス、耐火物および黒鉛等が好ましく使用でき、これらからなる群から選ばれる1種以上を使用できる。ここで、セラミックスとは、ファインセラミックス、サーメット等が例示され、耐火物とは結合れんが、不定形耐火物、電融耐火物等が例示され、いずれも黒鉛を部分的に含有した組成物を含む(以下同じ)。   In the present nozzle, the connecting portion is a plate-like body or an annular body having a hot water outlet in the center, and is mainly provided as a heat insulating layer between the heating element of the nozzle portion and the fixed plate of the flow rate adjusting portion. In the discharge nozzle in which the nozzle portion has a heating element, the connecting portion plays an important role as a heat insulating layer. In other words, this connecting portion is provided in contact with the heating element and the fixing plate that are at a high temperature, both of which are insulated from each other, and the heating element is damaged by the thermal stress generated by rapid cooling. To prevent. Furthermore, the fixing plate is separated from the heating element and electrically insulated, and the influence of electromagnetic induction of the heating element can be avoided or reduced. Therefore, it is preferable that the main part of the connection part is formed of a heat insulating material having heat resistance, thermal shock resistance and / or electrical insulation. As this heat insulating material, ceramics, refractories, graphite and the like can be preferably used, and one or more selected from the group consisting of these can be used. Here, examples of the ceramic include fine ceramics and cermet, and examples of the refractory include bonded brick, amorphous refractory, electrofused refractory, etc., all of which include a composition partially containing graphite. (same as below).

本ノズルの好ましい実施形態において、前記流量調整部は、接続部と連接し出湯口を備えた固定板と、該固定板と共同して出湯口の開口面積を可変に調節する開閉板とから構成できる。この固定板は接続部の前記出湯口に連通する出湯口を有し、該出湯口はノズル部の貫通孔に連通している。この開閉板を固定板に対し摺動可能または開閉可能に取り付けることにより、固定板の出湯口の開口面積を可変(開口、一部開口、閉口)とし、溶融炉内の溶融物の排出作業を行うことができる。   In a preferred embodiment of the present nozzle, the flow rate adjusting portion comprises a fixing plate connected to the connecting portion and provided with a hot water outlet, and an opening / closing plate that variably adjusts the opening area of the hot water outlet in cooperation with the fixing plate. it can. The fixing plate has a hot water outlet that communicates with the hot water outlet of the connecting portion, and the hot water outlet communicates with a through hole of the nozzle portion. By attaching the open / close plate to the fixed plate in a slidable or openable manner, the opening area of the hot water outlet of the fixed plate can be made variable (open, partially open, closed), and the discharge work of the melt in the melting furnace can be performed. It can be carried out.

前記固定板は、接続部を介してノズル部の荷重の少なくとも一部を支持し、かつ高温の溶融物や発熱体の影響を受けるので、所望の耐熱性と耐荷重性を有している。また、材質によっては、発熱体を誘導加熱する誘導磁場の影響による発熱にも耐える必要がある。したがって、固定板の材質は、発熱体の温度、溶融物の融点、誘導加熱の強さ等に応じて適宜選定する。具体的には、金属構造体、セラミックス、耐火物および黒鉛からなる群から選ばれる1種以上を使用するのが好ましい。これらの中で、例えば金属構造体は固定板として好適し、特に水冷構造を有する金属構造体は、過熱を防止できるので好ましい。また、この水冷構造としては、内部に冷却媒体が循環される冷却通路を備えるウォタージャケットが好ましい。前記金属構造体は非磁性のステンレスや銅、しんちゅう等とすると、誘導加熱されないので好ましい。   Since the fixing plate supports at least a part of the load of the nozzle portion through the connection portion and is affected by a high-temperature melt or heating element, it has desired heat resistance and load resistance. In addition, depending on the material, it is necessary to withstand heat generation due to the influence of an induction magnetic field for induction heating of the heating element. Therefore, the material of the fixing plate is appropriately selected according to the temperature of the heating element, the melting point of the melt, the strength of induction heating, and the like. Specifically, it is preferable to use one or more selected from the group consisting of metal structures, ceramics, refractories, and graphite. Among these, for example, a metal structure is suitable as a fixing plate, and a metal structure having a water cooling structure is particularly preferable because it can prevent overheating. The water cooling structure is preferably a water jacket provided with a cooling passage in which a cooling medium is circulated. The metal structure is preferably made of non-magnetic stainless steel, copper, brass or the like because it is not induction heated.

なお、本ノズルにより高温で侵食性の高い溶融物を出湯する場合には、固定板と接続部のそれぞれの出湯口部分、すなわち溶融物と触れる部分を、耐食性が優れている例えばZrO質の電融鋳造耐火物やファインセラミックス等で部分的に形成することができる。 In addition, in the case of discharging hot melt at a high temperature with this nozzle, the outlet portion of each of the fixing plate and the connecting portion, that is, the portion that comes into contact with the melt, is made of, for example, ZrO 2 which has excellent corrosion resistance. It can be partially formed of an electrocast refractory or fine ceramics.

前記開閉板としては、摺動機構により固定板に密着して摺動し、固定板の出湯口の開口面積を可変に調整できる形体のものが好ましい。しかし、開閉板の形体は、固定板の出湯口の開口面積を可変に調整できるという目的が得られるものであれば、これに限定されない。また、開閉板の摺動機構は、固定板に摺動レールを取り付けて、開閉板の可動性とシール性を確保できる構造が好ましい。特に、開閉板と固定板や摺動レールとの摺動隙間を調整できる構造とすることにより、開閉板の熱膨張、摺動部の磨耗等に対応できるので好ましく使用できる。   The opening / closing plate preferably has a shape that slides in close contact with the fixed plate by a sliding mechanism and can variably adjust the opening area of the outlet of the fixed plate. However, the shape of the opening / closing plate is not limited to this as long as the purpose of variably adjusting the opening area of the outlet of the fixing plate can be obtained. Further, the opening / closing plate sliding mechanism preferably has a structure in which a sliding rail is attached to the fixed plate to ensure the mobility and sealing performance of the opening / closing plate. In particular, by adopting a structure in which the sliding gap between the opening / closing plate and the fixed plate or the sliding rail can be adjusted, it can cope with thermal expansion of the opening / closing plate, wear of the sliding portion, and the like, which can be preferably used.

開閉板の摺動は、周知の機械駆動機構により実施できる。機械駆動機構としては、直線駆動機構、リンク機構等が例示されるが、特にリンク機構とすると開閉板の遠隔微調整が容易に実施でき、かつ操作性も優れているので好ましい。開閉板を機械駆動機構で動かし出湯口の開口面積を変えることによって、溶融物の流量を制御できる。具体的には、開閉板を摺動させて、固定板の出湯口と開閉板とで形成される開口部を最大にし出湯口を全開にすること、開閉板を加減して固定板の出湯口を一部開けること、および固定板の出湯口を開閉板で完全に塞ぐことにより、それぞれ溶融物の排出量を最大、溶融物の排出量を可変設定、溶融物の排出を停止できる。   The sliding of the opening / closing plate can be performed by a known mechanical drive mechanism. Examples of the mechanical drive mechanism include a linear drive mechanism, a link mechanism, and the like. Particularly, a link mechanism is preferable because remote fine adjustment of the opening / closing plate can be easily performed and operability is excellent. The flow rate of the melt can be controlled by moving the opening / closing plate with a mechanical drive mechanism and changing the opening area of the tap. Specifically, sliding the opening / closing plate to maximize the opening formed by the fixing plate outlet and the opening / closing plate and fully opening the outlet, and adjusting the opening / closing plate to adjust the fixing plate outlet By partially opening the opening and completely closing the outlet of the fixing plate with an opening / closing plate, the discharge amount of the melt can be maximized, the discharge amount of the melt can be variably set, and the discharge of the melt can be stopped.

