JP2003042429A - Ash melting furnace equipment for gasifying/melting plasma, and method for its control - Google Patents

Ash melting furnace equipment for gasifying/melting plasma, and method for its control

Info

Publication number
JP2003042429A
JP2003042429A JP2001226902A JP2001226902A JP2003042429A JP 2003042429 A JP2003042429 A JP 2003042429A JP 2001226902 A JP2001226902 A JP 2001226902A JP 2001226902 A JP2001226902 A JP 2001226902A JP 2003042429 A JP2003042429 A JP 2003042429A
Authority
JP
Japan
Prior art keywords
ash
ash melting
plasma
furnace
melting furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001226902A
Other languages
Japanese (ja)
Inventor
Kentaro Saeki
健太郎 佐伯
Akira Noma
野間  彰
Keita Inoue
敬太 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2001226902A priority Critical patent/JP2003042429A/en
Publication of JP2003042429A publication Critical patent/JP2003042429A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/40Valorisation of by-products of wastewater, sewage or sludge processing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation

Abstract

PROBLEM TO BE SOLVED: To reduce the area of a site required for ash melting equipment by reducing the total energy required for ash melting without performing ash melting before starting power generation. SOLUTION: There are provided a refuse incinerator 1 where remaining heat recovery equipment 16 and power generating equipment 19 are provided, and a plasma ash melting furnace 2 for melting ash 12, 25 discharged from the incinerator 1. A bypass 27 is provided at an outlet 16a of the remaining heat recovery equipment 16 and is opened and closed with a partition plate 26, an end of which bypass 27 is connected with an ash melting burner 28 provided on the plasma ash melting furnace 2. When the power generation equipment 19 does not generate electricity, the incinerator 1 is operated in a low air ratio, and a waste gas line 20 is defined with the partition plate 26. High calorie gas 38 obtained from the incinerator 1 is supplied as a fuel to the burner 26 through the bypass 27 from the outlet 16a of the remaining heat recovery equipment 16, while increased uncombusted carbon in main ash 12 obtained from the incinerator 1 is supplied as an ash melting heating source of the plasma ash melting furnace 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、下水汚泥、都市ご
み及び産業廃棄物等の焼却灰及び事業用火力発電プラン
ト等の焼却炉から排出される焼却灰を高温プラズマで溶
融するガス化溶融プラズマ灰溶融炉設備及びその起動方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gasification and melting plasma for melting incineration ash of sewage sludge, municipal waste, industrial waste and the like and incinerator ash discharged from incinerators of commercial thermal power plants by high temperature plasma The present invention relates to an ash melting furnace facility and a starting method thereof.

【0002】[0002]

【従来の技術】従来から、下水汚泥、都市ごみ及び産業
廃棄物等はごみ焼却炉などによって焼却され、焼却後の
灰は、その資源化、減容化及び無害化を図るために、プ
ラズマ灰溶融炉などによって溶融され、溶融スラグ及び
溶融メタルとして取り出され、種々の利用に供されてい
る。このようなプラズマ灰溶融炉を使用して炉本体内で
焼却灰を溶融するには、例えば、ごみ焼却炉から排出さ
れた焼却灰を各種搬送手段及び供給手段等を経て炉本体
内に投入し、投入された焼却灰を炉底電極及び主電極間
に発生させた高温プラズマで溶融する。炉本体内で生成
された溶融スラグ及び溶融メタルは、出滓口から出滓樋
を通って排出され、図示しないコンベヤを介してスラグ
ピット及びメタルピットに導かれることになる。
2. Description of the Related Art Conventionally, sewage sludge, municipal solid waste, industrial waste, etc. are incinerated by a refuse incinerator, etc. It is melted in a melting furnace and taken out as molten slag and molten metal for various uses. In order to melt the incineration ash in the furnace main body using such a plasma ash melting furnace, for example, the incineration ash discharged from the refuse incinerator is put into the furnace main body through various transportation means and supply means. , The incinerated ash charged is melted by the high temperature plasma generated between the furnace bottom electrode and the main electrode. The molten slag and molten metal generated in the furnace body are discharged from the outlet through the outlet gutter and guided to the slag pit and the metal pit via a conveyor (not shown).

【0003】[0003]

【発明が解決しようとする課題】ところで、上記プラズ
マ灰溶融炉では、電極間にプラズマアークを発生させる
ための電気が必要である。このため、ごみ焼却炉の運転
を開始してからボイラで蒸気を発生させ、蒸気タービン
により発電機を動かして発電し始めるまでの約一日強の
間、プラズマ灰溶融炉を起動させることができないの
で、主灰ピットと飛灰ピットから灰が溢れ出ないよう
に、安全を見て三日分以上の灰貯留が可能な灰ピットを
それぞれ用意する必要があった。このような灰ピットの
増大に伴い、従来の灰溶融設備にあっては、大きな敷地
面積が必要となるので、設備費が嵩むという不具合を有
していた。しかも、発電開始前に灰溶融処理したい場合
には、電力会社などから買電する必要があるので、灰溶
融処理のコスト高を招くおそれがあった。
By the way, in the above plasma ash melting furnace, electricity is required to generate a plasma arc between the electrodes. For this reason, the plasma ash melting furnace cannot be started for about a day or more after starting the operation of the refuse incinerator, generating steam in the boiler, and moving the generator by the steam turbine to start power generation. Therefore, in order to prevent ash from overflowing from the main ash pit and the fly ash pit, it was necessary to prepare an ash pit capable of storing ash for three days or more for safety reasons. With the increase in such ash pits, the conventional ash melting facility requires a large site area, which causes a problem that the facility cost increases. In addition, if it is desired to perform the ash melting process before the start of power generation, it is necessary to purchase electricity from an electric power company or the like, which may result in a high cost of the ash melting process.

【0004】本発明はこのような実状に鑑みてなされた
ものであり、その目的は、灰溶融に要するトータルエネ
ルギーを低減させ、発電開始前の灰溶融を買電すること
なく行うことができ、灰溶融設備に必要な敷地面積を減
らすことが可能なガス化溶融プラズマ灰溶融炉設備及び
その起動方法を提供することにある。
The present invention has been made in view of such circumstances, and an object thereof is to reduce the total energy required for ash melting and to perform ash melting before the start of power generation without purchasing electricity. An object of the present invention is to provide a gasification and melting plasma ash melting furnace equipment capable of reducing the site area required for the ash melting equipment and a starting method thereof.

