JP2002195519A - Method and system for gasifying/melting refuse - Google Patents
Method and system for gasifying/melting refuseInfo
- Publication number
- JP2002195519A JP2002195519A JP2000387364A JP2000387364A JP2002195519A JP 2002195519 A JP2002195519 A JP 2002195519A JP 2000387364 A JP2000387364 A JP 2000387364A JP 2000387364 A JP2000387364 A JP 2000387364A JP 2002195519 A JP2002195519 A JP 2002195519A
- Authority
- JP
- Japan
- Prior art keywords
- furnace
- plasma
- gasification
- melting
- waste
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/12—Heat utilisation in combustion or incineration of waste
Landscapes
- Incineration Of Waste (AREA)
- Gasification And Melting Of Waste (AREA)
- Processing Of Solid Wastes (AREA)
- Treatment Of Sludge (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は都市ゴミ、産業廃棄
物、下水汚泥、廃プラスチック等の各種廃棄物を同一炉
内でガス化から溶融までを行う一体型の廃棄物ガス化溶
融方法とその装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an integrated waste gasification and melting method for performing various processes from gasification to melting of various wastes such as municipal garbage, industrial waste, sewage sludge, and waste plastics in the same furnace and the method. Related to the device.
【0002】[0002]
【従来の技術】都市ごみ、下水汚泥等の各種廃棄物は焼
却施設で焼却処理され、生じた焼却灰やばいじんは、従
来埋め立て処分されていた。しかし、埋め立て処分地枯
渇の問題や有害重金属類の溶出による地下水汚染の問題
があるため溶融による減量・減容化と無害化の必要性が
高まってきている。かかる課題を解決するために、流動
床やロータリキルン等の熱分解ガス化炉と灰溶融炉を組
み合わせた熱分解ガス化溶融システムが提案されてい
る。このような熱分解ガス化溶融システム熱分解炉内で
廃棄物を還元性雰囲気中で450℃程度まで加熱し、残
渣と熱分解ガスに分離し、その後、前記残渣と捕集煤塵
を灰溶融炉中に投入して熱分解ガスの燃焼により最高1
400〜1500℃まで燃焼させることにより、灰分は
溶解されてスラグとなって排出されるものである。しか
しながらかかる熱分解ガス化溶融システムにおいては、
流動床やロータリキルン等の熱分解ガス化炉とその残渣
を溶融スラグ化させる灰溶融炉が別置きのために、装置
全体が大型化する。又熱分解ガスのほとんどは灰溶融炉
で消費されてしまうために、再利用が出来ない。一方熱
分解部と溶融部を一体化した技術として高炉を利用した
コークスベッド式溶融炉が提案されている。かかる技術
は高炉状の溶融炉の上部より、生ゴミ等の廃棄物ととも
に、コークスと石灰石を混合投入して、酸素富化空気を
炉底羽口より吹き込む。この結果、投入された生ゴミ
は、炉上部で乾燥され、その後炉底部に下がるに連れ、
熱分解、燃焼が順次なされ、炉底部で灰が溶融してスラ
グとなって排出されるものである。しかしながらかかる
技術は、廃棄物とともに、コークスと石灰石を混合投入
するものであるために、溶融スラグ量の増大につながる
とともに、装置構成が大型化する。2. Description of the Related Art Various wastes such as municipal solid waste and sewage sludge have been incinerated in an incineration facility, and the resulting incinerated ash and dust have conventionally been disposed of in landfills. However, due to the problem of depletion of landfill sites and the problem of groundwater pollution due to elution of harmful heavy metals, the necessity for weight reduction, volume reduction and detoxification by melting is increasing. In order to solve such a problem, a pyrolysis gasification and melting system combining a pyrolysis gasification furnace such as a fluidized bed or a rotary kiln and an ash melting furnace has been proposed. In such a pyrolysis gasification and melting system, the waste is heated to about 450 ° C. in a reducing atmosphere in a pyrolysis furnace to separate the residue and the pyrolysis gas. Up to 1 due to combustion of pyrolysis gas
By burning to 400 to 1500 ° C., the ash is dissolved and discharged as slag. However, in such a pyrolysis gasification melting system,
Since the pyrolysis gasification furnace such as a fluidized bed or a rotary kiln and the ash melting furnace for melting the residue into slag are separately provided, the entire apparatus becomes large. Most of the pyrolysis gas is consumed in the ash melting furnace and cannot be reused. On the other hand, a coke bed type melting furnace using a blast furnace has been proposed as a technology integrating a pyrolysis section and a melting section. In this technique, coke and limestone are mixed and introduced together with waste such as garbage from the upper part of a blast furnace-shaped melting furnace, and oxygen-enriched air is blown from a furnace bottom tuyere. As a result, the garbage thrown in is dried at the top of the furnace and then goes down to the bottom of the furnace,
Pyrolysis and combustion are sequentially performed, and ash is melted at the bottom of the furnace to be discharged as slag. However, such a technique involves mixing and inputting coke and limestone together with waste, which leads to an increase in the amount of molten slag and an increase in apparatus configuration.