開閉板をこのように摺動させて溶融物の流量を制御する場合、開閉板の形体としては、開閉板に固定板の出湯口に見合うような円形孔を設け、この円形孔を固定板の出湯口に対し相対移動させて流量制御するタイプと、開閉板の先部を固定板の出湯口に対し相対移動させることにより該出湯口の開口面積を変えて流量制御するタイプ(図5参照)とに大別できる。そして、後者のタイプの開閉板では、先部に例えばV型または半円型などの切欠部を設けたものが好ましい。実用上で好ましい開閉板は、摺動機構による開閉板の位置の変化に対して、出湯口の開口面積すなわち溶融物の流通断面積の変化が略比例して変化する形体を有するものである。このように開閉板の移動量と溶融物の流通断面積の変化とが略比例していると、溶融物の排出量制御の精度が向上し、かつその排出量調整が容易にできる。開閉板の先部に前記の切欠部を設けるのもかかる理由に基づいている。   When controlling the flow rate of the melt by sliding the opening / closing plate in this way, the opening / closing plate is provided with a circular hole in the opening / closing plate corresponding to the outlet of the fixing plate, and this circular hole is formed on the fixing plate. A type in which the flow rate is controlled by moving relative to the tap, and a type in which the flow rate is controlled by changing the opening area of the tap by moving the tip of the opening / closing plate relative to the tap of the fixed plate (see FIG. 5). And can be broadly divided. The latter type of opening / closing plate is preferably provided with a notch portion such as a V shape or a semicircular shape at the front portion. A practically preferred opening / closing plate has a shape in which the change in the opening area of the tap, that is, the flow cross-sectional area of the melt changes substantially in proportion to the change in the position of the opening / closing plate by the sliding mechanism. Thus, if the movement amount of the opening / closing plate and the change in the flow cross-sectional area of the melt are substantially proportional, the accuracy of the melt discharge control can be improved and the discharge amount can be easily adjusted. The reason why the notch is provided at the tip of the opening / closing plate is also based on such a reason.

開閉板の材質は、発熱体の温度、溶融物の融点、誘導加熱の強さ等により開閉板の使用温度などが異なるので、使用温度や溶融物の種類などに応じて適宜選定できる。具体的には、金属構造体、セラミックス、耐火物および黒鉛からなる群から選ばれる1種以上を使用でき、特に水冷構造を有する非磁性のステンレス製や銅製、しんちゅう製などの金属構造体が好ましく使用できる。なお、金属構造体の水冷構造は、発熱体の温度、溶融物の融点、発熱体の誘導加熱の強さにより、適宜水冷効果の調整が可能である。   The material of the opening / closing plate varies depending on the temperature of the heating element, the melting point of the melt, the strength of induction heating, etc., and the use temperature of the opening / closing plate can be appropriately selected according to the use temperature and the type of the melt. Specifically, one or more kinds selected from the group consisting of metal structures, ceramics, refractories, and graphite can be used. Particularly, metal structures such as non-magnetic stainless steel, copper, and brass having a water-cooled structure can be used. It can be preferably used. The water cooling structure of the metal structure can appropriately adjust the water cooling effect according to the temperature of the heating element, the melting point of the melt, and the strength of induction heating of the heating element.

本発明の溶融炉用排出ノズルは、前記ノズル部の誘導加熱手段による加熱制御または前記開閉板による出湯口の開口面積制御のいずれか、または両方を用いることで、溶融物の排出の開始、排出量の調整、排出の停止を行うことを特徴とする。   The discharge nozzle for the melting furnace of the present invention uses either or both of the heating control by the induction heating means of the nozzle part and the opening area control of the outlet by the opening and closing plate, or both, to start and discharge the melt. The quantity is adjusted and the discharge is stopped.

次に、本発明の溶融炉用排出ノズルによる溶融物の排出方法について図面を参照して説明する。
図1および図2は、本発明の溶融炉用排出ノズルによる、半連続溶融運転方法および連続溶融運転方法の一例を概略的に示したものであり、本発明はこれに限定されない。なお、図には説明を分かりやすくするために、ノズル部と、流量調整部を構成する固定板と開閉板のみを記載し、接続部は省略している。
Next, a method for discharging the melt by the discharge nozzle for the melting furnace of the present invention will be described with reference to the drawings.
1 and 2 schematically show an example of a semi-continuous melting operation method and a continuous melting operation method using the melting furnace discharge nozzle of the present invention, and the present invention is not limited thereto. In order to make the explanation easy to understand, only the nozzle portion, the fixed plate and the opening / closing plate constituting the flow rate adjusting portion are shown, and the connection portion is omitted.

図1、図2には、溶融炉に設置されたノズル部および固定板と摺動可能に連接した開閉板の運転状態を示しており、図中に記載した運転状態は以下の状態を示すものである。   1 and 2 show the operating state of the opening and closing plate slidably connected to the nozzle part and the fixed plate installed in the melting furnace, and the operating state described in the figure shows the following states: It is.

ノズル部では、誘導加熱の発熱体を誘導加熱手段により誘導加熱しない状態を「加熱停止」と記載し、誘導加熱した状態を「加熱」と記載し、以下説明では、これらに関する操作をそれぞれ「加熱停止」操作、「加熱」操作とする。   In the nozzle section, the state where the induction heating heating element is not induction heated by the induction heating means is described as “heating stop”, and the state where induction heating is performed is referred to as “heating”. “Stop” operation and “heating” operation.

固定板と摺動可能に連接した開閉板では、固定板の出湯口を開閉板の非開口部で塞ぐ状態を「閉位置」と記載し、固定板の出湯口を開閉板の開口部と一致させる状態を「開位置」と記載し、固定板の出湯口と開閉板の開口部を一部一致させ出湯口の開口面積を適宜変えることで溶融物の流量を制御せしめる状態を「流量調整位置」と記載する。以下説明では、それぞれに関する操作を「閉位置」操作、「開位置」操作、「流量調整位置」操作とする。
本発明の溶融炉用排出ノズルによる半連続溶融運転方法を、図1で順を追って説明する。
For open / close plates slidably connected to the fixed plate, the state where the hot plate outlet of the fixed plate is blocked by the non-opening portion of the open / close plate is described as “closed position”, and the hot plate outlet of the fixed plate matches the open portion of the open / close plate. The state to be controlled is described as "open position", and the state in which the flow rate of the melt is controlled by appropriately changing the opening area of the hot water outlet by partially matching the outlet of the fixing plate and the opening of the opening and closing plate is referred to as the "flow adjustment position". ". In the following description, the operations related to each of them are referred to as “closed position” operation, “open position” operation, and “flow rate adjustment position” operation.
The semi-continuous melting operation method using the discharge nozzle for the melting furnace of the present invention will be described step by step with reference to FIG.

初めに、予め本ノズルの貫通孔内部に溶融物の固化物で栓を形成し、この状態で被溶融物を溶融炉に投入して運転を行う。運転は、「加熱停止」操作および「閉位置」操作の状態で行う。(図1(A))   First, a stopper is formed in advance in the through-hole of this nozzle with a solidified product of the melt, and in this state, the material to be melted is put into a melting furnace for operation. The operation is performed in a state of “heating stop” operation and “closed position” operation. (Fig. 1 (A))

溶融炉の加熱手段で被溶融物を溶融する場合は、「加熱停止」操作および「閉位置」操作を行う。溶融は、所定の溶融温度に到達後、必要に応じて一定時間溶融温度の維持を行ったのち完了する。(図1(B))   When the object to be melted is melted by the heating means of the melting furnace, a “heat stop” operation and a “closed position” operation are performed. Melting is completed after the melting temperature is maintained for a certain period of time as necessary after reaching a predetermined melting temperature. (Fig. 1 (B))

溶融が完了した後に、「加熱」操作および「開位置」操作を行う。ノズル部の貫通孔内部の栓(溶融物の固化物)は、「加熱」操作により誘導加熱の発熱体が所定の温度に達すると溶融されて排出され、次いで、炉内の溶融物の排出が開始される。なお、「加熱」操作の開始時期は、誘導加熱の発熱体の昇温に時間を要する場合は、「開位置」操作時期よりも早めに実施してもよい。(図1(C))   After melting is complete, a “heating” operation and an “open position” operation are performed. The plug inside the through hole of the nozzle part (solidified product of the melt) is melted and discharged when the heating element of induction heating reaches a predetermined temperature by the “heating” operation, and then the discharge of the melt in the furnace is performed. Be started. It should be noted that the start timing of the “heating” operation may be performed earlier than the “open position” operation timing if it takes time to raise the temperature of the heating element for induction heating. (Figure 1 (C))

溶融物の排出が開始されたら、「加熱」操作および「流量調整位置」操作を行って排出速度(流量)を調整する。溶融物の排出速度は、溶融炉内の溶融物の温度分布、溶融部の湯面高さなどにより変化するので、「流量調整位置」操作により調整できる。なお、流量調整は、本ノズルから出湯された溶融物の質量の時間変化量と、開閉板の摺動量の位置制御を組み合わせて行うことで、より正確に制御できる。(図1(D))   When the discharge of the melt is started, the “heating” operation and the “flow rate adjusting position” operation are performed to adjust the discharge speed (flow rate). The discharge rate of the melt varies depending on the temperature distribution of the melt in the melting furnace, the surface height of the molten portion, and the like, and can be adjusted by the “flow rate adjustment position” operation. The flow rate can be adjusted more accurately by combining the amount of change in the mass of the melt discharged from the nozzle with time and the position control of the sliding amount of the opening / closing plate. (Figure 1 (D))