【0005】[0005]

【課題を解決するための手段】上記従来技術の有する課
題を解決するために、本発明においては、余熱回収設備
及び発電設備が設けられているごみ焼却炉と、該ごみ焼
却炉から排出される灰を溶融するプラズマ灰溶融炉とを
備え、前記余熱回収設備の出口部に仕切り板により開閉
されるバイパスを設け、該バイパスの端部を前記プラズ
マ灰溶融炉に設けられている灰溶融用バーナに接続し、
前記発電設備を発電していない時に、前記ごみ焼却炉を
低空気比で運転すると共に、前記ごみ焼却炉の排ガスラ
インを前記仕切り板で仕切り、前記ごみ焼却炉から得た
高カロリーガスを前記余熱回収設備の出口部より前記バ
イパスを介して前記バーナに燃料として供給する一方、
前記ごみ焼却炉から得た灰中の増加未燃炭素を前記プラ
ズマ灰溶融炉の灰溶融用加熱源として供給している。ま
た、本発明において、前記バーナは、前記プラズマ灰溶
融炉内に供給した灰の安息角に対して直角に配置されて
いることが好ましい。さらに、本発明において、前記発
電設備を発電していない時には、前記プラズマ灰溶融炉
の炉底電極の上端部は、炉本体内のスラグラインよりも
上方に配置されていることが好ましい。そして、本発明
において、前記プラズマ灰溶融炉の主電極は、炉本体内
のメタルと導通(接触)する位置に配置されていること
が好ましい。
In order to solve the above-mentioned problems of the prior art, in the present invention, a waste incinerator provided with a residual heat recovery facility and a power generation facility, and the waste incinerator are discharged. A plasma ash melting furnace for melting ash, a bypass opened and closed by a partition plate is provided at an outlet of the residual heat recovery equipment, and an end of the bypass is provided in the plasma ash melting furnace. Connect to
While not generating power in the power generation equipment, the waste incinerator is operated at a low air ratio, the exhaust gas line of the waste incinerator is partitioned by the partition plate, and high calorie gas obtained from the waste incinerator is used as the residual heat. While supplying as fuel to the burner from the outlet of the recovery facility via the bypass,
The increased unburned carbon in the ash obtained from the refuse incinerator is supplied as a heating source for ash melting in the plasma ash melting furnace. Further, in the present invention, it is preferable that the burner is arranged at a right angle to an angle of repose of ash supplied into the plasma ash melting furnace. Further, in the present invention, it is preferable that the upper end portion of the furnace bottom electrode of the plasma ash melting furnace is disposed above the slag line in the furnace body when the power generation facility is not generating power. Further, in the present invention, it is preferable that the main electrode of the plasma ash melting furnace is arranged at a position where it conducts (contacts) with the metal in the furnace body.

【0006】また、本発明は、余熱回収設備及び発電設
備が設けられているごみ焼却炉と、該ごみ焼却炉から排
出される灰を溶融するプラズマ灰溶融炉とを備えたガス
化溶融プラズマ灰溶融炉設備の起動方法であって、前記
発電設備を発電していない時に、前記ごみ焼却炉を低空
気比で運転することにより、高カロリーガスを得ると共
に灰中の未燃炭素を増加させ、前記高カロリーガスを前
記余熱回収設備の出口部より前記プラズマ灰溶融炉に設
けられている灰溶融用バーナに燃料として供給する一
方、前記増加させた未燃炭素を前記プラズマ灰溶融炉の
灰溶融用加熱源として供給し、前記プラズマ灰溶融炉を
起動させている。
Further, the present invention provides a gasified molten plasma ash equipped with a refuse incinerator provided with a residual heat recovery facility and a power generation facility, and a plasma ash melting furnace for melting ash discharged from the refuse incinerator. A method of starting a melting furnace facility, when the power generation facility is not generating power, by operating the refuse incinerator at a low air ratio, to obtain high calorie gas and increase unburned carbon in ash, While supplying the high-calorie gas from the outlet of the residual heat recovery equipment to the ash melting burner provided in the plasma ash melting furnace as a fuel, the increased unburned carbon is ash melted in the plasma ash melting furnace. It is supplied as a heating source for the plasma ash and the plasma ash melting furnace is started.

【0007】[0007]

【発明の実施の形態】以下、本発明におけるガス化溶融
プラズマ灰溶融炉設備及びその起動方法を図示の実施の
形態に基づいて詳細に説明する。ここで、図1は本発明
の実施形態のガス化溶融プラズマ灰溶融炉設備に適用さ
れるごみ焼却炉の概略図、図2は本発明の実施形態のガ
ス化溶融プラズマ灰溶融炉設備に適用されるプラズマ灰
溶融炉の概略図である。
BEST MODE FOR CARRYING OUT THE INVENTION A gasification melting plasma ash melting furnace facility and a method of starting the same according to the present invention will be described below in detail with reference to the illustrated embodiments. Here, FIG. 1 is a schematic diagram of a refuse incinerator applied to the gasification melting plasma ash melting furnace equipment of the embodiment of the present invention, and FIG. 2 is applied to the gasification melting plasma ash melting furnace equipment of the embodiment of the present invention. FIG. 3 is a schematic view of a plasma ash melting furnace to be used.

【0008】本実施形態に係るガス化溶融プラズマ灰溶
融炉設備は、図示しないごみピットからごみ供給クレー
ンによって供給されたごみを焼却するごみ焼却炉1と、
このごみ焼却炉1から排出される灰を溶融するプラズマ
灰溶融炉2とを備えている。ごみ焼却炉1は、図1に示
す如く、ホッパ3からフィーダ4を介して炉内5に投入
したごみ6を焼却する燃焼ストーカ7と、炉内5に燃焼
空気を送り込む送風機8とを有しており、これら送風機
8と炉内5との間には、調整弁9aを介して主燃焼空気
を燃焼ストーカ7に送給する第1配管10や、調整弁9
bを介して二次燃焼空気を燃焼ストーカ7の上方に送給
する第2配管11が設けられている。しかも、ごみ焼却
炉1には、燃焼ストーカ7で焼却された主灰12を灰押
出装置13に落下させるクリンカローラ14が設けられ
ており、冷却された主灰12は、灰押出装置13によっ
て図外の主灰ピットに押し出され、該主灰ピットよりプ
ラズマ灰溶融炉2に搬入されるようになっている。
The gasification melting plasma ash melting furnace equipment according to the present embodiment comprises a waste incinerator 1 for incinerating the waste supplied by a waste supply crane from a waste pit (not shown),
A plasma ash melting furnace 2 for melting the ash discharged from the refuse incinerator 1 is provided. As shown in FIG. 1, the refuse incinerator 1 has a combustion stoker 7 that incinerates the refuse 6 that is put into the furnace 5 from the hopper 3 through the feeder 4, and a blower 8 that sends combustion air into the furnace 5. Between the blower 8 and the furnace 5, the first pipe 10 for feeding the main combustion air to the combustion stoker 7 via the adjusting valve 9a and the adjusting valve 9 are provided.
A second pipe 11 for supplying secondary combustion air to above the combustion stoker 7 via b is provided. Moreover, the waste incinerator 1 is provided with a clinker roller 14 for dropping the main ash 12 incinerated by the combustion stoker 7 to the ash extruding device 13, and the cooled main ash 12 is drawn by the ash extruding device 13. It is pushed out to the outer main ash pit and is carried into the plasma ash melting furnace 2 from the main ash pit.

