JP2006000811A - Sewage sludge treatment system - Google Patents

Sewage sludge treatment system Download PDF

Info

Publication number
JP2006000811A
JP2006000811A JP2004182415A JP2004182415A JP2006000811A JP 2006000811 A JP2006000811 A JP 2006000811A JP 2004182415 A JP2004182415 A JP 2004182415A JP 2004182415 A JP2004182415 A JP 2004182415A JP 2006000811 A JP2006000811 A JP 2006000811A
Authority
JP
Japan
Prior art keywords
sewage sludge
treatment system
gas
gasification furnace
gasification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004182415A
Other languages
Japanese (ja)
Inventor
Takahiro Murakami
高広 村上
Toshiyuki Suda
俊之 須田
Tetsuya Hirata
哲也 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2004182415A priority Critical patent/JP2006000811A/en
Publication of JP2006000811A publication Critical patent/JP2006000811A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sewage sludge treatment system capable of efficiently treating sewage sludge without causing the problem of an offensive smell or the like, capable of effectively putting the moisture of sewage sludge to practical use as a gasifying agent and reducing the occurrence of a tar component. <P>SOLUTION: The sewage sludge treatment system is equipped with a gasifying furnace 7 for gasifying fuel and sewage sludge, a reheater 8 for preheating air by the gasified gas discharged from the gasifying furnace 7 to supply the same to the gasifying furnace 7 and a waste heat boiler 9 for heating water by the gasified gas discharged from the reheater 8 to supply steam to the gasifying furnace 7. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、下水汚泥処理システムに関するものである。   The present invention relates to a sewage sludge treatment system.

近年、下水汚泥は増加の一途を辿っており、その処理が社会的な問題となっているが、下水汚泥の処理の主なものとしては、例えば、汚泥焼却炉による焼却処理が挙げられる。   In recent years, sewage sludge has been steadily increasing and its treatment has become a social problem. As a main treatment of sewage sludge, for example, incineration treatment by a sludge incinerator can be mentioned.

図2は従来の下水汚泥処理システムの一例を示すものであって、1は汚泥焼却炉、2は再熱器、3は冷却塔、4はバグフィルタ、5は排煙処理器である。   FIG. 2 shows an example of a conventional sewage sludge treatment system, wherein 1 is a sludge incinerator, 2 is a reheater, 3 is a cooling tower, 4 is a bag filter, and 5 is a flue gas treatment device.

図2に示される下水汚泥処理システムにおいては、水分をおよそ70〜80[%]程度含有する下水汚泥が汚泥焼却炉1に供給され、該汚泥焼却炉1において都市ガス、或いは灯油や重油等の助燃料と一緒に下水汚泥の混焼が行われ、その排ガスが再熱器2を通過する際に燃焼用空気と熱交換し、予熱された燃焼用空気が前記汚泥焼却炉1へ導入され、前記再熱器2を通過した排ガスは、冷却塔3において噴霧される水により冷却され、続いて、バグフィルタ4で焼却灰が分離除去された後、排煙処理器5において噴霧される水により前記バグフィルタ4で分離除去しきれなかった灰が除去され、クリーンなガスとして大気放出されるようになっている。   In the sewage sludge treatment system shown in FIG. 2, sewage sludge containing about 70 to 80% of water is supplied to the sludge incinerator 1, and city gas, kerosene, heavy oil, etc. The sewage sludge is mixed with the auxiliary fuel, and when the exhaust gas passes through the reheater 2, heat exchange with the combustion air is performed, and the preheated combustion air is introduced into the sludge incinerator 1, The exhaust gas that has passed through the reheater 2 is cooled by water sprayed in the cooling tower 3, and then the incinerated ash is separated and removed by the bag filter 4. The ash that could not be separated and removed by the bag filter 4 is removed and released into the atmosphere as a clean gas.

又、図3は従来の下水汚泥処理システムの他の例を示すものであって、図中、図2と同一の符号を付した部分は同一物を表わしており、下水汚泥を乾燥させて汚泥焼却炉1へ供給する乾燥機6を追加装備したものである。   FIG. 3 shows another example of a conventional sewage sludge treatment system. In the figure, the same reference numerals as those in FIG. 2 denote the same parts, and the sewage sludge is dried to form sludge. A dryer 6 to be supplied to the incinerator 1 is additionally provided.