溶融物の排出完了時は、「加熱停止」操作および「閉位置」操作を行う。炉内の溶融物は、上部の温度が相対的に低く一部未溶融物があるので、溶融炉内に一部湯を残して排出を完了するのが望ましい。これにより、次いで投入される被溶融物がスムーズに溶融を開始でき、また、炉底面部分の炉内ライニング材の急激な温度低下を防止し耐久性が維持できるなどの点でも優れる。なお、「加熱停止」操作は、溶融物の排出がスムーズであれば、「閉位置」操作よりも早めに実施してもよい。なお、溶融物の炉中残存量は、前記溶融物の質量の時間変化量計測により知るのが好ましい。溶融物の排出完了後には、ノズル部の貫通孔の中は、溶融したスラグで満たされる。(図1(E))   When the discharge of the melt is completed, a “stop heating” operation and a “closed position” operation are performed. Since the melt in the furnace has a relatively low temperature at the top and partly unmelted material, it is desirable to complete the discharge while leaving some hot water in the melting furnace. As a result, the molten material to be charged next can start melting smoothly, and it is excellent in that durability can be maintained by preventing a rapid temperature drop of the in-furnace lining material at the bottom surface of the furnace. The “stop heating” operation may be performed earlier than the “closed position” operation as long as the discharge of the melt is smooth. In addition, it is preferable to know the residual amount of the melt in the furnace by measuring the amount of change in the mass of the melt over time. After the discharge of the melt is completed, the through hole of the nozzle part is filled with the molten slag. (Figure 1 (E))

次の被溶融物の投入時は、「加熱停止」操作および「閉位置」操作を行う。ノズル部の貫通孔の中は、図1(E)で炉内に残存させた溶融物の固化物の栓が形成されており、被溶融物が該貫通孔内に混入することなく溶融が可能となる。(図1(F))
これ以降の運転は、図1(B)〜図1(F)までの繰り返しとなる。
At the time of charging the next molten material, a “heat stop” operation and a “closed position” operation are performed. In the through hole of the nozzle part, a plug of the solidified product of the melt left in the furnace in FIG. 1 (E) is formed, and the melted material can be melted without being mixed into the through hole. It becomes. (Fig. 1 (F))
The subsequent operation is repeated from FIG. 1 (B) to FIG. 1 (F).

次に、本発明の溶融炉用排出ノズルによる連続溶融運転方法の一例を、図2に従って説明する。
初めに予め本ノズルの貫通孔内部に溶融物の固化物で栓を形成し、被溶融物を溶融炉に投入して運転を開始する。運転は、「加熱停止」操作および「閉位置」操作の状態で行う。なお、溶融物の固化物による栓の形成は必須でなく、適宜実施できる。(図2(A))
Next, an example of the continuous melting operation method using the discharge nozzle for the melting furnace of the present invention will be described with reference to FIG.
First, a stopper is formed in advance in the through hole of the nozzle with a solidified product of the melt, and the operation is started after the material to be melted is put into a melting furnace. The operation is performed in a state of “heating stop” operation and “closed position” operation. In addition, formation of the plug by the solidified material of the melt is not essential and can be appropriately performed. (Fig. 2 (A))

溶融炉内に所定量の被溶融物を投入して加熱手段で溶融する場合は、「加熱停止」操作および「閉位置」操作を行う。溶融は、被溶融物を所定の溶融温度に到達せしめ、必要に応じてこの溶融温度の維持を行ったのち完了する。(図2(B))   When a predetermined amount of material to be melted is put into the melting furnace and melted by the heating means, a “heating stop” operation and a “closed position” operation are performed. Melting is completed after allowing the material to be melted to reach a predetermined melting temperature and maintaining the melting temperature as necessary. (Fig. 2 (B))

溶融が完了した後に、「加熱」操作および「開位置」操作を行う。ノズル部の貫通孔内部の前記栓は炉内の被溶融物が溶融される間に高温の状態に維持されるので、該「加熱」操作により誘導加熱の発熱体が所定の温度に達すると溶融されて排出され、次いで炉内の溶融物の排出が開始される。この場合、「加熱」操作の開始時期は、誘導加熱の発熱体の昇温に時間を要する場合は、「開位置」操作時期よりも早めに実施してもよい。なお、図2(A)の工程において、溶融物の固化物による栓の形成を行わなかった場合において、出湯開始時に未溶融物が混入するときはこれらの未溶融部物を除去し、除去した未溶融物を炉内に再投入して完全に溶融するのが望ましい。(図2(C))   After melting is complete, a “heating” operation and an “open position” operation are performed. The plug inside the through-hole of the nozzle portion is maintained at a high temperature while the melted material in the furnace is melted. Therefore, when the heating element of induction heating reaches a predetermined temperature by the “heating” operation, the plug is melted. And then the discharge of the melt in the furnace is started. In this case, the start timing of the “heating” operation may be performed earlier than the “open position” operation timing if it takes time to raise the temperature of the heating element for induction heating. In addition, in the process of FIG. 2 (A), when the plug was not formed by the solidified product of the melt, when the unmelted material was mixed at the start of the hot water, these unmelted parts were removed and removed. It is desirable that the unmelted material is re-entered into the furnace and completely melted. (Fig. 2 (C))

溶融物の排出が開始されたら、「加熱」操作および「流量調整位置」操作を行って排出速度を調整し、同時に排出速度に同期して炉内へ被溶融物の定量供給を行うことで連続溶融運転を行う。ここで、同期の意味は、被溶融物中の灰分、水分、燃焼揮発成分等の質量減少を予め考慮して、溶融排出量に見合った量の被溶融物を投入することを意味し、実質的には炉内の溶融時のレベルを検知し、概ね一定範囲に維持するように運転するのが望ましい。また、上記被溶融物の定量供給量と、本ノズルによる流量調整の結果得られる排出速度は、被溶融物の組成、融点、性状等と、溶融炉の加熱性能(溶融速度、溶融温度、形状等)から、適宜適正な範囲が選択される。本ノズルの運転方法によれば、上記種々の条件に対応して運転できる。溶融物の排出速度は、溶融炉内の溶融物の温度分布、溶融部の湯面高さなどにより変化するので、「流量調整位置」操作により調整できる。   When the discharge of the melt starts, perform the "heating" operation and the "flow rate adjustment position" operation to adjust the discharge speed, and at the same time, continuously feed the melt into the furnace in synchronism with the discharge speed. Perform melting operation. Here, the meaning of synchronization means that the mass to be melted is introduced in an amount corresponding to the melting discharge amount in consideration of the mass reduction of ash, moisture, combustion volatile components, etc. in the melt in advance. Specifically, it is desirable to operate so that the level at the time of melting in the furnace is detected and maintained in a substantially constant range. In addition, the above-mentioned quantitative supply amount of the material to be melted and the discharge speed obtained as a result of the flow rate adjustment by this nozzle are the composition, melting point, properties, etc. of the material to be melted and the heating performance of the melting furnace (melting rate, melting temperature, shape) Etc.), an appropriate range is appropriately selected. According to the operation method of this nozzle, it can drive | operate corresponding to the said various conditions. The discharge rate of the melt varies depending on the temperature distribution of the melt in the melting furnace, the surface height of the molten portion, and the like, and can be adjusted by the “flow rate adjustment position” operation.

さらに、連続溶融運転においては、「流量調整位置」操作による排出速度の制御と、被溶融物の定量供給量の制御を同時に実施することが好ましい。流量調整は、本ノズルから出湯された溶融物の時間的変化量と、開閉板の摺動量の位置制御を組み合わせて行うことで、より正確に制御できる。なお、連続溶融運転において、溶融物の組成、融点、性状等によっては「加熱」操作を行わなくとも、出湯が可能な場合もあり、このような場合は、「加熱停止」操作を行って出湯できる。(図2(D))   Furthermore, in the continuous melting operation, it is preferable to simultaneously control the discharge speed by the “flow rate adjustment position” operation and the control of the quantitative supply amount of the melt. The flow rate can be adjusted more accurately by combining the amount of change in the melt discharged from the nozzle with time and the position control of the sliding amount of the opening / closing plate. In the continuous melting operation, depending on the composition, melting point, properties, etc. of the melt, there is a case where the hot water can be discharged without performing the “heating” operation. In such a case, the “heating stop” operation is performed. it can. (Fig. 2 (D))

連続溶融運転では、基本的に図2(D)の運転操作を、必要な処理期間実施するものである。さらに、必要な処理期間が経過して溶融運転を停止する場合は、図2(D)において、前記被溶融物の定量供給を停止した後、「加熱」操作、および、「流量調整位置」操作または「開位置」操作のいずれかを行い、徐々に溶融物を排出して連続運転の湯面レベルを下げる。   In the continuous melting operation, the operation shown in FIG. 2D is basically performed for a necessary processing period. Further, when the melting operation is stopped after a necessary processing period has elapsed, in FIG. 2 (D), after stopping the quantitative supply of the melted material, a “heating” operation and a “flow rate adjusting position” operation are performed. Alternatively, perform either the “open position” operation to gradually discharge the melt and lower the level of continuous operation.