【0009】また、ごみ焼却炉1には、ボイラ15を有
する余熱回収設備16と、該余熱回収設備16に接続さ
れ、蒸気タービン17及び発電機18を有する発電設備
19とが設けられており、余熱回収設備16の出口部1
6aには、ごみ焼却炉1の通常の排ガスライン20を構
成する減温塔21、バグフィルタ22、煙突23等が並
んで設置されている。ごみ焼却炉1の炉内5で発生した
排ガス24は、余熱回収設備16の出口部16aから排
ガスライン20を通過する間に、含有するダストやハロ
ゲン物質等が除去され、煙突23から大気中に放出され
るようになっている。なお、バグフィルタ22で収集さ
れた飛灰25は、図外の飛灰ピットに送られ、該飛灰ピ
ットよりプラズマ灰溶融炉2に搬入されるようになって
いる。
Further, the refuse incinerator 1 is provided with a residual heat recovery equipment 16 having a boiler 15 and a power generation equipment 19 connected to the residual heat recovery equipment 16 and having a steam turbine 17 and a generator 18. Outlet part 1 of residual heat recovery equipment 16
In 6a, a temperature reducing tower 21, a bag filter 22, a chimney 23, and the like, which form a normal exhaust gas line 20 of the refuse incinerator 1, are installed side by side. The exhaust gas 24 generated in the furnace 5 of the refuse incinerator 1 is removed of dust and halogen substances contained therein while passing through the exhaust gas line 20 from the exit portion 16a of the residual heat recovery facility 16, and is discharged from the chimney 23 into the atmosphere. It is supposed to be released. The fly ash 25 collected by the bag filter 22 is sent to a fly ash pit (not shown) and carried into the plasma ash melting furnace 2 through the fly ash pit.

【0010】また、余熱回収設備16の出口部16aに
は、仕切り板(仕切り弁)26により開閉されるバイパ
ス27の一端部が設けられ、このバイパス27の他端部
は、プラズマ灰溶融炉2に設けた灰溶融用バーナ28の
基端部に接続されている(図2参照)。仕切り板26
は、排ガスライン20を仕切ることによって、余熱回収
設備16の出口部16aから排ガスライン20への排ガ
ス24の流れを遮断するものであり、この状態では、バ
イパス27が開いて、ごみ焼却炉1の炉内5と灰溶融用
バーナ28とが余熱回収設備16の出口部16a及びバ
イパス27を介して連通している。
Further, an outlet 16a of the residual heat recovery equipment 16 is provided with one end of a bypass 27 which is opened and closed by a partition plate (partition valve) 26, and the other end of the bypass 27 is connected to the plasma ash melting furnace 2 It is connected to the base end portion of the ash melting burner 28 provided in the above (see FIG. 2). Partition plate 26
Divides the exhaust gas line 20 to shut off the flow of the exhaust gas 24 from the outlet portion 16a of the residual heat recovery equipment 16 to the exhaust gas line 20, and in this state, the bypass 27 opens and the waste incinerator 1 of the waste incinerator 1 is opened. The furnace 5 and the ash melting burner 28 communicate with each other via the outlet 16 a of the residual heat recovery equipment 16 and the bypass 27.

【0011】一方、上記プラズマ灰溶融炉2は、図2に
示す如く、ボックス状に形成された耐火構造の炉本体2
9を有しており、該炉本体29の下部側面には、溶融ス
ラグ30、溶融メタル31及び排ガス32を排出する出
滓口33とこれに接続した下り傾斜の出滓樋34が設け
られている。溶融スラグ30は、炉本体29から出滓口
33を経て溢れ出るオーバフロー方式で排出されるよう
になっている。炉本体29の上下部中央位置には、図示
しない直流電源装置に接続される主電極(プラズマトー
チ)35及び炉底電極36が対向して配設されている。
主電極35には、図示しない窒素ガス発生装置から窒素
ガスが送給されるように構成されており、投入された主
灰12及び飛灰25を主電極35及び炉底電極36間に
発生させたプラズマアークで加熱することによって溶融
するようになっている。このため、炉本体29の出滓口
33と反対側の側面には、主灰12及び飛灰25を炉本
体29内に投入する灰投入口37等が設けられている。
On the other hand, as shown in FIG. 2, the plasma ash melting furnace 2 is a box-shaped furnace body 2 having a refractory structure.
9, a furnace main body 29 is provided on its lower side surface with a slag port 33 for discharging the molten slag 30, the molten metal 31, and the exhaust gas 32, and a downwardly inclined slag gutter 34 connected to the slag port 33. There is. The molten slag 30 is discharged by an overflow method that overflows from the furnace body 29 through the outlet 33. A main electrode (plasma torch) 35 and a furnace bottom electrode 36, which are connected to a DC power supply device (not shown), are arranged facing each other at the center of the upper and lower portions of the furnace body 29.
Nitrogen gas is supplied to the main electrode 35 from a nitrogen gas generator (not shown), and the main ash 12 and fly ash 25 that are input are generated between the main electrode 35 and the bottom electrode 36. It is designed to be melted by heating with a plasma arc. Therefore, an ash charging port 37 for charging the main ash 12 and the fly ash 25 into the furnace body 29 is provided on the side surface of the furnace body 29 opposite to the outlet 33.

【0012】上記灰溶融用バーナ28は、発電設備19
による発電が行われていない時、或いは発電量が不足す
る場合に、点火することにより主灰12及び飛灰25を
燃焼して溶融するものであり、ごみ焼却炉1から送られ
てくる後述の高カロリーガス38を燃料として用いるよ
うになっている。なお、高カロリーガス38の発熱量が
不足する場合には、必要に応じて液体或いは気体の燃料
が補填される。また、灰溶融用バーナ28は、出滓口3
3の上方に位置する炉本体29の側面に設けられ、炉本
体29内に供給した主灰12及び飛灰25の安息角(斜
面が崩れない最大角)に対して直角となるように傾斜配
置されており、主灰12及び飛灰25の溶融が容易に行
われるように構成されている。
The ash melting burner 28 is used in the power generation equipment 19
When the power is not being generated by or when the amount of power generation is insufficient, the main ash 12 and the fly ash 25 are combusted and melted by ignition, which will be described later sent from the refuse incinerator 1. The high calorie gas 38 is used as fuel. When the calorific value of the high-calorie gas 38 is insufficient, liquid or gaseous fuel is supplemented as necessary. In addition, the ash melting burner 28 is provided at the outlet 3
3, which is provided on the side surface of the furnace body 29 located above 3, and is inclined so as to be perpendicular to the repose angle (the maximum angle at which the slope does not collapse) of the main ash 12 and the fly ash 25 supplied into the furnace body 29. The main ash 12 and the fly ash 25 are easily melted.

