JPH0346723B2 - - Google Patents

Info

Publication number
JPH0346723B2
JPH0346723B2 JP58141135A JP14113583A JPH0346723B2 JP H0346723 B2 JPH0346723 B2 JP H0346723B2 JP 58141135 A JP58141135 A JP 58141135A JP 14113583 A JP14113583 A JP 14113583A JP H0346723 B2 JPH0346723 B2 JP H0346723B2
Authority
JP
Japan
Prior art keywords
combustion
melting
section
incineration residue
heating element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58141135A
Other languages
Japanese (ja)
Other versions
JPS6033418A (en
Inventor
Masao Seki
Jujiro Umeda
Tokihiko Ishikawa
Satoshi Inoe
Kazuharu Sasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP58141135A priority Critical patent/JPS6033418A/en
Publication of JPS6033418A publication Critical patent/JPS6033418A/en
Publication of JPH0346723B2 publication Critical patent/JPH0346723B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、焼却炉から排出される焼却残渣を溶
融処理する焼却残渣の処理装置に係り、特に溶融
炉内に焼却残渣の予熱部、燃焼部及び溶融部を形
成してきめ細かな燃焼溶融制御を可能とし、もつ
て燃料等を減らしてランニングコストを大幅に削
減できると共に溶融スラグの付着固化を防止して
安定した操業を行なうことができる焼却残渣処理
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an incineration residue processing device for melting incineration residue discharged from an incinerator, and in particular, the present invention relates to an incineration residue processing device that melts incineration residue discharged from an incinerator, and particularly includes forming a preheating section, a combustion section, and a melting section for incineration residue in the melting furnace. The present invention relates to an incineration residue processing device that enables fine combustion and melting control, significantly reduces running costs by reducing fuel consumption, and prevents molten slag from adhering and solidifying to ensure stable operation.

一般に、都市ごみ、産業廃棄物等は焼却処理さ
れるが、排出される焼却残渣は通常埋立処分され
ている。
Generally, municipal waste, industrial waste, etc. are incinerated, but the incineration residue that is discharged is usually disposed of in a landfill.

ところで、この埋立処分においては、埋立地の
確保や浸水活水化対策等の点より大きな社会問題
が発生している。
Incidentally, this landfill disposal poses larger social problems than issues such as securing a landfill site and measures for inundation activation.

そこで、最近にあつては、これらの問題点を一
挙に解決して無公害化できる焼却残渣の溶融固化
処理方法が開発されるに至つている。
Therefore, recently, a method of melting and solidifying incineration residue has been developed which solves these problems all at once and makes it non-polluting.

この処理方法を第1図に基づいて説明すると、
1はストーカ式炉、回転キルン式炉などの焼却炉
であり、この中で都市ごみ等の廃棄物Mが燃焼用
空気2により焼却処理される。
This processing method will be explained based on Fig. 1.
Reference numeral 1 denotes an incinerator such as a stoker type furnace or a rotary kiln type furnace, in which waste M such as municipal garbage is incinerated with combustion air 2.

排出された焼却残渣Nは焼却残渣処理装置3の
溶融炉4内へ導入され、これに残留する未燃炭素
を溶融炉入口にて供給する燃焼用空気5で燃焼し
て、この燃焼熱でもつて燃却灰を加熱溶融する。
この溶融スラグ6は炉床7を斜め下方へ流化しつ
つ排出端8から所定形状の塊となつてこの下方に
位置されたスラグ冷却水槽9内に順次落下し、冷
却処理されて塊状の固形物が生成されることにな
る。
The discharged incineration residue N is introduced into the melting furnace 4 of the incineration residue treatment device 3, and the unburned carbon remaining therein is combusted by the combustion air 5 supplied at the inlet of the melting furnace, and the combustion heat is used to burn it. Heat and melt the combustion ash.
This molten slag 6 flows diagonally downward through the hearth 7 and forms a predetermined shaped lump from the discharge end 8 and falls one after another into the slag cooling water tank 9 located below, where it is cooled and solidified into lumps. will be generated.

ところで、この種従来例にあつては溶融炉入口
にて燃焼用空気5を供給して未燃炭素を燃焼する
こととしているため、炉床7を流れる溶融スラグ
6に充分な熱量が供給されず、このスラグが炉床
7は炉壁に付着固化して炉内を閉塞する問題があ
つた。このため、付着固化したスラグを除去する
ために操業の中断を余儀なくされ、またこの除去
作業においても多大な時間と、労力とを必要とし
なければならなかつた。
By the way, in this type of conventional example, since the combustion air 5 is supplied at the inlet of the melting furnace to burn unburned carbon, a sufficient amount of heat is not supplied to the molten slag 6 flowing through the hearth 7. There was a problem that this slag adhered to the hearth 7 and the furnace wall and solidified, clogging the inside of the furnace. For this reason, operations had to be interrupted in order to remove the adhered and solidified slag, and this removal work also required a great deal of time and effort.