溶融物の排出完了時は、「加熱停止」操作および「閉位置」操作を行う。連続溶融運転で炉内に被溶融物の定量供給を行った場合は、特に上部の温度が低く一部未溶融物があるので、溶融炉内に該未溶融物を残した状態で、排出をいったん終了(図2(E))し、この状態で溶融炉の加熱手段により未溶融物を完全溶融した後、再度「加熱」操作、「開位置」操作を行うことにより、炉内の溶融物を完全に排出できる。(図2(F))   When the discharge of the melt is completed, a “stop heating” operation and a “closed position” operation are performed. When a constant amount of melted material is supplied into the furnace in a continuous melting operation, the temperature at the top is particularly low and there is some unmelted material, so discharge is performed with the unmelted material remaining in the melting furnace. Once finished (FIG. 2 (E)), in this state, the unmelted material is completely melted by the heating means of the melting furnace, and then the “heating” operation and the “open position” operation are performed again, whereby the melt in the furnace Can be discharged completely. (Fig. 2 (F))

以下に本発明の一実施例を図面を用いて説明する。
図3は、溶融炉の炉壁10に固定された本ノズルの概略縦断面図である。図4、図5はそれぞれ図3のA−A断面図、B−B矢視図を、さらに、図6は図5のC−C断面図を示す。
An embodiment of the present invention will be described below with reference to the drawings.
FIG. 3 is a schematic longitudinal sectional view of the main nozzle fixed to the furnace wall 10 of the melting furnace. 4 and 5 are sectional views taken along lines AA and BB in FIG. 3, respectively, and FIG. 6 is a sectional view taken along line CC in FIG.

図3において、溶融炉の炉壁10は、内面ライニング材11および外面ライニング材12から構成され、溶融炉内の溶融物を排出するための取出し孔13を有している。本ノズルの取り付け位置は、本実施例に制約されることなく、溶融炉の底面部、側面部等、溶融炉の出湯を行う取出し孔13が設けられる任意の位置に選定できる。   In FIG. 3, the furnace wall 10 of the melting furnace is composed of an inner surface lining material 11 and an outer surface lining material 12, and has a take-out hole 13 for discharging the melt in the melting furnace. The mounting position of the nozzle is not limited to the present embodiment, and can be selected at any position where the take-out hole 13 for discharging the melting furnace is provided, such as the bottom and side portions of the melting furnace.

本ノズルは、溶融物を排出するための貫通孔29を有する、少なくとも一部が誘導加熱の発熱体21からなる筒状のノズル部20と、該ノズル部20に連接し出湯口35を有する接続部32と、該接続部32に連接し中心部に接続部の出湯口と連通する出湯口35を有する固定板31に、開閉板40を摺動可能に取り付けしてなる流量調整部30とからなり、該ノズル部20の誘導加熱手段による加熱制御または該流量調整部30の開閉板40による出湯口35の開口面積制御のいずれか、または両方を用いて、溶融物の排出の開始、排出量の調整、排出の停止を行うようになっている。   This nozzle has a through-hole 29 for discharging the melt, a cylindrical nozzle portion 20 made of at least a part of a heating element 21 of induction heating, and a connection having an outlet 35 connected to the nozzle portion 20. And a flow rate adjusting unit 30 that is slidably attached to an opening / closing plate 40 on a fixed plate 31 having a hot water outlet 35 connected to the connecting portion 32 and connected to the hot water outlet of the connecting portion in the center. The start of the discharge of the melt, the discharge amount using either or both of the heating control by the induction heating means of the nozzle unit 20 and the opening area control of the tap 35 by the opening / closing plate 40 of the flow rate adjusting unit 30 Adjustment and stop of discharge.

本ノズルにおいて、ノズル部20は、貫通孔29が形成された筒状の発熱体21、筒状の保温層22、筒状の断熱層23、さらにその外周部に発熱体21を誘導加熱するための誘導コイル24を内側からこの順で配置して構成されている。このノズル部20は、発熱体21および保温層22の上端に被冠したキャップ25を便宜的に介して、溶融炉の外面ライニング材12に貫通孔29と取出し孔13とを一致させて取り付けられる。なお、図示しないが誘導コイル24には誘導電源が接続され、発熱体21を誘導加熱することによりノズル部の温度制御ができるようになっている。   In this nozzle, the nozzle portion 20 is for inductively heating the heating element 21 to the cylindrical heating element 21 with the through-hole 29 formed therein, the cylindrical heat insulating layer 22, the cylindrical heat insulating layer 23, and the outer periphery thereof. The induction coils 24 are arranged in this order from the inside. The nozzle portion 20 is attached to the outer surface lining material 12 of the melting furnace so that the through hole 29 and the extraction hole 13 coincide with each other through a cap 25 covered with the upper end of the heating element 21 and the heat retaining layer 22 for convenience. . Although not shown, an induction power source is connected to the induction coil 24 so that the temperature of the nozzle portion can be controlled by induction heating of the heating element 21.

発熱体21は、図4に示すように中空円筒形状であり、その長さ寸法および径は誘導電源の周波数、材料の比抵抗、比透磁率などにより最適な範囲に決められる。例えば、発熱体21の材質がZrB100%では、中空円筒形状の半径方向の厚みが概略20〜50mm,高さが20mm以上とすると、効率の良い発熱ができ好ましい。 As shown in FIG. 4, the heating element 21 has a hollow cylindrical shape, and its length and diameter are determined in an optimum range depending on the frequency of the induction power source, the specific resistance of the material, the relative permeability, and the like. For example, when the material of the heating element 21 is ZrB 2 100%, it is preferable that the thickness of the hollow cylindrical shape in the radial direction is approximately 20 to 50 mm and the height is 20 mm or more because efficient heat generation is possible.

キャップ25は溶融物と直接接触するので、耐食性に優れる材質が好ましい。例えば、ZrBを50〜100%含む不定形耐火物は、耐食性に優れ、複雑形状の成形も容易で、かつ経済性もあるため好ましい。なお、キャップ25と外面ライニング材12との接合面には、モルタル目地を設けることで、湯漏れ防止ができる。保温層22は、耐熱性、耐熱衝撃性を有するものが好ましく、不定形耐火物とすると、複雑形状の成形も容易で、経済性もあるため好ましい。断熱層23は、使用温度での断熱性能を有し、また、保温層22と誘導コイル24との隙間の熱膨張を吸収できるものが好ましく、耐熱性のファイバーやボード等が好ましく使用できる。 Since the cap 25 is in direct contact with the melt, a material having excellent corrosion resistance is preferable. For example, an amorphous refractory containing 50 to 100% of ZrB 2 is preferable because it is excellent in corrosion resistance, easy to form a complicated shape, and economical. In addition, the joint surface of the cap 25 and the outer surface lining material 12 can prevent hot water leakage by providing a mortar joint. The heat insulating layer 22 preferably has heat resistance and thermal shock resistance, and an amorphous refractory is preferable because it can easily form a complex shape and is economical. The heat insulating layer 23 has heat insulating performance at the operating temperature, and preferably can absorb the thermal expansion of the gap between the heat insulating layer 22 and the induction coil 24, and heat resistant fibers, boards, and the like can be preferably used.