図3に示される下水汚泥処理システムにおいては、水分をおよそ70〜80[%]程度含有する下水汚泥が乾燥機6で乾燥され、含有する水分がおよそ30〜50[%]程度まで低減された後、乾燥汚泥が汚泥焼却炉1に供給され、該汚泥焼却炉1において乾燥汚泥の自燃が行われ、その排ガスが再熱器2を通過する際に燃焼用空気と熱交換し、予熱された燃焼用空気が前記汚泥焼却炉1へ導入される一方、前記汚泥焼却炉1から排出される排ガスの一部が前記乾燥機6へ導かれてその廃熱が下水汚泥の乾燥に供され、前記再熱器2を通過した排ガスは、図2に示される例の場合と同様に、冷却塔3において噴霧される水により冷却され、続いて、バグフィルタ4で焼却灰が分離除去された後、排煙処理器5において噴霧される水により前記バグフィルタ4で分離除去しきれなかった灰が除去され、クリーンなガスとして大気放出されるようになっている。   In the sewage sludge treatment system shown in FIG. 3, sewage sludge containing about 70 to 80 [%] of water is dried by the dryer 6, and the contained water is reduced to about 30 to 50 [%]. Thereafter, the dried sludge was supplied to the sludge incinerator 1, and the dried sludge was self-combusted in the sludge incinerator 1, and the exhaust gas passed through the reheater 2 to exchange heat with combustion air and was preheated. While combustion air is introduced into the sludge incinerator 1, a part of the exhaust gas discharged from the sludge incinerator 1 is led to the dryer 6, and the waste heat is used for drying sewage sludge, The exhaust gas that has passed through the reheater 2 is cooled by water sprayed in the cooling tower 3 in the same manner as in the example shown in FIG. 2, and then the incinerated ash is separated and removed by the bag filter 4. The water sprayed in the flue gas treatment unit 5 Gufiruta 4 ash which can not be separated off is removed, and is released into the atmosphere as a clean gas.

尚、下水汚泥を焼却処理する一般的技術水準を示すものとしては、例えば、特許文献1がある。
特開2004−51745号公報
In addition, there exists patent document 1 as what shows the general technical level which incinerates a sewage sludge, for example.
JP 2004-51745 A

しかしながら、図2に示されるような従来の下水汚泥処理システムでは、水分をおよそ70〜80[%]程度含有する下水汚泥を汚泥焼却炉1で燃焼させるために、都市ガス、或いは灯油や重油等の助燃料が大量に必要となり、省エネ上、好ましくないと共に、コストアップにもつながるという欠点を有していた。   However, in the conventional sewage sludge treatment system as shown in FIG. 2, in order to burn sewage sludge containing about 70 to 80% of moisture in the sludge incinerator 1, city gas, kerosene, heavy oil, etc. A large amount of auxiliary fuel is required, which is not preferable in terms of energy saving and has the disadvantage of leading to an increase in cost.

又、図3に示されるような従来の下水汚泥処理システムでは、水分をおよそ70〜80[%]程度含有する下水汚泥を乾燥機6で乾燥させ、含有する水分がおよそ30〜50[%]程度まで低減された乾燥汚泥を汚泥焼却炉1で自燃させるようになっているため、都市ガス、或いは灯油や重油等の助燃料は不要となるものの、乾燥汚泥は、ポンプで圧送することが困難となり、乾燥機6から汚泥焼却炉1への搬送は、ベルトコンベヤ等を使用せざるを得ないため、臭気の発生が避けられず、実用化する上で大きな問題となっていた。   Moreover, in the conventional sewage sludge treatment system as shown in FIG. 3, the sewage sludge containing about 70 to 80 [%] of moisture is dried by the dryer 6, and the contained moisture is about 30 to 50 [%]. Since the dried sludge reduced to a certain extent is burned by the sludge incinerator 1, no auxiliary gas such as city gas or kerosene or heavy oil is required, but it is difficult to pump dry sludge with a pump. Therefore, since it is necessary to use a belt conveyor or the like for transport from the dryer 6 to the sludge incinerator 1, the generation of odor is unavoidable, which is a big problem in practical use.

本発明は、斯かる実情に鑑み、都市ガス、或いは灯油や重油等の助燃料を使用することなく且つ臭気の問題等を生じさせずに下水汚泥を効率良く処理することができ、又、その水分をガス化剤として有効活用でき、更にはタール分の発生を低減する下水汚泥処理システムを提供しようとするものである。   In view of such circumstances, the present invention can efficiently treat sewage sludge without using city gas or auxiliary fuel such as kerosene or heavy oil and causing odor problems. An object of the present invention is to provide a sewage sludge treatment system that can effectively use moisture as a gasifying agent and further reduce the generation of tar content.