【0013】上記灰溶融用バーナ28では、炉本体29
内に供給した主灰12及び飛灰25の山を燃焼してお
り、表面側のみが溶融することになるから、プラズマア
ーク起動時に導通させるメタル接触を行う必要があり、
プラズマ灰溶融炉2の炉底電極36の上端部は、炉本体
29内のスラグラインLよりも上方に位置し、主電極3
5の下端部と当接して配置されている。このため、炉底
電極36の上面には、これを構成する導電体39(炭素
或いは金属)の棒が起立して設置されている。ここで、
スラグラインLとは、炉本体29内の溶融スラグ30と
ガス雰囲気との境界線を意味している。なお、プラズマ
灰溶融炉2の下流側には、排ガス32の流れに沿って配
置される二次燃焼室40、減温塔41、バグフィルタ4
2、誘引送風機43、洗煙塔44及び煙突45を備えた
排ガス処理設備が設けられている。
In the ash melting burner 28, the furnace body 29
Since the main ash 12 and the fly ash 25 supplied inside are burning, and only the surface side will be melted, it is necessary to make a metal contact for conduction when the plasma arc is started,
The upper end of the furnace bottom electrode 36 of the plasma ash melting furnace 2 is located above the slag line L in the furnace body 29, and the main electrode 3
It is arranged so as to abut the lower end portion of 5. For this reason, on the upper surface of the furnace bottom electrode 36, a rod of a conductor 39 (carbon or metal) constituting the furnace bottom electrode 36 is erected upright. here,
The slag line L means a boundary line between the molten slag 30 in the furnace body 29 and the gas atmosphere. In addition, on the downstream side of the plasma ash melting furnace 2, the secondary combustion chamber 40, the temperature reducing tower 41, and the bag filter 4 arranged along the flow of the exhaust gas 32.
2. An exhaust gas treatment facility including an induction blower 43, a smoke washing tower 44, and a chimney 45 is provided.

【0014】本実施形態のガス化溶融プラズマ灰溶融炉
設備は、発電量が不足する場合、或いは発電が不可能な
時に、ごみ焼却炉1を低空気比で運転すると共に、通常
の排ガスライン20を仕切り板26で仕切り、ごみ焼却
炉1の炉内5から得られた高カロリーガス38の全てを
余熱回収設備16の出口部16aよりバイパス27中へ
流通させ、灰溶融用バーナ28に燃料として供給し、更
にごみ焼却炉1の炉内5から得られた主灰12中の増加
未燃炭素をプラズマ灰溶融炉2の炉本体29内の主灰1
2及び飛灰25を加熱するための燃料(灰溶融用加熱
源)として供給するものである。この高カロリーガス3
8は、炭化水素、水素及び一酸化炭素などの可燃分を多
く含む排ガスである。ごみ焼却炉1の低空気比の運転
は、第1配管10の調整弁9aを絞って送風機8から燃
焼ストーカ7への主燃焼空気の送給量を低減させると共
に、第2配管11の調整弁9bを閉じて送風機8から燃
焼ストーカ7の上方への二次燃焼空気の送給を停止する
ことにより、行われるようになっている。
In the gasification melting plasma ash melting furnace facility of this embodiment, when the power generation amount is insufficient or when power generation is impossible, the refuse incinerator 1 is operated at a low air ratio and the normal exhaust gas line 20 is used. Is separated by a partition plate 26, and all of the high-calorie gas 38 obtained from the inside 5 of the refuse incinerator 1 is circulated from the outlet 16a of the residual heat recovery equipment 16 into the bypass 27, and is used as fuel for the ash melting burner 28. The main ash 1 in the furnace body 29 of the plasma ash melting furnace 2 that is supplied and further increases the unburned carbon in the main ash 12 obtained from the furnace 5 of the refuse incinerator 1.
2 and fly ash 25 are supplied as a fuel (heat source for melting ash) for heating. This high calorie gas 3
Reference numeral 8 is an exhaust gas containing a large amount of combustible components such as hydrocarbons, hydrogen and carbon monoxide. The operation of the refuse incinerator 1 at a low air ratio reduces the feed amount of the main combustion air from the blower 8 to the combustion stoker 7 by squeezing the adjusting valve 9a of the first pipe 10, and the adjusting valve of the second pipe 11. This is performed by closing 9b and stopping the supply of the secondary combustion air from the blower 8 to above the combustion stoker 7.

【0015】次に、本実施形態のガス化溶融プラズマ灰
溶融炉設備の作用及び起動方法について説明する。発電
設備19を発電していない時には、図1の矢印の如く、
発電機18からプラズマ灰溶融炉2の電源に電気が供給
されず、プラズマ灰溶融炉2を起動することができな
い。そこで、調整弁9a,9bを調整することにより、
主燃焼空気の送給量を低減させ、かつ二次燃焼空気の送
給を停止させて、ごみ焼却炉1を低空気比で運転すると
共に、通常の排ガスライン20を仕切り板26で仕切っ
て、余熱回収設備16の出口部16aと排ガスライン2
0とを遮断しておく。このような運転を行うと、ごみ焼
却炉1の炉内5に可燃分を多く含む高カロリーガス38
が発生し、かつ焼却された主灰12中の未燃炭素が増加
する。得られた高カロリーガス38は、炉内5を上昇し
て余熱回収設備16の出口部16aまで流れ、バイパス
27を通って灰溶融用バーナ28に導かれ、該バーナ2
8の燃料として供給される。また、未燃炭素を増加させ
た主灰12は、ごみ焼却炉1から取り出され、他の灰1
2,25と一緒にプラズマ灰溶融炉2の炉本体29内に
投入されて灰溶融の加熱源として供給される。
Next, the operation and starting method of the gasification and melting plasma ash melting furnace equipment of this embodiment will be described. When the power generation facility 19 is not generating power, as shown by the arrow in FIG.
Electricity is not supplied from the generator 18 to the power source of the plasma ash melting furnace 2, and the plasma ash melting furnace 2 cannot be started. Therefore, by adjusting the adjusting valves 9a and 9b,
The feed amount of the main combustion air is reduced, and the feed of the secondary combustion air is stopped, the refuse incinerator 1 is operated at a low air ratio, and the normal exhaust gas line 20 is partitioned by the partition plate 26, Outlet portion 16a of residual heat recovery equipment 16 and exhaust gas line 2
0 is cut off. When such an operation is performed, the high-calorie gas 38 containing a large amount of combustible components in the furnace 5 of the refuse incinerator 1
And the unburned carbon in the incinerated main ash 12 increases. The obtained high-calorie gas 38 rises in the furnace 5 and flows to the outlet 16a of the residual heat recovery equipment 16, is guided to the ash melting burner 28 through the bypass 27, and the burner 2
8 fuel. In addition, the main ash 12 with an increased unburned carbon is taken out from the refuse incinerator 1 and other ash 1
2, 25 are charged into the furnace body 29 of the plasma ash melting furnace 2 and supplied as a heating source for ash melting.