このため、空気に代えて酸素を供給することに
より、燃焼温度を高めて溶融スラグの固化を防止
する試みもなされてはいるが、この場合には酸素
発生装置の消費電力が大きく、且つこの取扱いも
容易ではなかつた。
For this reason, attempts have been made to increase the combustion temperature and prevent the solidification of molten slag by supplying oxygen instead of air, but in this case, the power consumption of the oxygen generator is large, and the handling It wasn't easy either.

一方、上記従来例の他に、焼却残渣表面に、油
バーナによる火炎を直接照射して溶融させたり、
或いは焼却残渣や溶融スラグ中に電極を挿入して
ジユール熱によりこれを溶融することも行なわれ
てはいるが、油バーナによる方法は表面部たる溶
融高温部が露出しているため放射熱による熱損失
が大きく、更に溶融スラグの熱伝導率が悪いこと
から必然的に油の消費量が増大し、ランニングコ
ストが上昇していた。また、ジユール熱による方
法は残渣中の未燃炭素を燃料として使用できない
ので電力消費量が増大し、実用には適していな
い。
On the other hand, in addition to the above-mentioned conventional examples, the surface of the incineration residue is directly irradiated with flame from an oil burner to melt it.
Another method is to insert an electrode into the incineration residue or molten slag and melt it using Joule heat, but the method using an oil burner exposes the surface area, which is a high-temperature molten part, and therefore cannot be heated by radiant heat. In addition to the large loss, the molten slag has poor thermal conductivity, which inevitably increases oil consumption and increases running costs. In addition, the method using Joule heat cannot use unburned carbon in the residue as fuel, resulting in increased power consumption and is not suitable for practical use.

本発明は、以上のような問題点に着目し、これ
を有効に解決すべく創案されたものである。
The present invention has focused on the above-mentioned problems and has been devised to effectively solve them.

本発明の目的は、溶融炉内に、この中を流下移
動する焼却残渣の移動層を予熱するための予熱部
形成手段と、予熱された残渣を燃焼するための燃
焼部を形成する燃焼部形成手段と、発生した燃焼
灰を溶融化するための溶融部を形成する溶融部形
成手段とをそれぞれ移動層の流れ方向に沿つて順
次形成してきめ細かな燃焼溶融制御を行うように
し、もつて溶融スラグの付着固化を防止して連続
運転がなし得ると共に燃焼効率を向上させてラン
ニングコストを大幅に引下げることができる焼却
残渣処理装置を提供するにある。
The object of the present invention is to provide a preheating section forming means for preheating a moving layer of incineration residue flowing down in the melting furnace, and a combustion section forming means for forming a combustion section for burning the preheated residue. and a melting zone forming means for forming a melting zone for melting the generated combustion ash, respectively, are sequentially formed along the flow direction of the moving bed to perform fine combustion and melting control. It is an object of the present invention to provide an incineration residue processing device that can be operated continuously by preventing the adhesion and solidification of slag, and can improve combustion efficiency and significantly reduce running costs.

以下に、本発明の好適一実施例を添付図面に基
づいて詳述する。
Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.

まず、第2図は本発明に係る処理装置を示す縦
断面図である。
First, FIG. 2 is a longitudinal sectional view showing a processing apparatus according to the present invention.

図示する如く焼却残渣処理装置は、焼却炉から
排出される焼却残渣を溶融処理すべく焼却残渣N
の移動層10を形成するための溶融炉11を有し
ている。この溶融炉11はその外殻が耐火レンガ
等により構成れたほぼ筒体状のケーシング12と
して形成され、その上部一端には、焼却炉1の残
渣排出口に連結させるべく上方に拡開されたホツ
パーすなわち焼却残渣導入口13が形成されてい
る(第1図参照)。
As shown in the figure, the incineration residue processing device is designed to melt and process incineration residue discharged from an incinerator.
It has a melting furnace 11 for forming a moving layer 10. The melting furnace 11 is formed as a substantially cylindrical casing 12 whose outer shell is made of refractory bricks, etc., and one end of the upper part of the casing 12 is expanded upward to be connected to the residue outlet of the incinerator 1. A hopper or incineration residue inlet 13 is formed (see FIG. 1).

この溶融炉11は、この中に移送される焼却残
渣乃至溶融スラグの移送方向に沿つて所定の角度
で下方に傾斜され、この中の移動層10が自重で
もつて流下し得るようになつている。この溶融炉
11の底部には炉底板14より所定間隔だけ上方
に位置させて、炉の傾斜方向に沿つて設けた火床
板15が取り付けられており、炉床16を構成し
ている。
This melting furnace 11 is tilted downward at a predetermined angle along the direction of transport of incineration residue or molten slag to be transferred therein, so that the moving bed 10 therein can flow down under its own weight. . At the bottom of the melting furnace 11, a grate plate 15 is attached, which is positioned above the furnace bottom plate 14 by a predetermined distance and extends along the inclination direction of the furnace, and constitutes a hearth 16.