【0003】ストーカ式や流動床式焼却炉で廃棄物を焼
却した後、その排ガス中の捕集飛灰等を灰溶融炉で溶融
させる技術も存在する。しかし、かかる技術においても
ダイオキシン低減対策のために、高温燃焼方式を採用す
るケースも有るが、火格子焼損対策や、炉内高温化に伴
うクリンカ生成抑制対策などが必要となってくる。ま
た、二次燃焼部での燃焼ガスの十分な攪拌・混合が難し
い為、安定的にダイオキシン類、CO、NOxなどの同
時低減化に限界がある。一方、二次燃焼部に酸素富化空
気などを導入して積極的な燃焼を図る技術も存在する
が、かかる技術においても酸素富化状態で二次燃焼部内
温度が上昇するとNOx等の発生促進が懸念される。[0003] There is also a technique in which waste is incinerated in a stoker type or fluidized bed incinerator and then collected fly ash and the like in the exhaust gas are melted in an ash melting furnace. However, even in this technology, there are cases where a high-temperature combustion method is adopted in order to reduce dioxins. However, measures such as fire grate burnout and measures to suppress clinker generation due to a high temperature in the furnace are required. Further, since it is difficult to sufficiently stir and mix the combustion gas in the secondary combustion section, there is a limit to stably simultaneously reducing dioxins, CO, NOx, and the like. On the other hand, there is also a technique for actively burning by introducing oxygen-enriched air or the like into the secondary combustion section. However, even in this technique, when the temperature in the secondary combustion section rises in an oxygen-enriched state, NOx generation is promoted. Is concerned.
【0004】[0004]
【発明が解決しようとする課題】本発明は、かかる課題
に鑑み、NOxやダイオキシンが発生することなく、然
も装置構成が簡単で且つ小型化が可能な各種廃棄物を同
一炉内でガス化から溶融までを行う一体型の廃棄物ガス
化溶融方法とその装置を提供することを目的とする。SUMMARY OF THE INVENTION In view of the above-mentioned problems, the present invention gasifies various kinds of wastes, which do not generate NOx or dioxin, have a simple apparatus configuration and can be reduced in size, in the same furnace. It is an object of the present invention to provide an integrated waste gasification / melting method and an apparatus for performing the process from melting to melting.
【0005】[0005]
【課題を解決するための手段】本発明はかかる課題を解
決するために、請求項1記載の発明は、廃棄物を同一炉
内でガス化から溶融までを行う廃棄物ガス化溶融方法に
おいて、プラズマ作動ガス、好ましくは窒素ガス、アル
ゴンガスなどの非酸素ガスをプラズマトーチを介して炉
内空間に流しながら、プラズマアーク放電を行い、該ア
ーク放電域に廃棄物を投入して、該廃棄物を同一炉内で
ガス化から溶融までを行うことを特徴とする。この場合
前記アーク放電域に少なくとも300℃以上の高温スチ
ームを供給することがガス化促進とガス化ガス改質効果
が高く、更に前記プラズマアークを行うプラズマ電源が
直流電源であり、該直流電源が、前記炉内で生成された
ガス化ガスにより発電された直流電源であるのがよい。
又前記高温スチームの供給量は、H2O/C(モル比)
=0.5〜10の範囲(Cは処理対象中の炭素含有量
(モル))であるのがエネルギ自給という観点から好ま
しい。Means for Solving the Problems In order to solve the above-mentioned problems, the present invention is directed to a method for gasification and melting of wastes in which waste is gasified to melt in the same furnace. A plasma working gas, preferably a nitrogen gas, a non-oxygen gas such as an argon gas is flowed into a furnace space through a plasma torch, plasma arc discharge is performed, and waste is charged into the arc discharge region. From gasification to melting in the same furnace. In this case, supplying high-temperature steam of at least 300 ° C. or more to the arc discharge region has high gasification promotion and gasification gas reforming effects, and a plasma power supply for performing the plasma arc is a DC power supply. And a DC power source generated by gasification gas generated in the furnace.
The supply amount of the high-temperature steam is H 2 O / C (molar ratio).
= 0.5 to 10 (C is the carbon content (mol) in the object to be treated) is preferable from the viewpoint of energy self-sufficiency.