本発明は、燃料と下水汚泥をガス化するガス化炉と、該ガス化炉より排出されたガス化ガスにより空気を予熱して前記ガス化炉に送給する再熱器と、該再熱器より排出されたガス化ガスにより水を加熱して水蒸気を前記ガス化炉に送給する排熱ボイラとを備えたことを特徴とする下水汚泥処理システムにかかるものである。   The present invention includes a gasification furnace that gasifies fuel and sewage sludge, a reheater that preheats air with the gasification gas discharged from the gasification furnace and supplies the gas to the gasification furnace, and the reheat The present invention relates to a sewage sludge treatment system comprising a waste heat boiler that heats water with gasified gas discharged from a vessel and supplies steam to the gasification furnace.

又、前記下水汚泥処理システムにおいては、燃料を廃棄物とすることができる。   In the sewage sludge treatment system, fuel can be used as waste.

更に、排熱ボイラから送給された水蒸気によりガス化炉内のタール分を低減するよう構成されることが有効となる。   Furthermore, it is effective to be configured to reduce the tar content in the gasification furnace with the steam supplied from the exhaust heat boiler.

更に又、排熱ボイラから排出されたガスにより発電する発電手段を備えることが有効となる。   Furthermore, it is effective to provide a power generation means for generating power using the gas discharged from the exhaust heat boiler.

ガス化炉は、炉内下部に、流動用空気によりバブリングされ且つ燃料及び水蒸気が供給される流動層を形成すると共に、該流動層の上方から下水汚泥を供給するよう構成されることが有効となる。   It is effective that the gasification furnace is configured to form a fluidized bed that is bubbled with fluidized air and supplied with fuel and water vapor, and to supply sewage sludge from above the fluidized bed. Become.

上記手段によれば、以下のような作用が得られる。   According to the above means, the following operation can be obtained.

本発明の下水汚泥処理システムにおいては、先ず、ガス化炉の炉内下部において、廃棄物と一緒に流動用空気によりバブリングさせて燃焼させ、流動層を形成した状態で、該流動層の上に水分をおよそ70〜80[%]程度含有する下水汚泥をそのまま落下させると、該下水汚泥に含まれる水分が蒸発して蒸気が発生しつつ、下水汚泥の乾燥が行われる。   In the sewage sludge treatment system of the present invention, first, in the lower part of the gasification furnace, it is bubbled with combustion air together with waste and burned to form a fluidized bed on the fluidized bed. When the sewage sludge containing about 70 to 80% of water is dropped as it is, the water contained in the sewage sludge evaporates and steam is generated, and the sewage sludge is dried.

前記下水汚泥は、乾燥すると揮発性が高いため、揮発分がすぐに放出され、前記流動層で燃料を燃焼させることによって生じたCO2と、前記下水汚泥から蒸発して発生した蒸気及び排熱ボイラから供給した水蒸気とがガス化剤として、前記流動層上方のガス化領域で前記揮発分と反応し、COやH2等の可燃性ガスを多く含むガス化ガスが生成される。 Since the sewage sludge has high volatility when dried, the volatile matter is immediately released, and CO 2 generated by burning fuel in the fluidized bed, and the steam and exhaust heat generated by evaporation from the sewage sludge. Water vapor supplied from the boiler reacts with the volatile matter in the gasification region above the fluidized bed as a gasifying agent, and a gasified gas containing a large amount of combustible gas such as CO or H 2 is generated.

ガス化ガスは、再熱器及び排熱ボイラを流下しており、再熱器では、ガス化ガスにより空気を予熱してガス化炉に送給すると共に、排熱ボイラでは、ガス化ガスにより水を加熱して水蒸気をガス化炉に送給する。   The gasification gas flows down the reheater and the exhaust heat boiler. In the reheater, air is preheated by the gasification gas and supplied to the gasification furnace. In the exhaust heat boiler, the gasification gas is supplied by the gasification gas. Water is heated to supply steam to the gasifier.

これにより、水分をおよそ70〜80[%]程度含有する下水汚泥を汚泥焼却炉で燃焼させる従来の下水汚泥処理システムとは異なり、都市ガス、或いは灯油や重油等の助燃料が必要とならず、廃棄物をその処理も兼ねて有効に活用可能となり、省エネに役立つと共に、コストアップも避けられる。   Thus, unlike conventional sewage sludge treatment systems in which sewage sludge containing about 70 to 80% of moisture is burned in a sludge incinerator, no auxiliary fuel such as city gas or kerosene or heavy oil is required. In addition, waste can be effectively used for its treatment, which helps to save energy and avoids cost increase.