この火床板15は例えば耐熱性を備えたセラミ
ツクスなどにより平板状に成型され、溶融スラグ
の流れを良好にしている。そして、溶融炉11の
傾斜方向上方の一側壁にはシリンダ機構などに連
結されたプツシヤー17が火床板15の長手方向
に沿つて往復移動自在に設けられており、移動層
11の移動速度を制御できるように構成されてい
る。
This grate plate 15 is made of heat-resistant ceramics or the like and is formed into a flat plate shape to improve the flow of molten slag. A pusher 17 connected to a cylinder mechanism or the like is provided on one side wall of the melting furnace 11 in the upper direction in the inclination direction so as to be movable back and forth along the longitudinal direction of the grate plate 15 to control the moving speed of the moving layer 11. It is configured so that it can be done.

また、溶融炉11の傾斜方向下端に形成された
スラグ排出口18には、生成された溶融スラグを
排出すべく鉛直方向に延出された溶融スラグ排出
通路19が連結されると共に、この通路の下端部
には塊状になつて落下してくる溶融スラグ20を
冷却固化するためのスラグ冷却水槽9が設けられ
ている(第1図参照)。また、上記排出通路19
の途中にはこれより分岐させてやや上方に傾斜さ
れた煙道21が設けられており、燃焼排ガスをブ
ロワー22により吸引しつつ排ガス冷却器23に
て冷却して大気中へ放出するようになつている。
Further, a slag discharge port 18 formed at the lower end of the melting furnace 11 in the inclined direction is connected to a molten slag discharge passage 19 extending vertically to discharge the generated molten slag. A slag cooling water tank 9 is provided at the lower end for cooling and solidifying the molten slag 20 that falls in the form of lumps (see FIG. 1). In addition, the discharge passage 19
A flue 21 is provided in the middle of the flue 21, which is branched from this and inclined slightly upward, and the combustion exhaust gas is sucked in by a blower 22, cooled by an exhaust gas cooler 23, and then released into the atmosphere. ing.

そして、このように構成された溶融炉11内に
本発明の特長とする予熱部形成手段24と、燃焼
部形成手段25と、溶融部形成手段26とが移動
層10の流れ方向に沿つて順次設けられている。
In the melting furnace 11 configured as described above, a preheating section forming means 24, a combustion section forming means 25, and a melting section forming means 26, which are features of the present invention, are sequentially arranged along the flow direction of the moving bed 10. It is provided.

具体的には、これら各手段は火床板15の下部
にその長手方向に沿つて配列させて設けた多数の
発熱体27…と、燃焼用空気供給手段28との組
み合せにより構成されている。第3図は第2図中
A部を示す拡大斜視図である。
Specifically, each of these means is constituted by a combination of a large number of heating elements 27 arranged in the lower part of the grate plate 15 along its longitudinal direction, and a combustion air supply means 28. 3 is an enlarged perspective view showing section A in FIG. 2. FIG.

図示するごとく上記発熱体27は高温度を必要
とされるため例えば炭化珪素等を棒状に成型した
ものより成り、これに配線を介して電流を通ずる
ことにより金属発熱体(ニクロム線など)では得
られない高温度が得られ、火床板上の移動層10
を加熱することになる。各発熱体27は炉床の傾
斜方向上方より残渣の移動方向に沿つて所定の数
量(図示例にあつては4基)ずつ4グループ化さ
れており、上方より傾斜方向下方に向けて予熱部
発熱体群29、燃焼部発熱体群30、溶融部発熱
体群31及び湯口発熱体群32として構成されて
いる。各発熱体の配線33は発熱体制御器34に
接続さており各群毎にその温度を調整し得るよう
になつている。
As shown in the figure, the heating element 27 is made of, for example, silicon carbide molded into a rod shape because it requires a high temperature. A moving layer 10 on the grate plate can be obtained.
will be heated. The heating elements 27 are arranged in four groups of a predetermined number (four in the illustrated example) along the movement direction of the residue from the upper part in the inclined direction of the hearth, and the preheating parts 27 are arranged from the upper part to the lower part in the inclined direction. They are configured as a heating element group 29, a combustion part heating element group 30, a melting part heating element group 31, and a sprue heating element group 32. The wiring 33 of each heating element is connected to a heating element controller 34, so that the temperature can be adjusted for each group.

そして、各発熱体27はこれより所定間隔だけ
隔てて断面半円形状の発熱体ケース35により被
われて保護されていると共に、この保護ケース3
5はその上端部を火床板15の下側面に取付け
て、一体的に固定されている。ケース内の発熱体
の劣化を防止するためにはケース内を密閉空間構
造とし、これに窒素等の不活性ガスを封入するの
がよい。
Each heating element 27 is covered and protected by a heating element case 35 having a semicircular cross section at a predetermined distance from the heating element 27, and this protective case 3
5 has its upper end attached to the lower surface of the fire bed plate 15 and is integrally fixed thereto. In order to prevent the heating element inside the case from deteriorating, it is preferable that the inside of the case be a closed space structure and filled with an inert gas such as nitrogen.