【0006】請求項5記載の発明はかかる廃棄物ガス化
溶融を行うのに好適な装置に関する発明で、直流プラズ
マ電源が印加される一対又は複数対のトーチ電極が炉内
空間に配置されているプラズマ炉を具え、該炉内にプラ
ズマ作動ガス、好ましくは窒素ガスやアルゴンガスなど
の非酸素ガスがプラズマトーチを介して供給されている
状態で前記一対又は複数対のトーチ電極によりプラズマ
放電を行いながら、該炉内に投入された廃棄物のガス化
と無機質分の溶融スラグ化を行うことを特徴とする。こ
の場合前記炉内空間に高温スチームを供給する手段を前
記プラズマ炉に具えているのがガス化促進とガス化ガス
改質効果が高く、更に前記プラズマ炉より生成したガス
化ガスを用いて発電する発電設備を具え、該発電設備の
発電量の少なくとも一部が前記直流プラズマ電源に供給
されているのがよい。更に好ましくは、前記プラズマ炉
が、トーチ電極先端が炉内空間の溶融スラグ面上方に廃
棄物投入口を挟んで配置されているプラズマ炉であるの
がよい。A fifth aspect of the present invention relates to an apparatus suitable for performing gasification and melting of waste, wherein one or a plurality of pairs of torch electrodes to which a DC plasma power supply is applied are arranged in a furnace space. A plasma furnace is provided, and a plasma working gas, preferably a non-oxygen gas such as a nitrogen gas or an argon gas, is supplied via a plasma torch, and plasma discharge is performed by the one or more pairs of torch electrodes. In addition, gasification of the waste put into the furnace and formation of molten slag of the inorganic material are performed. In this case, the plasma furnace is provided with a means for supplying high-temperature steam to the furnace space because the gasification promotion effect and the gasification gas reforming effect are high, and power generation is performed using the gasification gas generated from the plasma furnace. Preferably, at least a part of the power generation amount of the power generation facility is supplied to the DC plasma power supply. More preferably, the plasma furnace is a plasma furnace in which a tip of a torch electrode is disposed above a molten slag surface in a furnace space with a waste input port interposed therebetween.
【0007】かかる発明によれば、ガス化熱源を前記直
流プラズマとすることによりガス化炉内でのガス化と無
機質分の溶融スラグかが可能であり、炉自体の小型化が
可能であるとともに、特にプラズマ作動ガスとして例え
ば窒素プラズマの適用により廃棄物中の可燃物をロスな
く、ガス化出来る。According to this invention, gasification in the gasification furnace and the use of molten slag of the inorganic material are possible by using the direct current plasma as the gasification heat source, and the size of the furnace itself can be reduced. In particular, by applying nitrogen plasma as a plasma working gas, combustibles in waste can be gasified without loss.
【0008】又本発明は窒素、アルゴン、水蒸気等のほ
ぼ酸素がない状態での(無酸素若しくは低酸素)雰囲気
中におけるガス化が好ましく、いわゆる空気中のように
酸素があって燃焼する自己燃焼法でないために、排ガス
量の低減とガス化ガスの発熱量の向上に寄与できる。In the present invention, it is preferable to gasify in an atmosphere (oxygen-free or low-oxygen) substantially free of oxygen such as nitrogen, argon, and water vapor. Since it is not a method, it can contribute to reduction of the amount of exhaust gas and improvement of the calorific value of the gasified gas.
【0009】更にガス化促進剤として高温スチームを炉
内に噴射することによりガス化ガスの改質、即ちH2ガ
ス、COガスの高効率回収が可能であり、結果としてガ
ス化ガスの更なる高カロリー化が可能である。Furthermore reforming gasification gas by injecting hot steam into the furnace as a gasification promoter, i.e. H 2 gas, high efficiency recovery of CO gas are possible, the result becomes more of the gasification gas as High calorie is possible.
【0010】尚、本発明に用いるプラズマ炉は、電極ト
ーチと炉底電極間でプラズマアークを発生させる炉底電
極プラズマ炉より、電極トーチ先端が廃棄物投入口を挟
んで隣接配置しているツイントーチタイプのプラズマ炉
が好ましい。その理由は本発明の処理対象物がごみ、産
廃(産業廃棄物)などの可燃物を大量に含有し、これら
の可燃物(有機物)は導電性がないために、プラズマト
ーチと炉底電極間に嵩高で蓄積して存在した場合プラズ
マの不安定化(プラズマ消火)などが発生し、円滑に廃
棄物処理が出来ない。又同様に、電気抵抗炉では、ジュ
ール熱を利用するものであるために、導電性あるものを
加熱するには適するが、本発明のようにプラズマフレー
ムによる輻射熱で非導電性の有機物を加熱することは不
可能である。[0010] The plasma furnace used in the present invention is a twin furnace in which the tip of the electrode torch is disposed adjacent to the waste input port from the bottom electrode plasma furnace which generates a plasma arc between the electrode torch and the bottom electrode. A torch type plasma furnace is preferred. The reason for this is that the object to be treated according to the present invention contains a large amount of combustibles such as garbage and industrial waste (industrial waste), and since these combustibles (organic substances) are not conductive, the distance between the plasma torch and the furnace bottom electrode is low. If it accumulates in a bulky state, plasma instability (plasma extinguishing) and the like will occur, making it impossible to treat waste smoothly. Similarly, in the electric resistance furnace, since it uses Joule heat, it is suitable for heating conductive materials, but heats non-conductive organic substances by radiant heat by a plasma frame as in the present invention. It is impossible.