又、水分をおよそ70〜80[%]程度含有する下水汚泥を乾燥機で乾燥させ、含有する水分がおよそ30〜50[%]程度まで低減された乾燥汚泥を汚泥焼却炉で自燃させる従来の下水汚泥処理システムとは異なり、水分をおよそ70〜80[%]程度含有する下水汚泥をポンプで圧送して流動層の上にそのまま落下させるだけで良いため、臭気が発生する心配も全くない。   Also, conventional sewage sludge containing about 70-80 [%] of moisture is dried with a drier, and the dried sludge whose contained moisture is reduced to about 30-50 [%] is self-burned in a sludge incinerator. Unlike the sewage sludge treatment system, sewage sludge containing about 70 to 80 [%] of water only needs to be pumped and dropped as it is onto the fluidized bed, so there is no fear of odor generation.

更に、ガス化ガスにより空気を予熱してガス化炉に送給するので、下水汚泥のガス化を促進できると共に、ガス化ガスにより水を加熱して水蒸気をガス化炉に送給するので、ガス化炉内で水性ガス化反応を行ってタール分を低減することができる。   Furthermore, since the air is preheated with the gasification gas and is sent to the gasification furnace, the gasification of the sewage sludge can be promoted, and the water is heated with the gasification gas to supply the water vapor to the gasification furnace. The tar content can be reduced by performing a water gasification reaction in the gasification furnace.

更に又、排熱ボイラから排出されたガスにより発電する発電手段を備えるので、ガスを発電設備による発電に利用することができる。   Furthermore, since the power generation means for generating power using the gas discharged from the exhaust heat boiler is provided, the gas can be used for power generation by the power generation facility.

本発明の下水汚泥処理システムによれば、都市ガス、或いは灯油や重油等の助燃料を使用することなく且つ臭気の問題等を生じさせずに下水汚泥を効率良く処理することができ、又、その水分をガス化剤として有効活用でき、更にはタール分の発生を低減し得るという優れた効果を奏し得る。   According to the sewage sludge treatment system of the present invention, sewage sludge can be efficiently treated without using city gas or auxiliary fuel such as kerosene or heavy oil and without causing problems of odor, etc. The moisture can be effectively used as a gasifying agent, and further, an excellent effect that the generation of tar content can be reduced can be achieved.

以下、本発明の実施の形態を添付図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1は本発明を実施する形態の一例であり、一例は、燃料と下水汚泥をガス化するガス化炉7を備えており、ガス化炉7は炉内の下部には、流動用空気によりバブリングされ且つ燃料及び水蒸気が供給される流動層7bを形成すると共に、ガス化炉7内の上部には、流動層7bの上方から下水汚泥を供給するようフリーボード7aを設けている。   FIG. 1 shows an example of an embodiment for carrying out the present invention. An example includes a gasification furnace 7 for gasifying fuel and sewage sludge, and the gasification furnace 7 is provided with flowing air in the lower part of the furnace. A fluidized bed 7b that is bubbled and supplied with fuel and water vapor is formed, and a free board 7a is provided in the upper part of the gasification furnace 7 so as to supply sewage sludge from above the fluidized bed 7b.

ここで、燃料としては、廃プラスチック、廃木材等の廃棄物を用いることができ、ガス化炉7内では、これらの燃料を砂等のベッド材と一緒に流動用空気によりバブリングさせて燃焼させ、この流動層7bの上に水分をおよそ70〜80[%]程度含有する下水汚泥をそのまま落下させるようにしてある。   Here, wastes such as waste plastic and waste wood can be used as the fuel. In the gasification furnace 7, these fuels are bubbled together with bed material such as sand by flowing air and burned. The sewage sludge containing about 70 to 80% of water is dropped on the fluidized bed 7b as it is.

ガス化炉7の下流側には再熱器8を備えており、再熱器8は、フリーボード7aで下水汚泥をガス化させて生成されるガス化ガスの廃熱の一部により、流動層7bへ供給される流動用空気を573〜1073[k]、好ましくは723[k]以上に予熱するようにしてある。   A reheater 8 is provided on the downstream side of the gasification furnace 7, and the reheater 8 flows due to a part of the waste heat of the gasification gas generated by gasifying the sewage sludge with the free board 7a. The flowing air supplied to the layer 7b is preheated to 573 to 1073 [k], preferably 723 [k] or more.

再熱器8の下流側には排熱ボイラ9を備えており、排熱ボイラ9は、再熱器8を通過したガス化ガスの廃熱の一部により、水を373〜873[k]、好ましくは573[k]以上で水蒸気として発生させ、ガス化炉7の炉内下部へ送給するようにしてある。   An exhaust heat boiler 9 is provided on the downstream side of the reheater 8, and the exhaust heat boiler 9 supplies water 373 to 873 [k] by a part of the waste heat of the gasification gas that has passed through the reheater 8. , Preferably, it is generated as water vapor at 573 [k] or more and is sent to the lower part of the gasification furnace 7.