また、上記燃焼用空気供給手段28は、炉側壁
に相対向させてその傾斜方向に沿つて所定間隔を
隔てて穿設された燃焼用空気吹き込み口36と、
途中に開閉弁37が介設されて、これら各吹き込
み口に連結される燃焼用空気供給管38とにより
構成されており、炉床16を横切る如く移動層の
側部からこれに空気を吹き込むようになつてい
る。そして、各燃焼用空気吹き込み口36及びこ
れに連結される各燃焼用空気供給管38は上記発
熱体群に対応させるべく残渣の移動方向に沿つて
所定の数量(図示例にあつては4基)ずつ3グル
ープ化されており、上方より傾斜方向下方に向け
て予熱部燃焼用空気供給群39、燃焼部燃焼用空
気供給群40及び溶融部燃焼用空気供給群41と
して構成されている。尚、湯口発熱体群32に対
応する部分には設けてない。
Further, the combustion air supply means 28 includes combustion air blowing ports 36 that are formed oppositely to each other in the furnace side wall at predetermined intervals along the inclination direction thereof;
It consists of an on-off valve 37 interposed in the middle and a combustion air supply pipe 38 connected to each of these inlets, so that air is blown from the side of the moving bed across the hearth 16. It's getting old. Each combustion air blowing port 36 and each combustion air supply pipe 38 connected thereto are arranged in a predetermined number (four in the illustrated example) along the direction of movement of the residue in order to correspond to the heating element group. ), and are configured from the top to the bottom in the inclination direction as a preheating section combustion air supply group 39, a combustion section combustion air supply group 40, and a melting section combustion air supply group 41. Note that it is not provided in a portion corresponding to the sprue heating element group 32.

各空気供給管38は群毎にまとめられて、ブロ
ワー42に接続され、燃焼用空気制御器43によ
り各群毎に空気供給量を制御し得るようになつて
いる。尚、図示例のように供給管を群毎にまとめ
るのでなく、これら全て一本の主供給管にまとめ
て途中に介設される開閉弁37の開度を群毎に変
えて供給空気量を群毎に制御するようにしてもよ
い。
The air supply pipes 38 are grouped into groups and connected to a blower 42, so that a combustion air controller 43 can control the air supply amount for each group. In addition, instead of grouping the supply pipes into groups as in the illustrated example, all of these pipes are combined into one main supply pipe, and the opening degree of the on-off valve 37 interposed in the middle is changed for each group to control the amount of air supplied. Control may be performed for each group.

そして、上記、予熱部燃焼用空気供給群39と
予熱部発熱体群29とにより前記予熱部形成手段
24を構成し、これにより移動層を予熱するため
の予熱部44が形成される。また、上記燃焼部燃
焼用空気供給群40と燃焼部発熱体群30とによ
り前記燃焼部形成手段25を構成し、これにより
残渣中の未燃炭素を燃焼するための燃焼部45が
形成される。更に、上記溶融部燃焼用空気供給群
41と溶融部発熱体群32とにより前記溶融部形
成手段26を構成し、これにより残渣を溶融化す
るための溶融部46が形成される。
The preheating section combustion air supply group 39 and the preheating section heating element group 29 constitute the preheating section forming means 24, thereby forming the preheating section 44 for preheating the moving bed. Further, the combustion section combustion air supply group 40 and the combustion section heating element group 30 constitute the combustion section forming means 25, thereby forming the combustion section 45 for burning unburned carbon in the residue. . Further, the above-mentioned melting section combustion air supply group 41 and melting section heating element group 32 constitute the above-mentioned melting section forming means 26, thereby forming a melting section 46 for melting the residue.

従つて、炉床16の傾斜方向下方に向かつてそ
の上方より予熱部44、燃焼部45及び溶融部4
6が順次区画されることになり、それぞれの位置
に対応させて設けた発熱体群の発熱量及び空気供
給群の空気供給量を適宜増減することにより移動
層の加熱量が制御されることになる。
Therefore, the preheating section 44, the combustion section 45, and the melting section 4 are formed from above in the downward direction of the inclination of the hearth 16.
6 will be sequentially divided, and the amount of heating of the moving layer will be controlled by appropriately increasing or decreasing the calorific value of the heating element group provided corresponding to each position and the air supply amount of the air supply group. Become.

尚、上記実施例にあつては各部毎に空気供給手
段及び発熱体をともに設けたが、例えば予熱部の
ように余り熱量を必要としない部分においては空
気供給手段或いは発熱体のいずれか一方のみを設
けるようにしてもよい。
In the above embodiment, both the air supply means and the heating element are provided for each part, but in parts that do not require much heat, such as the preheating part, only one of the air supply means and the heating element is provided. may be provided.