【0011】又前記高温スチームの温度範囲について
は、有機物のガス化を考えた場合に、炭化水素の分解開
始温度は250℃前後であり、温度上昇によりガス化速
度が向上することから考えると300℃以上あればよ
い。即ち本発明におけるスチームの役割は、有機物が炭
化したチャー類のクッキングによるガス化促進と水性ガ
ス化反応の促進であり、前者は800〜900℃、後者
は800〜1000℃の温度範囲が適正領域とされてい
る。本来、これらのガス化改質の場に前記温度のスチー
ムが存在すれば、これらの反応が促進されることにな
る。Further, regarding the temperature range of the high-temperature steam, when gasification of organic substances is considered, the decomposition start temperature of hydrocarbon is about 250 ° C., and the gasification rate is improved by increasing the temperature. It suffices that it be at least ℃. That is, the role of steam in the present invention is to promote gasification and water gasification reaction by cooking chars in which organic matter is carbonized. The former has a proper temperature range of 800 to 900 ° C, and the latter has a proper temperature range of 800 to 1000 ° C. It has been. Originally, the presence of steam at the temperature in the gasification and reforming field would promote these reactions.
【0012】そして、プラズマによる高温ガスが存在す
る中で、スチームの高温化はエネルギー効率の向上に寄
与することになるが、本発明のように廃熱回収等の高温
スチームをつくるエネルギーが存在することを考慮する
と、必ずしも800℃以上の高温スチームである必然性
は薄く、上記250℃の分解開始温度を下回らない(低
下させない)温度、具体的には300℃以上、好ましく
は400℃〜800℃の温度の高温スチームであれば十
分である。In the presence of high-temperature gas due to plasma, raising the temperature of steam contributes to improvement of energy efficiency. However, as in the present invention, there is energy for producing high-temperature steam such as waste heat recovery. Taking this into consideration, the necessity of high-temperature steam of 800 ° C. or more is not necessarily high, and a temperature not lowering (not lowering) the decomposition initiation temperature of 250 ° C., specifically 300 ° C. or more, preferably 400 ° C. to 800 ° C. High temperature steam is sufficient.
【0013】又高温スチームの供給量は廃棄物の種類と
操作温度により、その適性範囲は異なるが、好ましくは
H2O/C(モル比)=0.5〜10の範囲とするのが
よい。The suitable amount of the high-temperature steam to be supplied is different depending on the kind of the waste and the operating temperature, but it is preferable that H 2 O / C (molar ratio) is in the range of 0.5 to 10. .
【0014】[0014]
【発明の実施の形態】以下、本発明を図に示した実施例
を用いて詳細に説明する。但し、この実施例に記載され
る構成部品の寸法、形状、その相対配置などは特に特定
的な記載がない限り、この発明の範囲をそれのみに限定
する趣旨ではなく単なる説明例に過ぎない。図1は本発
明の実施形態にかかる各種廃棄物を同一炉内でガス化か
ら溶融までを行う一体型の廃棄物ガス化溶融装置を示す
概要図である。図1において、1は廃棄物を同一炉内で
ガス化から溶融までを行う一体型の廃棄物ガス化溶融炉
を構成するプラズマ炉で、直流プラズマ電源11が接続
された一対のトーチ12、12を、炉中央上部に設けた
廃棄物投入口13を挟んで左右両側に対称に炉内に挿入
且つ垂設させ、その先端が溶融スラグの貯留面より僅か
に上方に位置するように設定するとともに、管状のトー
チ電極12中心より窒素ガス等のプラズマ作動ガスが噴
出するように環状トーチ電極12a及び噴出管12bが
同心状に二重管構造になっている。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to an embodiment shown in the drawings. However, unless otherwise specified, dimensions, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the invention, but are merely illustrative examples. FIG. 1 is a schematic diagram showing an integrated waste gasification and melting apparatus for performing various processes from gasification to melting in the same furnace according to an embodiment of the present invention. In FIG. 1, reference numeral 1 denotes a plasma furnace which constitutes an integrated waste gasification / melting furnace for performing waste from gasification to melting in the same furnace, and a pair of torches 12, 12 to which a DC plasma power supply 11 is connected. Is inserted into the furnace symmetrically on the left and right sides of the waste inlet 13 provided at the upper center of the furnace and vertically suspended, and its tip is set to be slightly above the storage surface of the molten slag. The annular torch electrode 12a and the ejection tube 12b are formed in a concentric double tube structure so that a plasma working gas such as nitrogen gas is ejected from the center of the tubular torch electrode 12.
【0015】又前記プラズマ炉1を構成する炉壁14
は、Al2O3−SiC質焼結レンガ、ZrO2−C質
焼結レンガあるいはZrO2系電鋳レンガ等によって構
成され、円筒状内部空間15の上面を偏平ドーム状に、
底面を偏平すり鉢状に形成し、該偏平すり鉢部16の中
心底部に溶融メタル排出口17を設けるとともに、溶融
スラグの貯留面18を形成する側壁に溶融スラグ排出桶
19を延出させる。A furnace wall 14 constituting the plasma furnace 1
Is, Al 2 O 3 -SiC Shitsushoyui bricks, constituted by ZrO 2 -C Shitsushoyui bricks or ZrO 2 based electroforming brick, etc., the upper surface of the cylindrical interior space 15 into a flat dome,
The bottom surface is formed in a flat mortar shape, a molten metal discharge port 17 is provided at the center bottom of the flat mortar portion 16, and a molten slag discharge tub 19 is extended to a side wall forming a storage surface 18 for the molten slag.