本ノズルにおいて固定板31は、実質的に金属構造体により形成されている。以下、固定板を金属構造体31として説明する。金属構造体31は水冷構造を有し、図示しない冷却配管および冷却機構により冷却される。金属構造体31の材質としては、非磁性のステンレスや、銅、しんちゅうなどが、誘導加熱の影響を受けにくくかつ良好な水冷効果が得られるので好ましい。このような金属構造体31において、高温の溶融物と直接接触する出湯口35の周辺は、溶融物に対する耐食性が大きい出湯部材34で形成できる。この出湯部材の材質としては、耐食性の優れた金属、セラミックス、耐火物等が好ましい。   In this nozzle, the fixing plate 31 is substantially formed of a metal structure. Hereinafter, the fixing plate will be described as the metal structure 31. The metal structure 31 has a water cooling structure and is cooled by a cooling pipe and a cooling mechanism (not shown). As the material of the metal structure 31, nonmagnetic stainless steel, copper, brass or the like is preferable because it is not easily affected by induction heating and a good water cooling effect is obtained. In such a metal structure 31, the periphery of the hot water outlet 35 that is in direct contact with the high-temperature melt can be formed by the hot water member 34 having high corrosion resistance against the melt. As the material of the hot water member, metals, ceramics, refractories and the like having excellent corrosion resistance are preferable.

誘導加熱の発熱体21と水冷される金属構造体31との間には、上記接続部32が設けられている。本ノズルのようにノズル部が発熱体21を有する排出ノズルでは、この接続部32は断熱層として重要な役割を持っている。すなわち、この接続部32は高温になる発熱体21と水冷される金属構造体31とに接して設けられており、これら両者を相互に断熱し、急激に冷却されることによって発生する熱応力で発熱体21が損傷するのを防止し、かつ金属構造体31の周辺で溶融物が急激に冷却され、凝固物によりノズルが閉塞するのを防止する。接続部32の材質としては、セラミックス、耐火物および黒鉛等を適宜使用でき、特に該接続部の出湯口35の周辺は、前記の固定板と同様に出湯部材33を設け、該出湯部材33を耐食性の高いセラミックス、耐火物等で形成するのが好ましい。   The connecting portion 32 is provided between the induction heating heating element 21 and the water-cooled metal structure 31. In the discharge nozzle in which the nozzle portion has the heating element 21 as in this nozzle, the connection portion 32 has an important role as a heat insulating layer. That is, the connecting portion 32 is provided in contact with the heat generating element 21 that becomes high temperature and the metal structure 31 that is water-cooled, both of which are insulated from each other, and by the thermal stress generated by rapid cooling. The heating element 21 is prevented from being damaged, and the melt is rapidly cooled around the metal structure 31 to prevent the nozzle from being blocked by the solidified substance. As the material of the connection part 32, ceramics, refractory, graphite and the like can be used as appropriate. In particular, a hot water outlet member 33 is provided around the hot water outlet 35 of the connection part in the same manner as the fixing plate. It is preferable to form with high corrosion-resistant ceramics, refractories and the like.

開閉板40は、流量調整部30の金属構造体31に設置された摺動レール41によりシール性と摺動性を有して取り付けられ、連結機構42を介して駆動機構43により摺動できる。開閉板40を駆動機構43で摺動レール41に沿って動かし、固定板31に設けた出湯口35を開口しまたはその一部もしくは全部を開閉板40で塞ぐことにより、出湯口35の開口面積を全開、全閉を含み任意に調整できる。   The opening / closing plate 40 is attached with a sealing property and a sliding property by a sliding rail 41 installed on the metal structure 31 of the flow rate adjusting unit 30, and can be slid by a driving mechanism 43 through a coupling mechanism 42. The opening / closing plate 40 is moved along the slide rail 41 by the drive mechanism 43, and the hot water outlet 35 provided on the fixed plate 31 is opened or part or all of the hot water outlet 35 is closed by the open / close plate 40. Can be adjusted arbitrarily, including fully open and fully closed.

開閉板40は、金属構造体、セラミックス、耐火物および黒鉛からなる群から選ばれる1種以上で形成でき、特に開閉板40を水冷構造を有する金属構造体にして冷却すると、金属の酸化や溶融物による侵食などを軽減でき耐久性が得られるので好ましい。開閉板40を水冷構造とする場合は、図示しない冷却配管および冷却機構により冷却を行う。   The opening / closing plate 40 can be formed of at least one selected from the group consisting of a metal structure, ceramics, refractory, and graphite. In particular, when the opening / closing plate 40 is cooled to a metal structure having a water cooling structure, the metal is oxidized or melted. It is preferable because erosion caused by objects can be reduced and durability can be obtained. When the opening / closing plate 40 has a water cooling structure, cooling is performed by a cooling pipe and a cooling mechanism (not shown).

本ノズルの支持構造50は、溶融炉の周辺に設けられた固定部材52に設置された支持部材51により固定板31を固定支持して行う。ここで、支持構造50は、ノズル部が熱膨張により膨張するので、この長さ変化に追従して、支持部材51を収縮可能にし、ノズル部への熱応力を緩和しかつ一定の荷重で支持できる構造が好ましい。例えば、支持部材51をコイルバネ等の弾性体と組み合わせて構成するのが経済性等の点で好ましい。さらに、支持構造50の構成材料は、通常金属などで構成されるが、誘導コイル24に近すぎると、誘導コイル24の周辺に生ずる誘導磁束の影響を受け発熱することがあるので、非磁性のステンレス等を使用するのが好ましい。   The nozzle support structure 50 is performed by fixing and supporting the fixing plate 31 by a supporting member 51 installed on a fixing member 52 provided around the melting furnace. Here, since the nozzle portion expands due to thermal expansion, the support structure 50 follows the change in length, enables the support member 51 to contract, relieves thermal stress on the nozzle portion, and supports with a constant load. A possible structure is preferred. For example, the support member 51 is preferably combined with an elastic body such as a coil spring from the viewpoint of economy. Furthermore, the constituent material of the support structure 50 is usually made of metal or the like, but if it is too close to the induction coil 24, it may generate heat due to the influence of the induction magnetic flux generated around the induction coil 24. It is preferable to use stainless steel or the like.

(実施例1)
溶融炉の炉壁10および本ノズルは図3〜6に示すものと同様の構成とした。溶融炉は、高周波誘導加熱式の溶融炉を用い、溶融炉の炉壁10に取出し孔13を設けたものを用いた。さらに本ノズルは、溶融炉の架台に接合して設けた固定部材52より、コイルバネを組み合わせた支持部材51を介して、熱膨張を吸収可能に該溶融炉の炉壁10に取り付ける構造とした。
Example 1
The furnace wall 10 and the nozzle of the melting furnace have the same configuration as that shown in FIGS. As the melting furnace, a high frequency induction heating type melting furnace was used, and a furnace wall 10 of the melting furnace provided with an extraction hole 13 was used. Further, the nozzle is configured to be attached to the furnace wall 10 of the melting furnace through a support member 51 combined with a coil spring from a fixing member 52 that is joined to the frame of the melting furnace so as to absorb thermal expansion.

本ノズルのノズル部20は、発熱体21として内径38mm、外径92mm、長さ250mmの円筒形状であってZrBを98%含むホウ化ジルコニウム質焼結体、保温層22としてアルミナ78%を含有する低セメントキャスタブルの焼成品、断熱材23として最高使用温度1500℃のアルミナファイバー、キャップ25として取出し孔13を有するZrBを94%含むホウ化ジルコニウム質不定形耐火物の焼成品をそれぞれ使用した。
誘導コイル24は、内径200mm、高さ170mmの高周波誘導コイルを使用し、出力30kW、周波数2.6kHzの誘導加熱電源を別途用意した。
The nozzle portion 20 of the present nozzle has a cylindrical shape with an inner diameter of 38 mm, an outer diameter of 92 mm, and a length of 250 mm as the heating element 21, a zirconium boride sintered body containing 98% of ZrB 2, and 78% of alumina as the heat retaining layer 22. Contains low-cement castable calcined product, alumina fiber with a maximum operating temperature of 1500 ° C. as the heat insulating material 23, and calcined product of zirconium boride amorphous refractory containing 94% of ZrB 2 having a take-out hole 13 as the cap 25, respectively. did.
As the induction coil 24, a high-frequency induction coil having an inner diameter of 200 mm and a height of 170 mm was used, and an induction heating power source having an output of 30 kW and a frequency of 2.6 kHz was separately prepared.