以上のように構成された本発明の作用について
述べる。
The operation of the present invention configured as above will be described.

まず、第1図及び第2図に示す如く都市ごみ等
の産業廃棄物Mは投入口から燃焼炉1内へ供給さ
れ、この中で通常の燃焼がなされた後、発生した
焼却残渣は燃焼炉1の端部に連設した溶融炉11
の焼却残渣導入口13内へ供給される。焼却炉内
の燃焼に際しては、残渣中に未燃炭素が7〜25%
好ましくは10〜20%の範囲に残存するように燃焼
を制御する。
First, as shown in Figures 1 and 2, industrial waste M such as municipal waste is fed into the combustion furnace 1 from the input port, and after normal combustion is carried out therein, the generated incineration residue is transferred to the combustion furnace. Melting furnace 11 connected to the end of 1
is supplied into the incineration residue inlet 13 of the incineration residue. During combustion in an incinerator, 7 to 25% of unburned carbon remains in the residue.
Preferably, combustion is controlled so that it remains in the range of 10 to 20%.

具体的にはごみの投入量、燃焼用空気量および
ストーカ式ではストーカの送り速度、回転キルン
式では回転速度などを調節することにより燃焼制
御を行なう。
Specifically, combustion control is performed by adjusting the input amount of waste, the amount of combustion air, the stoker feed speed in the case of a stoker type, and the rotation speed in the case of a rotary kiln type.

第2図及び第3図に示す如く未燃炭素を含んだ
焼却残渣Nは溶融炉11内の火床板15上に積層
と、この上をプツシヤー17で押されつつ或いは
自重により移動層10となつて傾斜方向へ流下す
る。
As shown in FIGS. 2 and 3, the incineration residue N containing unburned carbon is layered on the grate plate 15 in the melting furnace 11, and becomes a moving layer 10 while being pushed by the pusher 17 or by its own weight. and flows down in the direction of the slope.

一方、炉内においては、予熱部形成手段24、
燃焼部形成手段25及び溶融部形成手段26によ
り移動層の流下方向に沿つて予熱部44、燃焼部
45及び溶融部46が区画形成されている。具体
的には、予熱部温度:700〜1100℃、燃焼部温
度:900〜1300℃、溶融部温度:1100〜1600℃と
なるようにそれぞれ対応させて設けた予熱部発熱
体群29、燃焼部発熱体群30及び溶融部発熱体
群31を加熱する。これらの加熱制御は発熱体制
御器34により各発熱体群毎に電流量を変えるこ
とにより行なう。
On the other hand, in the furnace, preheating section forming means 24,
A preheating section 44, a combustion section 45, and a melting section 46 are defined by the combustion section forming means 25 and the melting section forming means 26 along the flow direction of the moving bed. Specifically, the preheating section heating element group 29 and the combustion section are provided so that the temperature of the preheating section is 700 to 1100°C, the temperature of the combustion section is 900 to 1300°C, and the temperature of the melting section is 1100 to 1600°C. The heating element group 30 and the melting part heating element group 31 are heated. These heating controls are performed by changing the amount of current for each heating element group by the heating element controller 34.

これと共に、予熱部燃焼用空気供給群39、燃
焼部燃焼用空気供給群40及び溶融部燃焼用空気
供給群41からはそれぞれ次の割合で燃焼用空気
が供給されている。
At the same time, combustion air is supplied from the preheating section combustion air supply group 39, the combustion section combustion air supply group 40, and the melting section combustion air supply group 41 at the following rates.

予熱部:10〜30%、燃焼部:20〜40%、溶融
部:40〜80%、これらの空気供給量の制御は、燃
焼用空気制御器43によりブロワー42の供給圧
を各群毎に変えて行なわれる。尚、燃焼用空気供
給管38を共通にした場合には介設された開閉弁
37の開度を各群毎に調整して空気流量を制御す
るようにしてもよい。
Preheating section: 10 to 30%, combustion section: 20 to 40%, melting section: 40 to 80%. These air supply amounts are controlled by controlling the supply pressure of the blower 42 for each group by the combustion air controller 43. It is done differently. In addition, when the combustion air supply pipe 38 is shared, the opening degree of the interposed on-off valve 37 may be adjusted for each group to control the air flow rate.