排熱ボイラ9の下流側にはスクラバ10を設けており、スクラバ10は、排熱ボイラ9を通過したガス化ガスに対して水を噴霧し、アンモニアやタールの処理並びに脱硫、脱硝、灰処理等を行うと共に、ガス化ガス中の蒸気を凝縮させ、COやH2等の可燃性ガスを含むドライなガスにするようにしてある。 A scrubber 10 is provided on the downstream side of the exhaust heat boiler 9. The scrubber 10 sprays water on the gasified gas that has passed through the exhaust heat boiler 9 to treat ammonia and tar, as well as desulfurization, denitration, and ash treatment. In addition, the vapor in the gasified gas is condensed to a dry gas containing a combustible gas such as CO or H 2 .

スクラバ10の下流側には、ガスエンジンやガスタービン等の発電手段11とを設けており、発電手段11は、スクラバ10で生成された可燃性ガスが導入されて発電を行うようにしてある。ここで、発電手段11は、ガスエンジンやガスタービンに限定されるものではなく、可燃ガスにより発電し得るならば特に限定されるものではない。   A power generation means 11 such as a gas engine or a gas turbine is provided on the downstream side of the scrubber 10, and the power generation means 11 is configured to generate power by introducing the combustible gas generated by the scrubber 10. Here, the power generation means 11 is not limited to a gas engine or a gas turbine, and is not particularly limited as long as it can generate power with a combustible gas.

次に、上記図示例の作用を説明する。   Next, the operation of the illustrated example will be described.

先ず、ガス化炉7内の下部において、廃棄物を砂等のベッド材と一緒に流動用空気によりバブリングさせて燃焼させ、流動層7bを形成した状態で、流動層7bの上に水分をおよそ70〜80[%]程度含有する下水汚泥をそのまま落下させると、下水汚泥に含まれる水分が蒸発して蒸気が発生しつつ、下水汚泥の乾燥が行われる。   First, in the lower part in the gasification furnace 7, waste is bubbled with fluid air together with bed material such as sand and burned to form a fluidized bed 7b. When the sewage sludge containing about 70-80 [%] is dropped as it is, the water contained in the sewage sludge evaporates and steam is generated, and the sewage sludge is dried.

下水汚泥は、乾燥すると揮発性が高いため、揮発分がすぐに放出され、流動層7bで燃料を燃焼させることによって生じたCO2と、前記下水汚泥から蒸発して発生した蒸気とがガス化剤として、流動層7b上方のフリーボード7aのガス化領域で揮発分と反応し、COやH2等の可燃性ガスを多く含むガス化ガスが生成される。 Since sewage sludge has high volatility when dried, volatile matter is released immediately, and CO 2 generated by burning fuel in the fluidized bed 7b and vapor generated by evaporation from the sewage sludge are gasified. As an agent, it reacts with volatile matter in the gasification region of the free board 7a above the fluidized bed 7b, and a gasification gas containing a large amount of combustible gas such as CO or H 2 is generated.

ガス化ガスは、再熱器8を介して排熱ボイラ9を流下し、再熱器8では、ガス化ガスにより流動層用空気を所定の温度に予熱してガス化炉7に送給し、排熱ボイラ9では、ガス化ガスにより水を加熱して水蒸気をガス化炉7に送給し、水蒸気は、ガス化炉7内で水性ガス化反応を行ってタールを低減する。ここで、ガス化炉7内はS/C(蒸気/燃料中の炭素のモル比)は、理論値の1以上、特に好ましくは1.5以上、炉内の空気比は0.4以下、好ましくは0.3以下、温度は973〜1173[k]、好ましくは1073[k]以上の条件に設定される。   The gasification gas flows down the exhaust heat boiler 9 via the reheater 8, and the reheater 8 preheats the fluidized bed air to a predetermined temperature with the gasification gas and sends it to the gasification furnace 7. In the exhaust heat boiler 9, water is heated by the gasification gas and water vapor is supplied to the gasification furnace 7, and the water vapor performs a water gasification reaction in the gasification furnace 7 to reduce tar. Here, in the gasification furnace 7, S / C (molar ratio of steam / carbon in fuel) is 1 or more of the theoretical value, particularly preferably 1.5 or more, and the air ratio in the furnace is 0.4 or less. The condition is preferably set to 0.3 or less, and the temperature is set to 973 to 1173 [k], preferably 1073 [k] or more.