【0016】したがって、上記バーナ28を点火すれ
ば、プラズマ灰溶融炉2が起動し、当該バーナ28の火
炎が炉本体29内の主灰12及び飛灰25を燃焼して溶
融し、溶融スラグ30等になって出滓口33から出滓樋
34を通り排出されることになる。すなわち、各灰ピッ
ト内に貯留された所定量の主灰12及び飛灰25は、プ
ラズマ灰溶融炉2の炉本体29内に搬入されると、溶融
処理されることになる。この際、バーナ28は主灰12
及び飛灰25の安息角に対して直角に配置され、かつ増
加した未燃炭素を多く含む灰が燃焼されることから、溶
融処理を円滑に行うことが可能になる。なお、発電設備
19の発電量が十分となり、或いは発電機18による発
電が可能になった時には、調整弁9a,9bを元の位置
に戻すことによって、所定量の主燃焼空気及び二次燃焼
空気を送り、ごみ焼却炉1を通常運転にすると共に、仕
切り板26による排ガスライン20の仕切りを解除し、
余熱回収設備16の出口部16aと排ガスライン20と
を連通させる。そして、図示しない直流電源装置をオン
にし、灰投入口37から主灰12及び飛灰25を投入
し、炉本体29内を還元雰囲気にした状態で、電圧を主
電極35及び炉底電極36間に印加する。すると、主電
極35と導電体39及び炉底電極36との間にはプラズ
マアークが発生し、炉本体29内が1000゜C以上の
雰囲気となり、主灰12及び飛灰25が加熱されて溶融
する。溶融スラグ30及び溶融メタル31が炉底に所定
量溜まると、既述のように、溶融スラグ30は出滓口3
3から溢れ出て出滓樋34を通り、排出されることにな
る。
Therefore, when the burner 28 is ignited, the plasma ash melting furnace 2 is started, the flame of the burner 28 burns and melts the main ash 12 and the fly ash 25 in the furnace body 29, and the molten slag 30 And so on, it will be discharged from the outlet 33 through the outlet gutter 34. That is, when the predetermined amount of main ash 12 and fly ash 25 stored in each ash pit is carried into the furnace body 29 of the plasma ash melting furnace 2, the ash is melted. At this time, the burner 28 is the main ash 12
Further, since the ash arranged in a right angle to the angle of repose of the fly ash 25 and the ash containing a large amount of increased unburned carbon is burned, the melting process can be smoothly performed. When the amount of power generated by the power generation facility 19 becomes sufficient or when the power generation by the generator 18 becomes possible, the regulating valves 9a and 9b are returned to their original positions so that a predetermined amount of main combustion air and secondary combustion air can be obtained. And the waste incinerator 1 is operated normally, and the partition of the exhaust gas line 20 by the partition plate 26 is released.
The outlet part 16a of the residual heat recovery equipment 16 and the exhaust gas line 20 are connected. Then, a DC power supply (not shown) is turned on, the main ash 12 and the fly ash 25 are charged from the ash charging port 37, and the voltage is applied between the main electrode 35 and the furnace bottom electrode 36 in a state where the furnace body 29 is in a reducing atmosphere. Apply to. Then, a plasma arc is generated between the main electrode 35 and the conductor 39 and the furnace bottom electrode 36, and the inside of the furnace body 29 becomes an atmosphere of 1000 ° C. or higher, and the main ash 12 and the fly ash 25 are heated and melted. To do. When the molten slag 30 and the molten metal 31 are accumulated in the furnace bottom in a predetermined amount, the molten slag 30 is discharged from the outlet 3 as described above.
It will overflow from No. 3 and will pass through the debris gutter 34 and will be discharged.

【0017】本発明の実施形態に係るガス化溶融プラズ
マ灰溶融炉設備及びその起動方法では、ごみ焼却炉1を
低空気比で運転し、排ガスライン20を仕切り板26に
より仕切ってプラズマ灰溶融炉2の灰溶融用バーナ28
に続くバイパス27を開き、ごみ焼却炉1から高カロリ
ーガス38と未燃炭素を多く含む主灰12を取り出し、
高カロリーガス38を燃料として余熱回収設備16の出
口部16aよりバイパス27を介してバーナ28に供給
し、増加した未燃炭素をプラズマ灰溶融炉2の灰溶融用
加熱源として供給しているため、発電設備19の発電量
が不足したり、発電が不可能である時でも、灰溶融が可
能となり、プラズマ灰溶融炉2を起動させるのに買電す
る必要がなくなる。しかも、高カロリーガス38と未燃
炭素を多く含む主灰12を燃料及び加熱源に利用するた
め、灰溶融に要するエネルギーを低減できる。それに加
えて、主灰12及び飛灰25の消費により、主灰ピット
と飛灰ピットの灰貯留量を減らすことが可能であるた
め、これら灰ピットを従来の概ね1/3程度の大きさに
低減できる。
In the gasification and melting plasma ash melting furnace equipment and the starting method thereof according to the embodiment of the present invention, the refuse incinerator 1 is operated at a low air ratio, and the exhaust gas line 20 is partitioned by the partition plate 26 so that the plasma ash melting furnace is operated. 2 ash melting burner 28
After opening the bypass 27, take out the high-calorie gas 38 and the main ash 12 containing a large amount of unburned carbon from the refuse incinerator 1,
Since the high-calorie gas 38 is supplied as fuel to the burner 28 from the outlet 16a of the residual heat recovery equipment 16 via the bypass 27, the increased unburned carbon is supplied as a heating source for ash melting of the plasma ash melting furnace 2. Even when the power generation amount of the power generation equipment 19 is insufficient or power generation is impossible, ash melting is possible, and it is not necessary to purchase electricity to start the plasma ash melting furnace 2. Moreover, since the high ash calorie gas 38 and the main ash 12 containing a large amount of unburned carbon are used for the fuel and the heating source, the energy required for melting the ash can be reduced. In addition, consumption of the main ash 12 and the fly ash 25 can reduce the amount of ash stored in the main ash pit and the fly ash pit. Therefore, the size of these ash pits can be reduced to about 1/3 of the conventional size. It can be reduced.