炉内を流下する移動層10は、まず予熱部44
にて所定の温度まで予熱され、次に燃焼部45に
て燃焼用空気吹き込み口36から移動層内へ吹き
出す多量の燃焼用空気によつて残渣中の未燃炭素
が燃焼し、燃焼しつつ移動層10は溶融部46へ
流下して発生する燃焼熱により燃焼灰が溶融化さ
れる。溶融化されたスラグは更に流下して出湯口
47を通過した後、スラグ排出口18より所定の
大きさの溶融スラグとなつて溶融スラグ排出通路
19内を落下して行き、スラグ冷却水槽9内にて
冷却固化される。尚、上記出湯口47に設けた湯
口発熱体群32は溶融部発熱体群31よりも高温
状態に維持されている。
The moving bed 10 flowing down in the furnace first passes through the preheating section 44.
The unburned carbon in the residue is combusted by a large amount of combustion air that is preheated to a predetermined temperature in the combustor 45 and blown into the moving bed from the combustion air inlet 36 in the combustion section 45, and is moved while being combusted. The combustion ash in the layer 10 flows down to the melting section 46 and is melted by the generated combustion heat. The molten slag further flows down and passes through the tapping port 47, and then falls into the molten slag discharge passage 19 from the slag discharge port 18 as a molten slag of a predetermined size, and then flows into the slag cooling water tank 9. It is cooled and solidified. Incidentally, the sprue heating element group 32 provided at the tap outlet 47 is maintained at a higher temperature than the melting part heating element group 31.

そして、燃焼排ガスは溶融スラグが流出すると
同方向にブロワ22により吸引され、出湯口47
の冷却を防止しつつ煙道21より排出される。
Then, the combustion exhaust gas is sucked in the same direction by the blower 22 as the molten slag flows out, and is sucked into the outlet 47.
is discharged from the flue 21 while preventing cooling of the gas.

このように、炉側壁に沿つて設けた燃焼用空気
吹き込み口36から並列的に且つ直接移動層中へ
燃焼用空気を供給するので残渣層の内部から燃焼
させることができ、且つ熱放射も少なく燃焼熱を
層内に保持して溶融化に有効に寄与させることが
できる。
In this way, since combustion air is supplied directly into the moving bed in parallel from the combustion air inlet 36 provided along the furnace side wall, combustion can be performed from inside the residue bed, and there is also little heat radiation. Combustion heat can be retained within the layer and effectively contribute to melting.

また、各燃焼用空気供給群39,40,41か
ら供給する空気吹き込み量を適宜変化させて、残
渣の流量に見合つた空気量を群毎に制御して供給
できるので燃焼効率が向上する。同様に、各発熱
体群29,30,31の加熱温度を適宜変化させ
て、残渣の流量に見合つた加熱量を群毎に制御し
て供給できるので適正な加熱が行なえ、加熱電力
を無駄にすることがない。
Further, by appropriately changing the amount of air blown from each combustion air supply group 39, 40, 41, the amount of air commensurate with the flow rate of the residue can be controlled and supplied for each group, thereby improving combustion efficiency. Similarly, by changing the heating temperature of each heating element group 29, 30, 31 as appropriate, the amount of heating commensurate with the flow rate of the residue can be controlled and supplied to each group, so proper heating can be performed and heating power is not wasted. There's nothing to do.

従つて、燃焼用空気供給量と加熱量とを組合せ
て各群毎に制御することにより焼却残渣の燃焼、
溶融量の制御が容易になり、負荷に見合つたきめ
細かな制御が可能となる。
Therefore, by controlling the combination of combustion air supply amount and heating amount for each group, combustion of incineration residue,
It becomes easier to control the amount of melting, and fine control commensurate with the load becomes possible.

また、特に溶融部発熱体群31及び湯口発熱体
群32の発熱量を多くし、この部分における炉
床、炉壁の温度をスラグ融点以上に保持するので
スラグの溶融状態が安定に保持され、これが炉床
や炉壁に付着固化することがなく安定した操業を
行なうことができる。
In addition, the calorific value of the melting section heating element group 31 and sprue heating element group 32 is increased in particular, and the temperature of the hearth and furnace wall in these parts is maintained above the slag melting point, so that the molten state of the slag is maintained stably. This does not adhere to the hearth or walls and allows stable operation.

尚、上記実施例にあつては、炉床(火床板)を
一枚の一体成型されたセラミツクスにより構成し
たが、これに限定されることなく第4図に示すよ
うにしてもよい。
Incidentally, in the above embodiment, the hearth (fire bed plate) was constructed from a single piece of integrally molded ceramic, but the present invention is not limited to this and may be constructed as shown in FIG. 4.

すなわち短冊状に分割成型したセラミツクス製
の火床板48を多数傾斜方向に沿つて布設すると
共に傾斜方向下方に相隣接する火床板同士の端部
を、上下に所定の間隙を隔てて重ね合わせて取付
け、全体として炉床49を形成するようにする。
That is, a large number of ceramic grate plates 48 formed into strips are installed along the inclination direction, and the ends of the grate plates adjacent to each other in the downward direction of the incline are overlapped vertically with a predetermined gap between them. , so as to form a hearth 49 as a whole.