【0016】又前記トーチ12先端の上方であって、プ
ラズマ処理空間(内部空間)側壁周囲に、処理空間中心
側に向け高温スチームが噴射されるように、多数のスチ
ーム噴出ノズル20を囲撓配置する。又偏平ドーム状の
炉壁上面のプラズマトーチ12外側位置には、ガス化ガ
ス排出通路21が形成され、該排出通路21に接続され
たガス化ガス経路は(1)の経路を形成しても良く、又
(2)の経路を形成しても良い。A large number of steam jet nozzles 20 are arranged around the side of the plasma processing space (inner space) above the tip of the torch 12 so that high-temperature steam is jetted toward the center of the processing space. I do. Further, a gasified gas discharge passage 21 is formed at a position outside the plasma torch 12 on the upper surface of the flat dome-shaped furnace wall, and the gasified gas passage connected to the discharge passage 21 may form the path (1). Alternatively, the path (2) may be formed.
【0017】即ち、(1)の経路は、コジェネ型の発電
経路で、ガス化ガス浄化除湿装置2を介してガスエンジ
ンやガスタービン等のガス発電設備3が取り付けられ、
更に該発電設備3の下流側には前記ガスエンジンやガス
タービンの廃熱(排気ガス等の熱を利用して)を回収す
るボイラー4が取り付けられ、該ボイラーにより400
〜500℃の高温スチームを生成する。前記高温スチー
ムは炉側のスチームノズル20に導かれる。又前記ガス
発電設備3の電力の一部はプラズマ炉の直流電源11に
用いられる。That is, the path (1) is a cogeneration type power generation path, in which a gas power generation facility 3 such as a gas engine or a gas turbine is attached via a gasification gas purifying and dehumidifying apparatus 2.
Further, a boiler 4 for collecting waste heat (using heat of exhaust gas or the like) of the gas engine or the gas turbine is attached downstream of the power generation equipment 3.
Produces high temperature steam of ~ 500 ° C. The high-temperature steam is led to a steam nozzle 20 on the furnace side. A part of the electric power of the gas power generation equipment 3 is used for the DC power supply 11 of the plasma furnace.
【0018】又前記ガス化ガスは、(2)の経路のよう
に燃料電池を組み合わせたガス発電装置として構成する
ことも出来る。即ち、(2)の経路は、燃料電池型の発
電経路で、ガス化ガス浄化精製装置5(必要により改質
操作も含む)及び必要により除湿装置6を介して燃料電
池を含むガス発電設備7が取り付けられ、更にその余っ
た精製ガスは、工業用燃料8や化学原料9に用いられ
る。そして前記工業用燃料の一部はボイラー4で燃焼さ
れ、該ボイラー4により400〜500℃程度の高温ス
チームを生成し、前記高温スチームは炉側のスチームノ
ズル20に導かれる。又前記ガス発電設備7の電力の一
部はプラズマ炉1の直流電源11に用いられることは
(1)の経路と同様である。Further, the gasified gas may be constituted as a gas power generation device in which fuel cells are combined as shown in the route (2). That is, the path (2) is a fuel cell type power generation path, and a gas power generation facility 7 including a fuel cell via a gasification gas purification / purification device 5 (including a reforming operation if necessary) and a dehumidification device 6 if necessary. The remaining purified gas is used for industrial fuel 8 and chemical raw material 9. Then, a part of the industrial fuel is burned in the boiler 4 to generate high-temperature steam of about 400 to 500 ° C., and the high-temperature steam is guided to the steam nozzle 20 on the furnace side. A part of the electric power of the gas power generation equipment 7 is used for the DC power supply 11 of the plasma furnace 1 in the same manner as the path (1).
【0019】次にかかる実施例の作用を説明する。先
ず、プラズマ炉1内に窒素ガスを流し、更にスチームノ
ズル20より400℃以上の高温スチームを流し、炉内
温度を300℃以上に且つ非酸素状態の雰囲気に設定
し、この状態でプラズマトーチ電極12、12に直流プ
ラズマ電源11を印加することにより、両トーチ電極1
2、12間にプラズマアークを生成させる。この状態で
廃棄物投入口13より廃棄物を投入することによりその
両側よりプラズマ放電されているプラズマ域による高温
ガスの輻射熱により前記廃棄物中の有機成分が、ガス化
のための熱分解を生じせしめるとともに、プラズマ域で
生成される高温ガスにより、スチームが800℃以上の
高温スチームに上昇する。前記スチームが800℃以上
の高温スチームとなると、前記有機成分が炭化したチャ
ー類のクッキングによるガス化促進と水性ガス化反応が
促進されるっともにダイオキシンの発生が抑制される。Next, the operation of the embodiment will be described. First, nitrogen gas was flown into the plasma furnace 1 and high-temperature steam at 400 ° C. or higher was further flowed from the steam nozzle 20 to set the furnace temperature to 300 ° C. or higher and in an atmosphere of a non-oxygen state. By applying a DC plasma power supply 11 to the two torch electrodes 1 and 12,
A plasma arc is generated between 2 and 12. In this state, by injecting the waste from the waste inlet 13, the organic components in the waste generate thermal decomposition for gasification due to the radiant heat of the high-temperature gas due to the plasma region which is plasma-discharged from both sides thereof. At the same time, the high temperature gas generated in the plasma region raises the steam to a high temperature steam of 800 ° C. or higher. When the steam becomes a high-temperature steam of 800 ° C. or more, gasification promotion and water gasification reaction due to the cooking of the char carbonized by the organic component are promoted, and the generation of dioxin is suppressed.