【0018】以上、本発明の実施形態につき述べたが、
本発明は既述の実施形態に限定されるものではなく、本
発明の技術的思想に基づいて各種の変更及び変形が可能
である。例えば、既述の実施形態では、プラズマアーク
起動のメタル接触のために、炉底電極36から導電体3
9を起立させて設置しているが、主電極35を下方へ延
長して炉本体29内のメタルと接触する位置に配置して
も良い。
The embodiment of the present invention has been described above.
The present invention is not limited to the above-described embodiments, and various changes and modifications can be made based on the technical idea of the present invention. For example, in the above-described embodiment, the metal 3 of the plasma arc activation causes the bottom electrode 36 to move to the conductor 3
Although 9 is installed upright, the main electrode 35 may be extended downward and arranged at a position in contact with the metal in the furnace body 29.

【0019】[0019]

【発明の効果】上述の如く、本発明に係るガス化溶融プ
ラズマ灰溶融炉設備は、余熱回収設備及び発電設備が設
けられているごみ焼却炉と、該ごみ焼却炉から排出され
る灰を溶融するプラズマ灰溶融炉とを備え、前記余熱回
収設備の出口部に仕切り板により開閉されるバイパスを
設け、該バイパスの端部を前記プラズマ灰溶融炉に設け
られている灰溶融用バーナに接続し、前記発電設備を発
電していない時に、前記ごみ焼却炉を低空気比で運転す
ると共に、前記ごみ焼却炉の排ガスラインを前記仕切り
板で仕切り、前記ごみ焼却炉から得た高カロリーガスを
前記余熱回収設備の出口部より前記バイパスを介して前
記バーナに燃料として供給する一方、前記ごみ焼却炉か
ら得た灰中の増加未燃炭素を前記プラズマ灰溶融炉の灰
溶融用加熱源として供給しているので、高カロリーガス
及び増加未燃炭素の利用により灰溶融に要するトータル
エネルギーを低減させ、発電開始前に電力会社などから
買電することなく灰溶融を行うことができ、灰溶融処理
のコストダウンを図ることができる上、灰ピットの縮小
により灰溶融設備に必要な敷地面積を減らし、設備費も
低減させることができる。
As described above, the gasification melting plasma ash melting furnace equipment according to the present invention melts the ash discharged from the waste incinerator provided with the residual heat recovery equipment and the power generation equipment. A plasma ash melting furnace to be provided, a bypass opened and closed by a partition plate is provided at the outlet of the residual heat recovery equipment, and the end of the bypass is connected to an ash melting burner provided in the plasma ash melting furnace. When the power generation facility is not generating power, the waste incinerator is operated at a low air ratio, the exhaust gas line of the waste incinerator is partitioned by the partition plate, and the high-calorie gas obtained from the waste incinerator is described above. While supplying fuel to the burner from the outlet of the residual heat recovery facility through the bypass, the increased unburned carbon in the ash obtained from the refuse incinerator is used as a heating source for ash melting in the plasma ash melting furnace. Since it is supplied, the total energy required for ash melting can be reduced by using high calorie gas and increased unburned carbon, and ash melting can be performed without purchasing electricity from a power company before power generation starts. The cost of the treatment can be reduced, and the site area required for the ash melting facility can be reduced by reducing the ash pit, and the facility cost can be reduced.

【0020】また、本発明に係るガス化溶融プラズマ灰
溶融炉設備の起動方法は、余熱回収設備及び発電設備が
設けられているごみ焼却炉と、該ごみ焼却炉から排出さ
れる灰を溶融するプラズマ灰溶融炉とを備えた設備の起
動方法であり、前記発電設備を発電していない時に、前
記ごみ焼却炉を低空気比で運転することにより、高カロ
リーガスを得ると共に灰中の未燃炭素を増加させ、前記
高カロリーガスを前記余熱回収設備の出口部より前記プ
ラズマ灰溶融炉に設けられている灰溶融用バーナに燃料
として供給する一方、前記増加させた未燃炭素を前記プ
ラズマ灰溶融炉の灰溶融用加熱源として供給し、前記プ
ラズマ灰溶融炉を起動させているので、上記発明と同様
の効果が得られる上、簡単な操作手順でプラズマ灰溶融
炉の起動作業を円滑に行うことができる。
The method for starting the gasification melting plasma ash melting furnace equipment according to the present invention melts the waste incinerator provided with the residual heat recovery equipment and the power generation equipment and the ash discharged from the waste incinerator. A method of starting equipment equipped with a plasma ash melting furnace, when the power generation equipment is not generating power, by operating the refuse incinerator at a low air ratio, to obtain a high calorie gas and unburned in the ash Carbon is increased and the high-calorie gas is supplied as fuel from an outlet of the residual heat recovery equipment to an ash melting burner provided in the plasma ash melting furnace, while the increased unburned carbon is added to the plasma ash. The plasma ash melting furnace is supplied as a heating source for ash melting of the melting furnace, and the plasma ash melting furnace is started. It can be carried out in.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施形態のガス化溶融プラズマ灰溶融
炉設備に適用されるごみ焼却炉を示す概略図である。
FIG. 1 is a schematic diagram showing a refuse incinerator applied to a gasification melting plasma ash melting furnace facility of an embodiment of the present invention.

【図2】本発明の実施形態のガス化溶融プラズマ灰溶融
炉設備に適用されるプラズマ灰溶融炉を示す概略図であ
る。
FIG. 2 is a schematic view showing a plasma ash melting furnace applied to the gasification melting plasma ash melting furnace facility of the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 ごみ焼却炉 2 プラズマ灰溶融炉 3 ホッパ 4 フィーダ 5 炉内 6 ごみ 7 燃焼ストーカ 8 送風機 9a,9b 調整弁 10,11 配管 12 主灰 13 灰押出装置 14 クリンカローラ 15 ボイラ 16 余熱回収設備 16a 出口部 17 蒸気タービン 18 発電機 19 発電設備 20 排ガスライン 24 排ガス 25 飛灰 26 仕切り板 27 バイパス 28 灰溶融用バーナ 29 炉本体 30 溶融スラグ 33 出滓口 34 出滓樋 35 主電極 36 炉底電極 37 灰投入口 38 高カロリーガス 39 導電体 1 garbage incinerator 2 Plasma ash melting furnace 3 hoppers 4 feeder 5 inside the furnace 6 garbage 7 burning stoker 8 blower 9a, 9b Regulator valve 10, 11 piping 12 main ash 13 Ash extrusion equipment 14 Clinkerola 15 boiler 16 Residual heat recovery equipment 16a outlet 17 Steam turbine 18 generator 19 power generation equipment 20 exhaust gas line 24 exhaust gas 25 fly ash 26 partition boards 27 Bypass 28 Burner for melting ash 29 furnace body 30 Molten slag 33 Debris mouth 34 Degreed gutter 35 Main electrode 36 Furnace bottom electrode 37 Ash input port 38 high calorie gas 39 Conductor