そして、各火床板48の下部に前記実施例と同
様な発熱体27及び発熱体保護ケース35を取付
けると共に、各火床板48の下部に仕切壁50を
設けて炉床49の下部空間部を区画分割し、多数
の風箱51を形成する。そして、この風箱51内
に燃焼用空気供給管38を挿通させて燃焼用空気
供給手段28を構成する。すなわち、この風箱5
1内に供給された燃焼用空気は火床板端部の重ね
合せ部に形成した間隙(燃焼用空気吹き込み口)
52から矢印に示す如く吹き込まれ、移動層の底
部からこの層内に供給されることになる。
Then, a heating element 27 and a heating element protection case 35 similar to those in the above embodiment are attached to the lower part of each grate plate 48, and a partition wall 50 is provided at the lower part of each grate plate 48 to partition the lower space of the hearth 49. It is divided to form a large number of wind boxes 51. The combustion air supply pipe 38 is inserted into the wind box 51 to constitute the combustion air supply means 28. In other words, this wind box 5
The combustion air supplied into the chamber 1 is passed through a gap (combustion air inlet) formed at the overlapping part of the end of the grate plate.
52 as shown by the arrow, and is supplied into the moving bed from the bottom.

そして、これら燃焼用空気供給手段28及び上
記発熱体27も前記実施例同様に予熱部、燃焼部
及び溶融部に対応してグループ化され、それぞれ
きめ細かな燃焼、溶融制御がなされることにな
る。
The combustion air supply means 28 and the heating element 27 are also grouped into groups corresponding to the preheating section, the combustion section, and the melting section, as in the embodiment described above, so that detailed combustion and melting control can be performed respectively.

以上述べた実施例においては、火床板下部より
移動層を加熱することとしたが、これに限らず発
熱体での加熱は側部または上部などの炉壁を介し
てもよく、またはこれを保護ケース内に挿入して
炉内に設けるようにしてもよい。
In the embodiments described above, the moving layer is heated from the lower part of the grate plate, but the heating with the heating element is not limited to this, and the heating with the heating element may be through the furnace wall such as the side or upper part, or it may be It may be inserted into a case and provided in the furnace.

また、燃焼用空気の供給方式は火床板の間隙部
(スリツト)から供給する方法と、炉側壁から供
給する方法とを組合せた方式としてもよい。
Further, the method of supplying combustion air may be a combination of a method of supplying from the gap (slit) of the grate plate and a method of supplying from the furnace side wall.

尚、本溶融炉は焼却炉に連設されることが熱的
には望ましいが、単独で設置するようにしてもよ
い。
Although it is thermally desirable that the present melting furnace be connected to the incinerator, it may be installed independently.

以上要するに、本発明によれば次のような優れ
た効果を発揮することができる。
In summary, according to the present invention, the following excellent effects can be achieved.

(1) 炉床、炉壁へ溶融スラグが付着固化すること
を防止できるので、閉塞障害をなくし、安定し
た操業ができる。
(1) Since it is possible to prevent molten slag from adhering and solidifying to the hearth and furnace walls, clogging problems can be eliminated and stable operation can be achieved.

(2) 炉内温度を予熱部、燃焼部、溶融部に分割制
御するので燃焼、溶融量のきめ細かな制御がな
し得る。
(2) Since the temperature inside the furnace is divided and controlled into the preheating section, combustion section, and melting section, fine control of the amount of combustion and melting can be achieved.

(3) 燃焼、溶融を灰層で保温しつつ灰層内部で行
なうので外部への熱放射乃至熱損失がなく、上
記2項の理由と相俟つて燃焼効率を可及的に向
上させることができる。
(3) Since combustion and melting are carried out inside the ash layer while keeping the temperature in the ash layer, there is no heat radiation or heat loss to the outside, which, together with the reasons in item 2 above, makes it possible to improve combustion efficiency as much as possible. can.

(4) 従つて、補助燃料の使用量も少なくし得、ま
た燃焼用気体として酸素を使用することなく、
空気を使用することができ、ランニングコスト
を大幅に引下げることができる。
(4) Therefore, the amount of auxiliary fuel used can be reduced, and oxygen is not used as a combustion gas,
Air can be used, significantly reducing running costs.

(5) また、酸素を使用する必要がないことから、
酸素発生のための電力費をなくし、且つこれに
必要な装置類をは全て排除することができる。
(5) Also, since there is no need to use oxygen,
Electricity costs for oxygen generation can be eliminated, and all equipment required for this can be eliminated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は焼却炉に連設された従来の焼却残渣処
理装置を示す縦断面図、第2図は本発明の好適一
実施例を示す縦断面図、第3図は第2図中A部拡
大斜視図、第4図は本発明の他の実施例を示す要
部拡大斜視図である。 尚、図中、1は焼却炉、10は移動層、11は
溶融炉、20は溶融スラグ、24は予熱部形成手
段、25は燃焼部形成手段、26は溶融部形成手
段、44は予熱部、45は燃焼部、46は溶融
部、Nは焼却残渣である。
FIG. 1 is a vertical cross-sectional view showing a conventional incineration residue processing device connected to an incinerator, FIG. 2 is a vertical cross-sectional view showing a preferred embodiment of the present invention, and FIG. 3 is a section A in FIG. FIG. 4 is an enlarged perspective view of main parts showing another embodiment of the present invention. In the figure, 1 is an incinerator, 10 is a moving bed, 11 is a melting furnace, 20 is a molten slag, 24 is a preheating part forming means, 25 is a combustion part forming means, 26 is a melting part forming means, and 44 is a preheating part , 45 is a combustion section, 46 is a melting section, and N is an incineration residue.