流量調整部30の固定板31は、厚み40mmで水冷構造を有するSUS310製の金属構造体とし、接続部32は厚み30mmでSiC70%の耐火材とし、前記金属構造体の水冷構造は、内部に複数の冷却通路を設け、図示しない冷却配管および冷却装置により該冷却通路に冷却水を流通させて、冷却水の温度で50℃を超えないように水冷した。さらに、接続部32の出湯口周辺には、厚み30mmで内径38mm、外径100mmの円筒形状で、ZrO94%を含む電融鋳造レンガからなる出湯部材33を設けた。 The fixing plate 31 of the flow rate adjusting unit 30 is a metal structure made of SUS310 having a thickness of 40 mm and a water cooling structure, the connection portion 32 is a fire resistant material of 30 mm thickness and SiC 70%, and the water cooling structure of the metal structure is formed inside. A plurality of cooling passages were provided, and cooling water was circulated through the cooling passages by a cooling pipe and a cooling device (not shown), and the water was cooled so that the temperature of the cooling water did not exceed 50 ° C. Further, around the hot water outlet of the connecting portion 32, a hot water outlet member 33 made of electrocast bricks having a thickness of 30 mm, an inner diameter of 38 mm, and an outer diameter of 100 mm and containing 94% of ZrO 2 was provided.

開閉板40は、厚み25mmで水冷構造を有する銅製の金属構造体とし、前記固定板と同じように内部に複数の冷却通路を設け、該冷却通路に冷却水を通して冷却水の温度で50℃を超えないように水冷した。   The open / close plate 40 is a copper metal structure having a thickness of 25 mm and having a water cooling structure. Like the fixing plate, a plurality of cooling passages are provided inside, and the cooling water is passed through the cooling passage and the temperature of the cooling water is 50 ° C. Water-cooled so as not to exceed.

開閉板40は、流量調整部30の固定板(金属構造体)31に取り付けたSUS310製の摺動レール41に摺動可能かつ密着性を有する精度で取り付け、さらに、開閉板40の駆動機構43として油圧シリンダを使用し、その連結機構42を開閉板40に連結して、開閉板を開閉できるようにした。開閉板40の形状は、図5に示すように先部にV形状の切欠部44を有するものとした。   The opening / closing plate 40 is attached to the sliding rail 41 made of SUS310 attached to the fixed plate (metal structure) 31 of the flow rate adjusting unit 30 with a precision that is slidable and adhesive, and further, a drive mechanism 43 of the opening / closing plate 40. A hydraulic cylinder is used, and the connecting mechanism 42 is connected to the opening / closing plate 40 so that the opening / closing plate can be opened and closed. As shown in FIG. 5, the opening / closing plate 40 has a V-shaped cutout 44 at the tip.

被溶融物としては、化学成分で、B 4.1%、NaO 6.3%、MgO 1.0%、Al 7.9%、SiO2 56.5%、CaO 10.7%、Fe 1.9%なる焼却灰を用いた。 As an object to be melt, the chemical components, B 2 O 3 4.1%, Na 2 O 6.3%, 1.0% MgO, Al 2 O 3 7.9%, SiO2 56.5%, CaO 10 Incinerated ash of 0.7% and Fe 2 O 3 1.9% was used.

上記溶融炉で該被溶融物を図1に示した半連続溶融運転方法によって溶融した。初めに、予め本ノズルの貫通孔内部に溶融物の固化物で栓をした後、「加熱停止」操作および「閉位置」操作を行い、被溶融物として焼却灰60kgを溶融炉に投入した。次いで、「加熱停止」操作および「閉位置」操作の状態で、溶融炉の加熱手段で被溶融物を80分加熱して約1400℃で溶融した。   In the melting furnace, the material to be melted was melted by the semi-continuous melting operation method shown in FIG. First, the through hole of the nozzle was previously plugged with a solidified product of the melt, followed by a “stop heating” operation and a “closed position” operation, and 60 kg of incinerated ash was introduced into the melting furnace as the melt. Next, in a state of “stop heating” operation and “closed position” operation, the material to be melted was heated for 80 minutes by the heating means of the melting furnace and melted at about 1400 ° C.

溶融が完了した後に、「加熱」操作および「開位置」操作を行った。ここで「加熱」操作は、「開位置」操作時期よりも早めに実施し予め発熱体21の温度を約700℃に維持し、「開位置」操作後に誘導加熱の発熱体を誘導加熱により1000℃/hの速度で加熱を行った。ノズル部の貫通孔内部の栓は、その後に発熱体21の温度が約900℃に達すると排出され、次いで、炉内の溶融物の排出が開始された。
溶融物の排出が開始されたら、「加熱」操作および「流量調整位置」操作を行い、排出速度を5kg/分に調整した。
After melting was complete, a “heating” operation and an “open position” operation were performed. Here, the “heating” operation is performed earlier than the “open position” operation timing, and the temperature of the heating element 21 is previously maintained at about 700 ° C. After the “open position” operation, the heating element for induction heating is 1000 by induction heating. Heating was performed at a rate of ° C / h. The plug inside the through hole of the nozzle part was then discharged when the temperature of the heating element 21 reached about 900 ° C., and then the discharge of the melt in the furnace was started.
When the discharge of the melt was started, a “heating” operation and a “flow rate adjusting position” operation were performed, and the discharge speed was adjusted to 5 kg / min.

炉内の溶融物は、上部の温度が相対的に低く一部未溶融物があったので、溶融炉内に湯を約10kg残して「加熱停止」操作および「閉位置」操作を行い排出を停止した。このとき、溶融炉の炉壁10の内面ライニング材11付近は、溶融物でコーティングされており、溶融物の排出による急激な温度低下が防止された。さらに、排出停止後には、ノズル部の貫通孔の中は溶融したスラグで満たされた。   Since the melt in the furnace had a relatively low temperature at the top and partly unmelted, left about 10 kg of hot water in the melting furnace and performed “stop heating” and “closed position” operations to discharge the melt. Stopped. At this time, the vicinity of the inner surface lining material 11 of the furnace wall 10 of the melting furnace was coated with the melt, and a sudden temperature drop due to the discharge of the melt was prevented. Furthermore, after the discharge was stopped, the through hole of the nozzle part was filled with molten slag.

次に、「加熱停止」操作および「閉位置」操作を行った状態で、被溶融物を投入した。この時、ノズル部の貫通孔の中は、溶融物の固化物の栓が形成されており、被溶融物の混入はみられなかった。   Next, the material to be melted was charged in a state where the “heat stop” operation and the “closed position” operation were performed. At this time, a plug of the solidified product of the melt was formed in the through hole of the nozzle part, and no contamination of the melt was observed.

これ以降、上記溶融の繰り返し運転を40回行い、焼却灰の溶融を行った。繰り返し運転の各操作において、溶融物の排出の開始、排出量の調整、排出の停止がスムーズに実施でき、特に、溶融物の排出の開始、排出量の調整における溶融物の閉塞がなく、また溶融物の排出の停止時における溶融物の漏れがないことが確認された。さらに溶融後の溶融物中に未溶融物が含まれないことが判った。   Thereafter, the above melting repeated operation was performed 40 times, and the incinerated ash was melted. In each operation of repeated operation, the start of discharge of the melt, adjustment of the discharge amount, and stop of the discharge can be carried out smoothly, and in particular, there is no blockage of the melt in the start of discharge of the melt, adjustment of the discharge amount, and It was confirmed that there was no leakage of the melt when the discharge of the melt was stopped. Further, it was found that the unmelted material was not contained in the melted material after melting.

(実施例2)
実施例1と同様の構成の本ノズルおよび被溶融物を用いて、図2に示した連続溶融運転方法にて実施した。初めに、予め本ノズルの貫通孔内部に溶融物の固化物で栓を形成し、次いで「加熱停止」操作および「閉位置」操作を行い、被溶融物として焼却灰60kgを溶融炉に投入した。
(Example 2)
The present nozzle having the same configuration as in Example 1 and the material to be melted were used in the continuous melting operation method shown in FIG. First, a stopper is formed in advance in the through hole of the nozzle with a solidified product of the melt, followed by a “stop heating” operation and a “closed position” operation, and 60 kg of incinerated ash as the material to be melted is put into the melting furnace. .

次いで、「加熱停止」操作および「閉位置」操作を維持し、溶融炉の加熱手段で被溶融物を80分加熱し約1400℃で溶融した。溶融が完了した後に、「加熱」操作および「開位置」操作を行った。ここで、「加熱」操作は「開位置」操作の時期よりも早めに実施して予め発熱体21の温度を約700℃に維持し、「開位置」操作後に誘導加熱の発熱体を誘導加熱により1000℃/hの速度で加熱を行った。その後、ノズル部の貫通孔内部の栓は発熱体21の温度が約900℃に達すると排出され、次いで、炉内の溶融物の排出が開始された。   Next, the “stop heating” operation and the “closed position” operation were maintained, and the material to be melted was heated for 80 minutes with the heating means of the melting furnace and melted at about 1400 ° C. After melting was complete, a “heating” operation and an “open position” operation were performed. Here, the “heating” operation is performed earlier than the timing of the “open position” operation to maintain the temperature of the heating element 21 at about 700 ° C. in advance, and the induction heating heating element is induction heated after the “open position” operation. Was heated at a rate of 1000 ° C./h. Thereafter, the plug inside the through hole of the nozzle portion was discharged when the temperature of the heating element 21 reached about 900 ° C., and then discharge of the melt in the furnace was started.