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 11/06 C02F 11/10 Z 4G075 11/10 F23G 5/00 115Z 4K045 C10L 3/06 5/14 F 4K063 F23G 5/00 115 5/46 ZABA 5/14 F27B 3/08 5/46 ZAB 3/20 F27B 3/08 3/22 3/20 F27D 11/10 3/22 13/00 E F27D 11/10 B09B 3/00 303L 13/00 303J 303M C10L 3/00 A (72)発明者 井上 敬太 神奈川県横浜市中区錦町12番地 三菱重工 業株式会社横浜製作所内 Fターム(参考) 3K061 AA01 AB03 AC01 BA01 BA07 CA14 DA19 DB01 DB11 NB02 NB03 3K065 AA01 AB01 AB03 AC01 BA01 JA05 JA18 3K078 AA01 BA03 BA21 CA02 CA09 CA21 CA24 4D004 AA02 AA36 AA46 BA03 CA22 CA26 CA27 CA28 CA43 CB31 CB34 4D059 AA03 BB01 BB03 BB11 CA10 CC03 4G075 AA37 BB03 CA02 CA47 DA01 EB41 EC21 4K045 AA04 BA07 RB02 RB08 RB12 RB22 4K063 AA04 BA13 CA04 CA06 FA56 GA02 GA03 GA31 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C02F 11/06 C02F 11/10 Z 4G075 11/10 F23G 5/00 115Z 4K045 C10L 3/06 5/14 F 4K063 F23G 5/00 115 5/46 ZABA 5/14 F27B 3/08 5/46 ZAB 3/20 F27B 3/08 3/22 3/20 F27D 11/10 3/22 13/00 E F27D 11/10 B09B 3/00 303L 13/00 303J 303M C10L 3/00 A (72) Inventor Keita Inoue 12 Nishiki-cho, Naka-ku, Yokohama-shi, Kanagawa Mitsubishi Heavy Industries, Ltd. Yokohama Factory F-term (reference) 3K061 AA01 AB03 AC01 BA01 BA07 CA14 DA19 DB01 DB11 NB02 NB03 3K065 AA01 AB01 AB03 AC01 BA01 JA05 JA18 3K078 AA01 BA03 BA21 CA02 CA09 CA21 CA24 4D004 AA02 AA36 AA46 BA03 CA22 CA26 CA27 CA28 CA43 CB 31 CB34 4D059 AA03 BB01 BB03 BB11 CA10 CC03 4G075 AA37 BB03 CA02 CA47 DA01 EB41 EC21 4K045 AA04 BA07 RB02 RB08 RB12 RB22 4K063 AA04 BA13 CA04 CA06 FA56 GA02 GA03 GA31

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 余熱回収設備及び発電設備が設けられて
いるごみ焼却炉と、該ごみ焼却炉から排出される灰を溶
融するプラズマ灰溶融炉とを備え、前記余熱回収設備の
出口部に仕切り板により開閉されるバイパスを設け、該
バイパスの端部を前記プラズマ灰溶融炉に設けられてい
る灰溶融用バーナに接続し、前記発電設備を発電してい
ない時に、前記ごみ焼却炉を低空気比で運転すると共
に、前記ごみ焼却炉の排ガスラインを前記仕切り板で仕
切り、前記ごみ焼却炉から得た高カロリーガスを前記余
熱回収設備の出口部より前記バイパスを介して前記バー
ナに燃料として供給する一方、前記ごみ焼却炉から得た
灰中の増加未燃炭素を前記プラズマ灰溶融炉の灰溶融用
加熱源として供給したことを特徴とするガス化溶融プラ
ズマ灰溶融炉設備。
1. A waste incinerator provided with a residual heat recovery facility and a power generation facility, and a plasma ash melting furnace for melting ash discharged from the waste incinerator, and a partition at the exit of the residual heat recovery facility. A bypass that is opened and closed by a plate is provided, an end portion of the bypass is connected to an ash melting burner provided in the plasma ash melting furnace, and when the power generation facility is not generating power, the waste incinerator is set to low air. While operating at a ratio, the exhaust gas line of the refuse incinerator is partitioned by the partition plate, and the high-calorie gas obtained from the refuse incinerator is supplied as fuel to the burner from the outlet of the residual heat recovery facility through the bypass. On the other hand, a gasification melting plasma ash melting furnace facility, wherein increased unburned carbon in ash obtained from the refuse incinerator is supplied as a heating source for ash melting of the plasma ash melting furnace.
【請求項2】 前記バーナは、前記プラズマ灰溶融炉内
に供給した灰の安息角に対して直角に配置されているこ
とを特徴とする請求項1に記載のガス化溶融プラズマ灰
溶融炉設備。
2. The gasification melting plasma ash melting furnace facility according to claim 1, wherein the burner is arranged at a right angle to an angle of repose of ash supplied into the plasma ash melting furnace. .
【請求項3】 前記プラズマ灰溶融炉の炉底電極の上端
部は、炉本体内のスラグラインよりも上方に配置されて
いることを特徴とする請求項1に記載のガス化溶融プラ
ズマ灰溶融炉設備。
3. The gasification melting plasma ash melting according to claim 1, wherein an upper end portion of the furnace bottom electrode of the plasma ash melting furnace is arranged above a slag line in the furnace body. Furnace equipment.
【請求項4】 前記プラズマ灰溶融炉の主電極は、炉本
体内のメタルと接触する位置に配置されていることを特
徴とする請求項1に記載のガス化溶融プラズマ灰溶融炉
設備。
4. The gasification melting plasma ash melting furnace facility according to claim 1, wherein the main electrode of the plasma ash melting furnace is arranged at a position in contact with the metal in the furnace body.
【請求項5】 余熱回収設備及び発電設備が設けられて
いるごみ焼却炉と、該ごみ焼却炉から排出される灰を溶
融するプラズマ灰溶融炉とを備えたガス化溶融プラズマ
灰溶融炉設備の起動方法であって、前記発電設備を発電
していない時に、前記ごみ焼却炉を低空気比で運転する
ことにより、高カロリーガスを得ると共に灰中の未燃炭
素を増加させ、前記高カロリーガスを前記余熱回収設備
の出口部より前記プラズマ灰溶融炉に設けられている灰
溶融用バーナに燃料として供給する一方、前記増加させ
た未燃炭素を前記プラズマ灰溶融炉の灰溶融用加熱源と
して供給し、前記プラズマ灰溶融炉を起動させることを
特徴とするガス化溶融プラズマ灰溶融炉設備の起動方
法。
5. A gasification melting plasma ash melting furnace facility comprising a refuse incinerator provided with a residual heat recovery facility and a power generation facility, and a plasma ash melting furnace for melting ash discharged from the waste incinerator. A start-up method, when the power generation facility is not generating power, by operating the refuse incinerator at a low air ratio, to obtain high calorie gas and increase unburned carbon in ash, the high calorie gas While supplying as a fuel from the outlet of the residual heat recovery equipment to the ash melting burner provided in the plasma ash melting furnace, the increased unburned carbon as a ash melting heating source of the plasma ash melting furnace A method for starting gasification and melting plasma ash melting furnace equipment, which comprises supplying and activating the plasma ash melting furnace.
JP2001226902A 2001-07-27 2001-07-27 Ash melting furnace equipment for gasifying/melting plasma, and method for its control Withdrawn JP2003042429A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001226902A JP2003042429A (en) 2001-07-27 2001-07-27 Ash melting furnace equipment for gasifying/melting plasma, and method for its control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001226902A JP2003042429A (en) 2001-07-27 2001-07-27 Ash melting furnace equipment for gasifying/melting plasma, and method for its control