Claims (1)

【特許請求の範囲】[Claims] 1 焼却炉から排出される焼却残渣を、これに含
まれる未燃炭素を燃焼させて溶融スラグとして得
る焼却残渣処理装置において、上記排出される焼
却残渣を溶融処理すべく焼却残渣の移動層を形成
する溶融炉と、該溶融炉内に移送される焼却残渣
の移動層を所定の温度に予熱するための予熱部を
形成する予熱部形成手段と、該予熱部形成手段に
より予熱された移動層の焼却残渣に含まれる未燃
炭素を燃焼させるための燃焼部を形成する燃焼部
形成手段と、該燃焼部形成手段より生成された燃
焼灰を溶融化して溶融スラグを得るための溶融部
を形成する溶融部形成手段とを備えたことを特徴
とする焼却残渣処理装置。
1. In an incineration residue treatment device that burns the unburned carbon contained in incineration residue discharged from an incinerator and obtains it as molten slag, a moving layer of incineration residue is formed in order to melt and process the above-mentioned incineration residue discharged. a melting furnace, a preheating section forming means for forming a preheating section for preheating a moving layer of incineration residue transferred into the melting furnace to a predetermined temperature, and a moving layer preheated by the preheating section forming means A combustion section forming means for forming a combustion section for burning unburned carbon contained in the incineration residue, and a melting section for melting combustion ash generated by the combustion section forming means to obtain molten slag. 1. An incineration residue processing device comprising: a fusion zone forming means.
JP58141135A 1983-08-03 1983-08-03 Disposal device for incinerating slag Granted JPS6033418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58141135A JPS6033418A (en) 1983-08-03 1983-08-03 Disposal device for incinerating slag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58141135A JPS6033418A (en) 1983-08-03 1983-08-03 Disposal device for incinerating slag

Publications (2)

Publication Number Publication Date
JPS6033418A JPS6033418A (en) 1985-02-20
JPH0346723B2 true JPH0346723B2 (en) 1991-07-17

Family

ID=15284979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58141135A Granted JPS6033418A (en) 1983-08-03 1983-08-03 Disposal device for incinerating slag

Country Status (1)

Country Link
JP (1) JPS6033418A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0824902B2 (en) * 1985-11-25 1996-03-13 三菱重工業株式会社 Fly ash processing equipment
JPS63247519A (en) * 1987-04-02 1988-10-14 Ishikawajima Harima Heavy Ind Co Ltd Combustion of ash fusing furnace and fusion control device
JPH063296B2 (en) * 1987-09-30 1994-01-12 石川島播磨重工業株式会社 Method of melting incineration ash
JPS6490910A (en) * 1987-10-02 1989-04-10 Ishikawajima Harima Heavy Ind Waste material processing method
CH673956A5 (en) * 1987-10-30 1990-04-30 Bbc Brown Boveri & Cie

Also Published As

Publication number Publication date
JPS6033418A (en) 1985-02-20

Similar Documents

Publication Publication Date Title
JP3990463B2 (en) Water-cooled combustion grate
JP3034467B2 (en) Direct-type incineration ash melting treatment equipment and treatment method
JPH0346723B2 (en)
PL166867B1 (en) Method of combusting combustible solid wastes from chemical plants and furnace therefor
JPH0520647B2 (en)
JPH0372889B2 (en)
GB2143932A (en) Furnace
JP3564040B2 (en) Exhaust heat recovery equipment in melting furnace
JPS6033417A (en) Disposal device for incineration slag
JP3817290B2 (en) Waste melting furnace
JPH0346724B2 (en)
JP4337072B2 (en) Waste melting furnace
JPH0523942Y2 (en)
JPH053868Y2 (en)
JP3285740B2 (en) Superheated steam production equipment using waste incineration heat
JPH0523940Y2 (en)
JPH10205725A (en) Combustion melting furnace for waste treatment device
JP2004169999A (en) Incineration/melting furnace
JP3305492B2 (en) Melting furnace apparatus for granular material and melting furnace combustion method
JP3628163B2 (en) Combustion ash melting furnace
JPH0684812B2 (en) Method and apparatus for incineration ash melting treatment
JP3573609B2 (en) Heat recovery method and apparatus in incineration equipment
JP3146164B2 (en) Multi-chamber slag generator
JPH06159639A (en) Ash melting apparatus
JPS622206B2 (en)