排熱ボイラ9を通過したガス化ガスは、スクラバ10において水が噴霧され、アンモニアやタールの処理並びに脱硫、脱硝、灰処理等が行われると共に、ガス化ガス中の蒸気が凝縮され、COやH2等の可燃性ガスを含むドライなガスとなる。 The gasified gas that has passed through the exhaust heat boiler 9 is sprayed with water in the scrubber 10, and is subjected to ammonia and tar treatment, desulfurization, denitration, ash treatment, and the like, and vapor in the gasification gas is condensed, and CO and It becomes a dry gas containing a combustible gas such as H 2 .

スクラバ10で生成された可燃性ガスは、ガスエンジンやガスタービン等の発電手段11へ導入され発電が行われる。   The combustible gas produced | generated by the scrubber 10 is introduce | transduced into the electric power generation means 11, such as a gas engine and a gas turbine, and electric power generation is performed.

これにより、図2に示されるような従来の下水汚泥処理システムとは異なり、水分をおよそ70〜80[%]程度含有する下水汚泥を汚泥焼却炉1で燃焼させるのではないため、都市ガス、或いは灯油や重油等の助燃料が必要とならず、廃プラスチック、廃木材等の廃棄物をその処理も兼ねて有効に活用可能となり、省エネに役立つと共に、コストアップも避けられる。   Thereby, unlike the conventional sewage sludge treatment system as shown in FIG. 2, sewage sludge containing about 70 to 80% of moisture is not burned in the sludge incinerator 1. Alternatively, no auxiliary fuel such as kerosene or heavy oil is required, and wastes such as waste plastic and waste wood can be effectively used also for the treatment thereof, which contributes to energy saving and avoids an increase in cost.

又、図3に示されるような従来の下水汚泥処理システムとは異なり、水分をおよそ70〜80[%]程度含有する下水汚泥を乾燥機6で乾燥させ、含有する水分がおよそ30〜50[%]程度まで低減された乾燥汚泥を汚泥焼却炉1で自燃させるのではないため、乾燥機6が余分に必要とならず設置スペースも広く取らなくて済み、しかも、水分をおよそ70〜80[%]程度含有する下水汚泥をポンプで圧送して流動層7bの上にそのまま落下させるだけで良いため、臭気が発生する心配も全くない。   Moreover, unlike the conventional sewage sludge treatment system as shown in FIG. 3, the sewage sludge containing about 70 to 80 [%] of moisture is dried by the dryer 6, and the contained moisture is about 30 to 50 [ %], The dried sludge is not burned in the sludge incinerator 1, so that the dryer 6 is not required and the installation space is not required to be wide, and the moisture is about 70 to 80 [ %], The sewage sludge containing about% is simply pumped and dropped onto the fluidized bed 7b as it is, so there is no fear of generating odor.

更に、ガス化ガスにより再熱器8で流動用空気を予熱してガス化炉7に送給するので、ガス化炉7内に水蒸気を導入しても温度低下を抑制し、結果的にガス化の温度を維持して下水汚泥のガス化を促進できる。ここで、再熱器8による流動用空気が573〜1073[k]の範囲にない時には、炉内の温度を973〜1173[k]に維持できず、再熱器8による流動用空気が723[k]以上である場合には、炉内の温度を好適に973〜1173[k]に維持することができる。   Furthermore, since the fluidized air is preheated by the reheater 8 with the gasification gas and is supplied to the gasification furnace 7, even if water vapor is introduced into the gasification furnace 7, the temperature drop is suppressed, and as a result The gasification of sewage sludge can be promoted by maintaining the temperature of sewage. Here, when the air for flowing by the reheater 8 is not in the range of 573 to 1073 [k], the temperature in the furnace cannot be maintained at 973 to 1173 [k], and the air for flowing by the reheater 8 is 723. When it is [k] or more, the temperature in the furnace can be suitably maintained at 973 to 1173 [k].