溶融物の排出が開始されたら、炉内へ被溶融物を0.75kg/分でスクリューフィーダーにより定量供給を行い、また同時に、「加熱」操作および「流量調整位置」操作を行い、溶融炉内の湯面高さが溶融物の排出の開始時の高さを維持するように、排出速度を調整し、連続溶融運転を行った。なお、被溶融物の投入量0.75kg/分に対して被溶融物中の灰分、水分、燃焼揮発成分等の質量減少があるため、溶融物は投入量の15%減に相当する排出速度で排出された。なお、ここで、「加熱」操作は、発熱体21の温度を900℃に維持するよう誘導加熱を行い、連続運転の期間において発熱体21の温度が900℃を超えた場合は、誘導加熱を停止するよう制御を行った。これ以降、上記連続溶融運転を継続して行い被溶融物2000kgの溶融を行った。   When the discharge of the melt is started, the melted material is supplied into the furnace at a rate of 0.75 kg / min by a screw feeder, and at the same time, the "heating" operation and the "flow rate adjusting position" operation are performed. The melt speed was adjusted so that the molten metal surface height maintained the height at the start of the discharge of the melt, and the continuous melting operation was performed. In addition, since there is a decrease in the mass of ash, moisture, combustion volatile components, etc. in the melt with respect to the melt input of 0.75 kg / min, the melt discharge rate corresponds to a 15% reduction in the charge. Was discharged at. Here, in the “heating” operation, induction heating is performed so as to maintain the temperature of the heating element 21 at 900 ° C. If the temperature of the heating element 21 exceeds 900 ° C. during the continuous operation period, the induction heating is performed. Control was performed to stop. Thereafter, the above continuous melting operation was continued to melt 2000 kg of the material to be melted.

さらに、溶融処理の停止時は、被溶融物の定量供給を停止した後、「加熱」操作を維持したまま「開位置」操作を行い徐々に連続運転の湯面レベルを下げて、溶融物を排出した。連続溶融運転中において、炉内に被溶融物の定量供給を行った場合、炉上部の温度が低く一部未溶融物がみられたので、溶融炉内に湯を10kg残して「加熱停止」操作および「閉位置」操作を行い排出をいったん終了した。このとき、溶融炉の炉壁10の内面ライニング材11付近は、溶融物でコーティングされており、溶融物の排出による急激な温度低下が防止された。   In addition, when the melting process is stopped, after stopping the quantitative supply of the melt, perform the “open position” operation while maintaining the “heating” operation, gradually lower the molten metal level in continuous operation, Discharged. During the continuous melting operation, when a constant amount of melt was supplied into the furnace, the temperature at the top of the furnace was low and some unmelted material was found. The operation and the “closed position” operation were performed and the discharge was once completed. At this time, the vicinity of the inner surface lining material 11 of the furnace wall 10 of the melting furnace was coated with the melt, and a sudden temperature drop due to the discharge of the melt was prevented.

次に、溶融炉の加熱手段により、未溶融物を完全溶融した後、再度「加熱」操作、「開位置」操作を行い炉内の溶融物を排出した。
本実施例では、上記の運転により焼却灰の溶融を行った。運転の各操作において、溶融物の排出の開始、排出量の調整、排出の停止がスムーズに実施でき、特に、溶融物の排出の開始、排出量の調整における溶融物の閉塞がなく、また溶融物の排出の停止時における溶融物の漏れがないことが確認された。さらに溶融後の溶融物中に未溶融物は含まれていなかった。
Next, after the unmelted material was completely melted by the heating means of the melting furnace, the “heating” operation and the “open position” operation were performed again to discharge the melt in the furnace.
In this example, the incineration ash was melted by the above operation. In each operation of the operation, it is possible to smoothly start the discharge of the melt, adjust the discharge amount, and stop the discharge, in particular, there is no clogging of the melt in the start of discharge of the melt, adjustment of the discharge amount, and the melting It was confirmed that there was no leakage of the melt when the discharge of the material was stopped. Furthermore, the unmelted material was not contained in the melted material after melting.

特に、連続溶融の定常運転時においては、被溶融物の定量供給に対して、溶融炉内の湯面高さを溶融開始時の高さに維持するように排出速度を調整することが、「加熱」操作および「流量調整位置」操作により容易に実施することが可能であって、運転費用が安く、操作性に優れることが判った。   In particular, during the continuous operation of continuous melting, it is possible to adjust the discharge speed so that the molten metal surface height in the melting furnace is maintained at the height at the start of melting, with respect to the quantitative supply of the melt. It can be easily carried out by the “heating” operation and the “flow rate adjusting position” operation, and it has been found that the operation cost is low and the operability is excellent.

さらに、溶融炉内の湯面高さを一定に維持することで、炉内の内面ライニング材への熱衝撃を回避できるので亀裂の発生を防止でき、また、湯面の上部、下部に応じて雰囲気中の酸化還元状態を一定に維持できるので、炉の湯面の上部には特に耐酸化性を有する材料を、湯面の下部には特に耐食性の高い材質を選定使用でき、もって溶融炉の運転費用を安くできるなどの特長が見出された。   Furthermore, by maintaining the molten metal surface height in the melting furnace constant, it is possible to avoid thermal shock to the inner lining material in the furnace, so that cracks can be prevented, and depending on the upper and lower parts of the molten metal surface Since the oxidation-reduction state in the atmosphere can be kept constant, it is possible to select and use a material with particularly high oxidation resistance at the upper part of the hot water surface of the furnace and a material with particularly high corrosion resistance at the lower part of the hot water surface. Features such as lower operating costs were found.

本発明は、溶融炉の排出用ノズル部の誘導加熱手段による加熱制御、またはノズル部の先部における開閉板による出湯口の開口面積制御のいずれか、または両方を用いて行うことにより、出湯口における溶融物の排出の開始、排出量の調整、排出の停止を的確に行うことができるので、焼却灰などの溶融炉に好ましく使用できる。   According to the present invention, there is provided a hot water outlet by performing either or both of the heating control by the induction heating means of the discharge nozzle portion of the melting furnace and the opening area control of the hot water outlet by the opening / closing plate at the tip of the nozzle portion. Since it is possible to accurately start the discharge of the melt, adjust the discharge amount, and stop the discharge, it can be preferably used in a melting furnace such as incineration ash.

本発明の溶融炉用排出ノズルによる半連続溶融運転方法の実施例を示す説明図。Explanatory drawing which shows the Example of the semi-continuous melting operation method by the discharge nozzle for melting furnaces of this invention. 本発明の溶融炉用排出ノズルによる連続溶融運転方法の実施例を示す説明図。Explanatory drawing which shows the Example of the continuous melting operation method by the discharge nozzle for melting furnaces of this invention. 本発明の好ましい実施形態である溶融炉用排出ノズルの概略縦断面図。The schematic longitudinal cross-sectional view of the discharge nozzle for melting furnaces which is preferable embodiment of this invention. 図3のA−A断面図。AA sectional drawing of FIG. 図3のB−B矢視図。The BB arrow line view of FIG. 図5のC−C断面図。CC sectional drawing of FIG.