【0020】そしてこの間常時300℃以上の高温スチ
ームが供給されるが、その供給量は廃棄物の種類と操作
温度により、その適性範囲は異なるが、好ましくはH2
O/C(モル比)=0.5〜10の範囲(Cは廃棄物中
の炭素含有量(モル)である)となるように廃棄物投入
量とスチームの供給量を制御する制御装置30を設ける
のがよい。そして前記ガス化されずに有機物より分離し
た無機質残渣はプラズマ放電により更に加熱されて14
00℃以上に昇温されると溶融して溶融スラグ化し、更
に無機質中に混在していた鉄等の金属も溶融され溶融ス
ラグの下方に溶融メタルとして貯留される。そして溶融
スラグはスラグ排出桶19から排出され、又溶融メタル
は底部の排出口17より夫々排出されながら、廃棄物の
ガス化と溶融を継続する。又前記ガス化ガス排出通路よ
り排出されたガス化ガスは、ガス発電設備で発電されそ
の一部が直流電源に供給されることは前記したとおりで
あり、且つその廃熱を利用して高温スチームを生成する
ことも前記したとおりである。又前記ガス化及び溶融処
理は低酸素若しくは無酸素に近い還元性雰囲気であるた
めにNOxの発生もない。During this time, high-temperature steam of 300 ° C. or more is constantly supplied. The amount of the supply varies depending on the kind of waste and the operating temperature, but preferably H 2 is used.
A controller 30 for controlling the amount of waste input and the amount of steam supply so that O / C (molar ratio) = 0.5 to 10 (C is the carbon content (mol) in the waste). Should be provided. Then, the inorganic residue separated from the organic matter without being gasified is further heated by plasma discharge.
When the temperature is raised to 00 ° C. or higher, the molten metal becomes molten slag, and metals such as iron mixed in the inorganic material are also melted and stored as molten metal below the molten slag. Then, the molten slag is discharged from the slag discharge tub 19, and the molten metal is discharged from the bottom discharge port 17, respectively, while continuing to gasify and melt the waste. Further, as described above, the gasified gas discharged from the gasified gas discharge passage is generated by the gas power generation equipment and a part thereof is supplied to the DC power supply. Is also as described above. Further, since the gasification and melting treatment is performed in a reducing atmosphere close to low oxygen or oxygen-free, NOx is not generated.
【0021】[0021]
【発明の効果】以上記載のごとく本発明によれば、NO
xやダイオキシンが発生することなく然も装置構成が簡
単で且つ小型化が可能な各種廃棄物を同一炉内でガス化
から溶融までを行う一体型の廃棄物ガス化溶融方法とそ
の装置を得ることが出来る。As described above, according to the present invention, NO
Obtain an integrated waste gasification / melting method and apparatus for performing various processes from gasification to melting of various types of waste that can be simplified and reduced in size without generating x or dioxin in the same furnace. I can do it.
【図1】 本発明の実施形態にかかる各種廃棄物を同一
炉内でガス化から溶融までを行う一体型の廃棄物ガス化
溶融装置を示す概要図である。FIG. 1 is a schematic view showing an integrated waste gasification and melting apparatus for performing various processes from gasification to melting in the same furnace according to an embodiment of the present invention.
1 プラズマ炉 2 ガス化ガス浄化除湿装置 3 ガス発電設備 4 ボイラー 5 ガス化ガス浄化精製装置 6 除湿装置 7 燃料電池を含むガス発電設備 8 工業用燃料 9 化学原料 11 直流プラズマ電源 12 トーチ 13 廃棄物投入口 17 溶融メタル排出口 19 溶融スラグ排出桶 20 スチーム噴出ノズル 21 ガス化ガス排出通路 DESCRIPTION OF SYMBOLS 1 Plasma furnace 2 Gasification gas purification dehumidifier 3 Gas power generation equipment 4 Boiler 5 Gasification gas purification / purification equipment 6 Dehumidifier 7 Gas power generation equipment including a fuel cell 8 Industrial fuel 9 Chemical raw material 11 DC plasma power supply 12 Torch 13 Waste Inlet 17 Molten metal outlet 19 Molten slag discharge tub 20 Steam jet nozzle 21 Gasified gas discharge passage