更に又、ガス化ガスにより排熱ボイラ9で水を加熱して水蒸気にし、ガス化炉7に送給するので、ガス化炉7内で水性ガス化反応を行ってタール分を低減することができる。又、ガス化炉7内でタール分を低減するので、タール分を処理するための他の処理手段を不要にし、コストを低減することができる。ここで、ガス化炉7内の条件において、S/Cが理論値の1未満の場合にはタール分を低減しがたい。一方、ガス化炉7内の条件において、S/Cが1.5以上の場合には、好適にタール分を水性ガス化反応により低減し易い。又、排熱ボイラ9による水蒸気の温度が373[k]未満の場合には、炉内の温度を著しく低下させる問題があり、排熱ボイラ9では、ガス化ガスの熱量によって水蒸気の温度を873[k]より大きくすることができない。排熱ボイラ9による水蒸気の温度が573[k]以上である場合には、炉内の温度を好適に973〜1173[k]に維持することができる。   Furthermore, since the water is heated by the exhaust heat boiler 9 with the gasification gas to be steamed and fed to the gasification furnace 7, the water gasification reaction can be performed in the gasification furnace 7 to reduce the tar content. it can. Further, since the tar content is reduced in the gasification furnace 7, other processing means for processing the tar content is unnecessary, and the cost can be reduced. Here, when the S / C is less than the theoretical value of 1 under the conditions in the gasification furnace 7, it is difficult to reduce the tar content. On the other hand, when S / C is 1.5 or more under the conditions in the gasification furnace 7, the tar content is preferably easily reduced by the water gasification reaction. Moreover, when the temperature of the steam by the exhaust heat boiler 9 is less than 373 [k], there is a problem that the temperature in the furnace is remarkably lowered. In the exhaust heat boiler 9, the temperature of the steam is set to 873 by the amount of heat of the gasification gas. It cannot be larger than [k]. When the temperature of the steam by the exhaust heat boiler 9 is 573 [k] or more, the temperature in the furnace can be suitably maintained at 973 to 1173 [k].

更に又、排熱ボイラから排出されたガスにより発電する発電手段11を備えるので、ガスを発電設備による発電に利用することができる。   Furthermore, since the power generation means 11 that generates power from the gas discharged from the exhaust heat boiler is provided, the gas can be used for power generation by the power generation facility.

尚、本発明の下水汚泥処理システムは、上述の図示例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   Note that the sewage sludge treatment system of the present invention is not limited to the above-described illustrated examples, and various modifications can be made without departing from the scope of the present invention.

本発明を実施する形態の一例としての下水汚泥処理システムを示す全体概要構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a whole schematic block diagram which shows the sewage sludge processing system as an example of the form which implements this invention. 従来の下水汚泥処理システムの一例を示す全体概要構成図である。It is a whole schematic block diagram which shows an example of the conventional sewage sludge processing system. 従来の下水汚泥処理システムの他の例を示す全体概要構成図である。It is a whole schematic block diagram which shows the other example of the conventional sewage sludge processing system.

符号の説明Explanation of symbols

7 ガス化炉
7b 流動層
8 再熱器
9 排熱ボイラ
11 発電手段
7 Gasifier 7b Fluidized bed 8 Reheater 9 Waste heat boiler 11 Power generation means

Claims (5)

燃料と下水汚泥をガス化するガス化炉と、該ガス化炉より排出されたガス化ガスにより空気を予熱して前記ガス化炉に送給する再熱器と、該再熱器より排出されたガス化ガスにより水を加熱して水蒸気を前記ガス化炉に送給する排熱ボイラとを備えたことを特徴とする下水汚泥処理システム。   A gasification furnace that gasifies fuel and sewage sludge, a reheater that preheats air with the gasification gas discharged from the gasification furnace and supplies the air to the gasification furnace, and is discharged from the reheater A sewage sludge treatment system comprising: an exhaust heat boiler that heats water with the gasified gas and supplies water vapor to the gasification furnace. 燃料を廃棄物とした請求項1記載の下水汚泥処理システム。   The sewage sludge treatment system according to claim 1, wherein the fuel is waste. 排熱ボイラから送給された水蒸気によりガス化炉内のタール分を低減するよう構成された請求項1記載の下水汚泥処理システム。   The sewage sludge treatment system of Claim 1 comprised so that the tar content in a gasification furnace might be reduced with the water vapor | steam delivered from the waste heat boiler. 排熱ボイラから排出されたガスにより発電する発電手段を備えた請求項1記載の下水汚泥処理システム。   The sewage sludge treatment system of Claim 1 provided with the electric power generation means to generate electric power with the gas discharged | emitted from the exhaust heat boiler. ガス化炉は、炉内下部に、流動用空気によりバブリングされ且つ燃料及び水蒸気が供給される流動層を形成すると共に、該流動層の上方から下水汚泥を供給するよう構成された請求項1記載の下水汚泥処理システム。   The gasification furnace is configured to form a fluidized bed that is bubbled with fluidized air and supplied with fuel and water vapor at the lower part of the furnace and to supply sewage sludge from above the fluidized bed. Sewage sludge treatment system.
JP2004182415A 2004-06-21 2004-06-21 Sewage sludge treatment system Pending JP2006000811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004182415A JP2006000811A (en) 2004-06-21 2004-06-21 Sewage sludge treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004182415A JP2006000811A (en) 2004-06-21 2004-06-21 Sewage sludge treatment system