符号の説明Explanation of symbols

10:炉壁 11:内面ライニング材
12:外面ライニング材 13:取出し孔
20:ノズル部 21:発熱体
22:保温層 23:断熱層
24:誘導コイル 25:キャップ
29:貫通孔 30:流量調整部
31:固定板(金属構造体) 32:接続部
33、34:出湯部材 35:出湯口
40:開閉板 41:摺動レール
42:連結機構 43:駆動機構
44:切欠部 50:支持構造
51:支持部材 52:固定部材
10: Furnace wall 11: Inner lining material 12: Outer lining material 13: Extraction hole 20: Nozzle part 21: Heat generating element 22: Thermal insulation layer 23: Heat insulation layer 24: Induction coil 25: Cap 29: Through hole 30: Flow rate adjustment part 31: Fixing plate (metal structure) 32: Connection portion 33, 34: Hot water member 35: Hot water outlet 40: Opening / closing plate 41: Sliding rail 42: Connection mechanism 43: Drive mechanism 44: Notch portion 50: Support structure 51: Support member 52: Fixed member

Claims (8)

溶融炉で溶融された溶融物を排出するための貫通孔を有し、少なくとも一部が誘導加熱の発熱体からなる筒状のノズル部と、該ノズル部と連接し出湯口を備えた接続部と、該接続部の出湯口の開口面積を可変に調整する流量調整部と、前記ノズル部の誘導加熱手段とを具備することを特徴とする溶融炉用排出ノズル。   A cylindrical nozzle portion having a through-hole for discharging a melt melted in a melting furnace, at least a part of which is a heating element of induction heating, and a connecting portion connected to the nozzle portion and provided with a hot water outlet And a flow rate adjusting unit that variably adjusts the opening area of the outlet of the connecting portion, and induction heating means for the nozzle unit. 接続部の主要部が、セラミックス、耐火物および黒鉛からなる群から選ばれる1種以上からなる請求項1に記載の溶融炉用排出ノズル。   The discharge nozzle for a melting furnace according to claim 1, wherein the main part of the connection part is made of at least one selected from the group consisting of ceramics, refractories and graphite. 接続部の主要部が、電気絶縁性を有する、セラミックスまたは耐火物のいずれか、または両方からなる請求項1または2に記載の溶融炉用排出ノズル。   The discharge nozzle for a melting furnace according to claim 1 or 2, wherein the main part of the connection part is made of either ceramics or refractory or both having electrical insulation. 発熱体がZrBを90〜100質量%含む焼結体である請求項1、2または3に記載の溶融炉用排出ノズル。 Melting furnace outlet nozzle according to claim 1, 2 or 3 heating element is a sintered body containing ZrB 2 90 to 100% by weight. 流量調整部が、接続部の出湯口と連通する出湯口を備えた固定板と、該固定板と摺動可能に連接し前記出湯口の開口面積を可変に調整する開閉板とからなり、固定板および開閉板が金属構造体、セラミックス、耐火物および黒鉛からなる群から選ばれる1種以上からなる請求項1〜4のいずれかに記載の溶融炉用排出ノズル。   The flow rate adjustment part is composed of a fixed plate having a hot water outlet communicating with the hot water outlet of the connection part, and an open / close plate slidably connected to the fixed plate and variably adjusting the opening area of the hot water outlet. The discharge nozzle for a melting furnace according to any one of claims 1 to 4, wherein the plate and the open / close plate comprise one or more selected from the group consisting of a metal structure, ceramics, refractory, and graphite. 固定板および/または開閉板が、水冷構造を有する金属構造体である請求項1〜5のいずれかに記載の溶融炉用排出ノズル。   The discharge nozzle for a melting furnace according to any one of claims 1 to 5, wherein the fixing plate and / or the opening / closing plate is a metal structure having a water cooling structure. 溶融炉内の溶融物を、少なくとも一部が誘導加熱の発熱体からなる筒状のノズル部に連通する出湯口から、該出湯口の開口面積を流量調整部で可変して排出する方法であって、溶融物の排出の開始、排出の停止および排出量調整を、前記ノズル部の加熱制御と流量調整部による出湯口の開口面積制御のいずれか、または両方を用いることにより行うことを特徴とする溶融物の排出方法。   This is a method in which the melt in the melting furnace is discharged from a hot water outlet that communicates with a cylindrical nozzle part, at least a part of which is an induction heating heating element, by changing the opening area of the hot water outlet with a flow rate adjusting part. The discharge of the melt is stopped, the stop of the discharge, and the discharge amount adjustment are performed by using either or both of the heating control of the nozzle part and the opening area control of the outlet by the flow rate adjustment part, To discharge the melt. ノズル部の誘導加熱を継続または停止した状態で、流量調整部で溶融物の排出量を調整しながら溶融炉内の溶融物を出湯口から排出し、かつ排出される溶融物に見合う被溶融物を溶融炉内に投入し連続的に溶融する請求項7に記載の溶融物の排出方法。   While the induction heating of the nozzle part is continued or stopped, the melt in the melting furnace is discharged from the hot water outlet while adjusting the discharge amount of the melt in the flow rate adjusting part, and the molten material corresponding to the discharged melt The method for discharging a melt according to claim 7, wherein the melt is introduced into a melting furnace and continuously melted.
JP2004229660A 2004-08-05 2004-08-05 Discharge nozzle for melting furnace and discharge method of melt Withdrawn JP2006046824A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004229660A JP2006046824A (en) 2004-08-05 2004-08-05 Discharge nozzle for melting furnace and discharge method of melt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004229660A JP2006046824A (en) 2004-08-05 2004-08-05 Discharge nozzle for melting furnace and discharge method of melt

Publications (1)

Publication Number Publication Date
JP2006046824A true JP2006046824A (en) 2006-02-16

Family

ID=36025573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004229660A Withdrawn JP2006046824A (en) 2004-08-05 2004-08-05 Discharge nozzle for melting furnace and discharge method of melt

Country Status (1)

Country Link
JP (1) JP2006046824A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101242706B1 (en) * 2010-12-28 2013-03-18 재단법인 포항산업과학연구원 Heating apparatus and apparaus for manufacturing melt
KR20150022774A (en) * 2012-05-25 2015-03-04 쌩-고벵 이조베르 Device for pouring molten glass
JP2016514199A (en) * 2013-02-05 2016-05-19 イーヴイエス アイエヌティ リミテッド Solder recovery apparatus and method
CN110108125A (en) * 2019-06-06 2019-08-09 烟台华正科信实业有限公司 It is a kind of for processing the melting furnace of silicate melt
KR102289350B1 (en) * 2020-12-01 2021-08-13 주식회사 다원시스 Apparatus for controlling discharging melt and treating system comprising the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101242706B1 (en) * 2010-12-28 2013-03-18 재단법인 포항산업과학연구원 Heating apparatus and apparaus for manufacturing melt
KR20150022774A (en) * 2012-05-25 2015-03-04 쌩-고벵 이조베르 Device for pouring molten glass
KR102097388B1 (en) * 2012-05-25 2020-04-06 쌩-고벵 이조베르 Device for pouring molten glass
JP2016514199A (en) * 2013-02-05 2016-05-19 イーヴイエス アイエヌティ リミテッド Solder recovery apparatus and method
CN110108125A (en) * 2019-06-06 2019-08-09 烟台华正科信实业有限公司 It is a kind of for processing the melting furnace of silicate melt
CN110108125B (en) * 2019-06-06 2023-11-28 烟台华正科信实业有限公司 Melting furnace for processing silicate melt
KR102289350B1 (en) * 2020-12-01 2021-08-13 주식회사 다원시스 Apparatus for controlling discharging melt and treating system comprising the same

Similar Documents

Publication Publication Date Title
US7730745B2 (en) Vitrification furnace with dual heating means
CN106643147B (en) Starting melting appartus and method for high-frequency cold crucible smelting metal oxide
RU2011106575A (en) OUTLET FOR RELEASING MELT OF IRON AND OTHER METALS, AND ALSO LIQUID SLAG FROM METALLURGICAL TANKS, SUCH AS BLAST AND FUSION FURNACES
KR100261516B1 (en) Process and device for melting scrap
JP2006046824A (en) Discharge nozzle for melting furnace and discharge method of melt
JP5692216B2 (en) Silicon manufacturing method and jig
WO2010061995A1 (en) Apparatus and method for tapping melts in plasma torch melter
RU2432719C1 (en) Electromagnet process reactor
JP3746921B2 (en) Operation method of electric melting furnace
JP2001242291A (en) Device and method for incineration melting disposal of radioactive waste
RU2661322C2 (en) Method for manufacture of bimetallic electrode by electroslag cladding
JP3912717B2 (en) Radioactive waste incineration melting processing apparatus and incineration melting processing method
JP2001343108A (en) Melting furnace and its operation method
JP2000297921A (en) Slag discharging device and slag discharging method from waste melting furnace
CN111059898A (en) Triangular plasma melting furnace
JP3838616B2 (en) Radioactive waste incineration melting processing apparatus and incineration melting processing method
JP4667665B2 (en) Plasma ash melting furnace and operating method thereof
KR200289043Y1 (en) Melting system using electric resistance
JPH02110287A (en) Smelting device
JP3764641B2 (en) Electric melting furnace operation control method
JP2002303416A (en) Induction heating type continuous melting furnace
WO2003106907A1 (en) Melting furnace
JP2747983B2 (en) Method and apparatus for melting municipal solid waste incineration ash
JP2004019977A (en) Melting furnace
KR20040000749A (en) Melting system using electric resistance and method thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071106