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B09B 3/00 C10J 3/00 L 4G075 C02F 11/10 F23G 5/16 ZABZ C10J 3/00 5/46 ZABZ F23G 5/16 ZAB B09B 3/00 ZAB 5/46 ZAB 303K (72)発明者 奥野 敏 横浜市中区錦町12番地 三菱重工業株式会 社横浜製作所内 (72)発明者 堀家 隆一 横浜市中区錦町12番地 三菱重工業株式会 社横浜製作所内 Fターム(参考) 3K061 AA18 AA23 AB03 AC01 AC02 AC13 AC19 BA04 BA06 BA08 BA10 CA14 DA18 DA19 DB20 3K065 AA18 AA23 AB02 AB03 AC01 AC02 AC13 AC19 BA04 BA06 BA08 BA10 JA05 JA13 3K078 AA04 AA06 AA08 AA10 BA02 BA03 BA22 BA26 CA02 CA11 CA21 CA24 4D004 AA46 CA27 CA29 CB33 CC03 DA02 DA03 DA06 DA10 4D059 AA03 BB04 BF02 BK30 EA10 EB10 4G075 AA37 CA47 EB43 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B09B 3/00 C10J 3/00 L 4G075 C02F 11/10 F23G 5/16 ZABZ C10J 3/00 5/46 ZABZ F23G 5/16 ZAB B09B 3/00 ZAB 5/46 ZAB 303K (72) Inventor Satoshi Okuno 12 Nishikicho, Naka-ku, Yokohama-shi Mitsubishi Heavy Industries, Ltd. Yokohama Works (72) Inventor Ryuichi Horiya 12 Nishikicho, Naka-ku, Yokohama-shi Address Mitsubishi Heavy Industries, Ltd.Yokohama Works F-term (reference) BA02 BA03 BA22 BA26 CA02 CA11 CA21 CA24 4D004 AA46 CA27 CA29 CB33 CC03 DA02 DA03 DA06 DA10 4D059 AA03 BB0 4 BF02 BK30 EA10 EB10 4G075 AA37 CA47 EB43
Claims (9)
を行う廃棄物ガス化溶融方法において、 プラズマ作動ガス(窒素ガス、アルゴンガスなど)をプ
ラズマトーチ(電極)を介して炉内空間に流しながら、
プラズマアーク放電を行い、該アーク放電域に廃棄物を
投入して、該廃棄物を同一炉内でガス化から溶融までを
行うことを特徴とする廃棄物ガス化溶融方法。In a waste gasification and melting method for performing waste from gasification to melting in the same furnace, a plasma working gas (nitrogen gas, argon gas, etc.) is supplied to a furnace space via a plasma torch (electrode). While flowing
A method for gasification and melting of waste, comprising performing plasma arc discharge, charging waste into the arc discharge region, and performing the process from gasification to melting in the same furnace.
以上の高温スチームを供給することを特徴とする請求項
1記載の廃棄物ガス化溶融方法。2. At least 300 ° C. in said arc discharge zone.
The waste gasification and melting method according to claim 1, wherein the high-temperature steam is supplied.
電源が直流電源であり、該直流電源が、前記炉内で生成
されたガス化ガスにより発電された直流電源であること
を特徴とする請求項1記載の廃棄物ガス化溶融方法。3. The plasma power source for forming the plasma arc is a DC power source, and the DC power source is a DC power source generated by a gasified gas generated in the furnace. The waste gasification and melting method as described in the above.
C(モル比)=0.5〜10の範囲(Cは処理対象中の
炭素含有量(モル))であることを特徴とする請求項1
記載の廃棄物ガス化溶融方法。4. The supply amount of the high-temperature steam is H 2 O /
2. The method according to claim 1, wherein C (molar ratio) is in the range of 0.5 to 10 (C is the carbon content (mol) in the object to be treated).
The waste gasification and melting method as described in the above.
を行う一体型の廃棄物ガス化溶融装置において、 直流プラズマ電源が印加される一対又は複数対のトーチ
電極が炉内空間に配置されているプラズマ炉を具え、該
炉内にプラズマ作動ガス(窒素ガス、アルゴンガスな
ど)がプラズマトーチを介して供給されている状態で前
記一対又は複数対のトーチ電極によりプラズマ放電を行
いながら、該炉内に投入された廃棄物のガス化と無機質
分の溶融スラグ化を行うことを特徴とする廃棄物ガス化
溶融装置。5. An integrated waste gasification and melting apparatus for performing waste from gasification to melting in the same furnace, wherein one or more pairs of torch electrodes to which a DC plasma power supply is applied are arranged in the furnace space. While performing plasma discharge with the one or more pairs of torch electrodes in a state in which plasma working gas (nitrogen gas, argon gas, etc.) is supplied through a plasma torch in the furnace. A waste gasification / melting apparatus characterized in that gasification of waste put into the furnace and melting of slag of inorganic components are performed.
手段を前記プラズマ炉に具えていることを特徴とする請
求項5記載の廃棄物ガス化溶融装置。6. The waste gasification and melting apparatus according to claim 5, wherein said plasma furnace is provided with means for supplying high-temperature steam to said furnace space.
を用いて発電する発電設備を具え、該発電設備の発電量
の少なくとも一部が前記直流プラズマ電源に供給されて
いることを特徴とする請求項5記載の廃棄物ガス化溶融
装置。7. A power generation facility for generating power using gasified gas generated from the plasma furnace, wherein at least a part of the power generation of the power generation facility is supplied to the DC plasma power supply. Item 6. A waste gasification and melting apparatus according to Item 5.