Publications (1)

Publication Number Publication Date
JP2003042429A true JP2003042429A (en) 2003-02-13

Family

ID=19059638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001226902A Withdrawn JP2003042429A (en) 2001-07-27 2001-07-27 Ash melting furnace equipment for gasifying/melting plasma, and method for its control

Country Status (1)

Country Link
JP (1) JP2003042429A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004257631A (en) * 2003-02-25 2004-09-16 Central Res Inst Of Electric Power Ind Plasma melting treatment apparatus for waste disposal
JP2007534922A (en) * 2004-04-29 2007-11-29 アドプラテック コーポレーション Rotating Plasma Pyrolysis / Melting Furnace (CYCLONIC PLASMACAPYROLYSIS / VITRIFICATIONSYSTEM)
KR101185471B1 (en) * 2006-05-05 2012-10-02 플라스코에너지 아이피 홀딩스, 에스.엘., 빌바오, 샤프하우젠 브랜치 Low temperature gasification facility with a horizontally oriented gasifier
US8435315B2 (en) 2006-05-05 2013-05-07 Plasco Energy Group Inc. Horizontally-oriented gasifier with lateral transfer system
US8475551B2 (en) 2006-05-05 2013-07-02 Plasco Energy Group Inc. Gas reformulating system using plasma torch heat
CN104003601A (en) * 2014-05-28 2014-08-27 程礼华 Process and device for generating power by using solar multidimensional electrode and microwave catalysis sludge
CN110040922A (en) * 2019-05-17 2019-07-23 启源新能源科技(张家口)有限公司 The method and processing system of process tank bottom oily sludge
CN110715297A (en) * 2019-10-15 2020-01-21 武汉丰盈能源技术工程有限公司 Harmless treatment system and method for plasma gasification furnace and waste incineration power plant

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004257631A (en) * 2003-02-25 2004-09-16 Central Res Inst Of Electric Power Ind Plasma melting treatment apparatus for waste disposal
JP2007534922A (en) * 2004-04-29 2007-11-29 アドプラテック コーポレーション Rotating Plasma Pyrolysis / Melting Furnace (CYCLONIC PLASMACAPYROLYSIS / VITRIFICATIONSYSTEM)
JP4719216B2 (en) * 2004-04-29 2011-07-06 アドプラテック コーポレーション Rotating Plasma Pyrolysis / Melting Furnace (CYCLONIC PLASMACAPYROLYSIS / VITRIFICATIONSYSTEM)
KR101185471B1 (en) * 2006-05-05 2012-10-02 플라스코에너지 아이피 홀딩스, 에스.엘., 빌바오, 샤프하우젠 브랜치 Low temperature gasification facility with a horizontally oriented gasifier
US8372169B2 (en) 2006-05-05 2013-02-12 Plasco Energy Group Inc. Low temperature gasification facility with a horizontally oriented gasifier
US8435315B2 (en) 2006-05-05 2013-05-07 Plasco Energy Group Inc. Horizontally-oriented gasifier with lateral transfer system
US8475551B2 (en) 2006-05-05 2013-07-02 Plasco Energy Group Inc. Gas reformulating system using plasma torch heat
US9109172B2 (en) 2006-05-05 2015-08-18 Plasco Energy Group Inc. Low temperature gasification facility with a horizontally oriented gasifier
CN104003601A (en) * 2014-05-28 2014-08-27 程礼华 Process and device for generating power by using solar multidimensional electrode and microwave catalysis sludge
CN104003601B (en) * 2014-05-28 2015-12-09 程礼华 Sun power multidimension electrode and microwave catalysis sludge power generation technique and device thereof
CN110040922A (en) * 2019-05-17 2019-07-23 启源新能源科技(张家口)有限公司 The method and processing system of process tank bottom oily sludge
CN110715297A (en) * 2019-10-15 2020-01-21 武汉丰盈能源技术工程有限公司 Harmless treatment system and method for plasma gasification furnace and waste incineration power plant

Similar Documents

Publication Publication Date Title
US3766866A (en) Thermal waste converter
EP2147254A2 (en) Furnace
KR100529826B1 (en) Device and method for waste processing using Plasma pyrolysis
GB2471709A (en) Apparatus and method for processing organically coated waste
JP2003042429A (en) Ash melting furnace equipment for gasifying/melting plasma, and method for its control
JP3623751B2 (en) Vertical waste incineration facility equipped with ash melting device and its operation method
JP2006023030A (en) Vertical refuse incinerator with primary combustion device, and operation control method thereof
JP3748364B2 (en) Fly ash melting furnace
KR100339484B1 (en) Rotary kiln incineration system
JP2950754B2 (en) Method and equipment for melting incineration ash
CA2041855C (en) Incinerator and incinerating method employing the same
KR200189422Y1 (en) Cupola furnace with apparatus capable of treating ash produced at treating waste
JP2001027410A (en) Separate type incineration ash melting facility, and its operation controlling method
JP2000081206A (en) Starting control method, stopping control method, and starting/stopping control device of partial combustion furnace
JP3048298B2 (en) Incineration melting furnace
JP3959067B2 (en) Incinerator
JP2002195519A (en) Method and system for gasifying/melting refuse
JP2002013718A (en) Oxygen burner type melting furnace
JP4972458B2 (en) Ash melting furnace combustion chamber
JP2005030738A (en) Mobile waste incineration disposal system
JPH1054533A (en) Combustion air supply method for combustion melting furnace and waste treatment apparatus
JP3025148B2 (en) Garbage incineration equipment
JPH08121727A (en) Secondary combustion furnace structure for melting furnace of wasted matter
JPH11502603A (en) Incinerator
JP2005226953A (en) Incinerator

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080526

A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081007