Publications (1)

Publication Number Publication Date
JP2006000811A true JP2006000811A (en) 2006-01-05

Family

ID=35769642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004182415A Pending JP2006000811A (en) 2004-06-21 2004-06-21 Sewage sludge treatment system

Country Status (1)

Country Link
JP (1) JP2006000811A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006000812A (en) * 2004-06-21 2006-01-05 Ishikawajima Harima Heavy Ind Co Ltd Sewage treatment system
JP2008025965A (en) * 2006-07-25 2008-02-07 Public Works Research Institute Pressure incinerator equipment and its operation method
JP2008025966A (en) * 2006-07-25 2008-02-07 Public Works Research Institute Pressure incinerator equipment and its start-up method
KR101288967B1 (en) * 2011-03-07 2013-07-22 재단법인 포항산업과학연구원 Generator unsing gasification of organic material waste
CN113234490A (en) * 2021-05-24 2021-08-10 上海市城市建设设计研究总院(集团)有限公司 Gasification-based sludge comprehensive utilization system and treatment method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002195519A (en) * 2000-12-20 2002-07-10 Mitsubishi Heavy Ind Ltd Method and system for gasifying/melting refuse
JP2002256884A (en) * 2001-02-26 2002-09-11 Tsukishima Kikai Co Ltd Power system for thermal decomposition and gasification of sewage sludge
JP2004060927A (en) * 2002-07-25 2004-02-26 Tsukishima Kikai Co Ltd Sludge incinerating method and incinerating equipment using fluidized incinerator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002195519A (en) * 2000-12-20 2002-07-10 Mitsubishi Heavy Ind Ltd Method and system for gasifying/melting refuse
JP2002256884A (en) * 2001-02-26 2002-09-11 Tsukishima Kikai Co Ltd Power system for thermal decomposition and gasification of sewage sludge
JP2004060927A (en) * 2002-07-25 2004-02-26 Tsukishima Kikai Co Ltd Sludge incinerating method and incinerating equipment using fluidized incinerator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006000812A (en) * 2004-06-21 2006-01-05 Ishikawajima Harima Heavy Ind Co Ltd Sewage treatment system
JP2008025965A (en) * 2006-07-25 2008-02-07 Public Works Research Institute Pressure incinerator equipment and its operation method
JP2008025966A (en) * 2006-07-25 2008-02-07 Public Works Research Institute Pressure incinerator equipment and its start-up method
KR101288967B1 (en) * 2011-03-07 2013-07-22 재단법인 포항산업과학연구원 Generator unsing gasification of organic material waste
CN113234490A (en) * 2021-05-24 2021-08-10 上海市城市建设设计研究总院(集团)有限公司 Gasification-based sludge comprehensive utilization system and treatment method

Similar Documents

Publication Publication Date Title
KR20060121899A (en) Method and apparatus for treating organic matter
JP2006218383A (en) High water content organic waste treatment system
JP5148809B2 (en) Method and apparatus for converting sludge into fuel
JP2008025876A (en) Combustion treatment method for waste liquid
JP4400467B2 (en) Method and apparatus for burning hydrous waste
JP5931593B2 (en) Stair-type incinerator
JP2005321131A (en) Sludge incinerating system
KR20020085480A (en) Apparatus for processing the sludge of sewage
JP2006000811A (en) Sewage sludge treatment system
JP2940659B2 (en) Method and apparatus for treating incinerator exhaust gas
KR101252289B1 (en) Livestock wastewater sludge treatment apparatus
CN210764947U (en) Sludge drying, carbonizing and gasifying system
JP2009096888A (en) Gasification system effectively utilizing steam produced during drying of high-water content fuel
JP2006207960A (en) Highly wet object treating device and method
JP2009228958A (en) Gasification power generating device
JP2009046644A (en) Gasification system recycling active charcoal drawn out from tar absorption tower
JP2005270716A (en) Method and apparatus for sewage sludge gasification
JP4241578B2 (en) Method and apparatus for burning hydrous waste
JP4449704B2 (en) Combustion method and apparatus
JP2007002825A (en) Waste power generation method
JP2008214542A (en) Biomass gasifying method and biomass gasifying equipment
JP2013117336A (en) Combustion method and combustion device of stoker-type incinerator
JP2006000812A (en) Sewage treatment system
JP2000033365A (en) Treatment of waste water
WO2002086027A2 (en) Gasification and slagging combustion system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100928