ビン、ガスエンジン、燃料電池などから構成され、必要
によりガス改質設備を付帯することを特徴とする請求項
5記載の廃棄物ガス化溶融装置。8. The waste gasification / melting apparatus according to claim 5, wherein the power generation equipment includes a steam turbine, a gas turbine, a gas engine, a fuel cell, and the like, and a gas reforming equipment is attached as necessary. .
内空間の溶融スラグ面上方に廃棄物投入口を挟んで配置
されているプラズマ炉であることを特徴とする請求項5
記載の廃棄物ガス化溶融装置。9. The plasma furnace according to claim 5, wherein the tip of a torch electrode is disposed above a molten slag surface in a furnace space with a waste inlet inserted therebetween.
The waste gasification and melting apparatus as described in the above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000387364A JP2002195519A (en) | 2000-12-20 | 2000-12-20 | Method and system for gasifying/melting refuse |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000387364A JP2002195519A (en) | 2000-12-20 | 2000-12-20 | Method and system for gasifying/melting refuse |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002195519A true JP2002195519A (en) | 2002-07-10 |
Family
ID=18854312
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000387364A Withdrawn JP2002195519A (en) | 2000-12-20 | 2000-12-20 | Method and system for gasifying/melting refuse |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002195519A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006000811A (en) * | 2004-06-21 | 2006-01-05 | Ishikawajima Harima Heavy Ind Co Ltd | Sewage sludge treatment system |
JP2009536979A (en) * | 2006-05-12 | 2009-10-22 | インエンテック エルエルシー | Combined gasification and vitrification system |
JP2011240212A (en) * | 2010-05-14 | 2011-12-01 | Aichi Electric Co Ltd | Persistent organic waste liquid treatment system |
RU2521638C2 (en) * | 2012-09-17 | 2014-07-10 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Чувашский государственный университет имени И.Н. Ульянова" | Gasification of carbon-bearing solid fuels |
CN113701166A (en) * | 2021-09-10 | 2021-11-26 | 中野环保科技(重庆)股份有限公司 | Plasma furnace and metal-containing waste plasma melting treatment system and method |
-
2000
- 2000-12-20 JP JP2000387364A patent/JP2002195519A/en not_active Withdrawn
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006000811A (en) * | 2004-06-21 | 2006-01-05 | Ishikawajima Harima Heavy Ind Co Ltd | Sewage sludge treatment system |
JP2009536979A (en) * | 2006-05-12 | 2009-10-22 | インエンテック エルエルシー | Combined gasification and vitrification system |
JP2011240212A (en) * | 2010-05-14 | 2011-12-01 | Aichi Electric Co Ltd | Persistent organic waste liquid treatment system |
RU2521638C2 (en) * | 2012-09-17 | 2014-07-10 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Чувашский государственный университет имени И.Н. Ульянова" | Gasification of carbon-bearing solid fuels |
CN113701166A (en) * | 2021-09-10 | 2021-11-26 | 中野环保科技(重庆)股份有限公司 | Plasma furnace and metal-containing waste plasma melting treatment system and method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2594842C (en) | Waste treatment process and apparatus | |
CA2424805C (en) | Two-stage plasma process for converting waste into fuel gas and apparatus therefor | |
EP2264367A2 (en) | Waste treatment process and apparatus | |
WO2002021047A1 (en) | Waste-gasified fusion furnace and method of operating the fusion furnace | |
CN104998888A (en) | Medical waste plasma processing apparatus | |
JPH06507232A (en) | Method of melting incineration residue into slag | |
KR20160065340A (en) | Waste processing system for a printed circuit board | |
CN113390090A (en) | Plasma gasification melting treatment device, system and method for medical waste | |
EP2660302A1 (en) | Gasification melting furnace and treating method for combustible material using the same | |
JPH07301409A (en) | Method and equipment for simultaneously generating effectivegas and inert inorganic residue and incinerating waste | |
JP2002195519A (en) | Method and system for gasifying/melting refuse | |
JP3525077B2 (en) | Directly connected incineration ash melting equipment and its operation control method | |
JPH11159718A (en) | Device and method for combustion | |
JP2006170609A (en) | Gasification and gasification combustion method of solid waste | |
JP3825263B2 (en) | Gasification and melting equipment | |
JPH08121728A (en) | Combustion method of gas produced from wastes melting furnace and secondary combustion furnace for wastes melting furnace | |
JP3791853B2 (en) | Gasification of solid waste and gasification combustion method | |
CN221825405U (en) | Plasma-assisted multi-mode pyrolysis gasifier and plasma multi-mode pyrolysis gasification organic solid waste device | |
JP2001027410A (en) | Separate type incineration ash melting facility, and its operation controlling method | |
JP2002115822A (en) | Equipment and method for waste disposal | |
JP2003294205A (en) | Coal burning boiler, organic waste gasification furnace, and coal ash treatment plant | |
JP2001227726A (en) | Gasifying and melting furnace | |
JPH11201429A (en) | Method and device for melting by gasification | |
JPH10306907A (en) | Fluidized bed pyrolysis method and pyrolysis fuenace as well as treating device for matter to be burnt | |
JPH1114025A (en) | Garbage incineration melting apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20080304 |