JPH0425033A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPH0425033A
JPH0425033A JP2127283A JP12728390A JPH0425033A JP H0425033 A JPH0425033 A JP H0425033A JP 2127283 A JP2127283 A JP 2127283A JP 12728390 A JP12728390 A JP 12728390A JP H0425033 A JPH0425033 A JP H0425033A
Authority
JP
Japan
Prior art keywords
film
insulating film
gate insulating
ono
gate electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2127283A
Other languages
Japanese (ja)
Inventor
Takahiro Yamada
隆博 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2127283A priority Critical patent/JPH0425033A/en
Publication of JPH0425033A publication Critical patent/JPH0425033A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To make it possible to scale a gate insulating film on the surface of silicon of a CCD by providing a gate insulating film and a gate electrode formed on the surface of a second semiconductor area formed on the top portion of a first semiconductor area and forming the gate insulating film into an ONO three-layer structure by using an amorphous nitride film. CONSTITUTION:Formed on the top portion of a p substrate 101 are an n area 102, an ONO film 103 which becomes a gate insulating film, a poly-silicon gate electrode 104 formed thereon, and a poly-silicon gate electrode 106 of a second layer, formed separated by an oxide film (SiO2) or ONO film 105. Its feature is that a nitride film of the ONO film 103 is formed from an amorphous crystal structure (alpha-SimNn). A method of manufacturing it comprises the steps of forming the lower SiO2 of the ONO film by thermal oxidization, and forming a nitride film of an amorphous structure. Thereafter, a silicon oxide nitride film (SixNyOz) is formed on the alpha-SimNn.

Description

【発明の詳細な説明】 産業上の利用分野 本発明(よ ダイナミックレンジ特性(最大電荷転送量
特性)を損なうことなく、ゲート絶縁膜を微細化(スケ
ーリング)したCCDを実現する半導体装置の構造に関
するものである。
Detailed Description of the Invention The present invention relates to the structure of a semiconductor device that realizes a CCD in which the gate insulating film is scaled without impairing the dynamic range characteristics (maximum charge transfer amount characteristics). It is something.

従来の技術 民生用ビデオカメラに使用されている固体撮像素子の信
号電荷転送回路として、もっとも利用されている埋め込
みチャネル型CCD1よ 第3図に示ずようにp基板3
01の上部に形成されたn領域302と、厚さToxの
ゲート酸化膜(通常は約1000人の5i02)  3
03の上に形成された第1層のポリシリコン・ゲート電
極304と、ゲート酸化膜(SiO2)  305を隔
てて形成された第2層のポリシリコン・ゲート電極30
6とで構成されるものが代表的である。
Conventional technology A buried channel type CCD 1, which is most commonly used as a signal charge transfer circuit for a solid-state image sensor used in a consumer video camera, has a p-substrate 3 as shown in FIG.
n region 302 formed on top of 01 and gate oxide film of thickness Tox (usually about 1000 5i02) 3
A first layer polysilicon gate electrode 304 formed on 03 and a second layer polysilicon gate electrode 30 formed across a gate oxide film (SiO2) 305.
6 is typical.

第3図のA−A″断面沿った熱平衡状態(全ての電圧を
印加していない時の熱平衡状態)のエネルギー・バンド
図を第4図(a)に示1% 第3図のCCDの主動作状
態で(よ n領域301に対して正の電圧(15〜20
V)がn領域302に印加されるので、エネルギー・バ
ンド図は第4図(b)に示すようになる。この時、ポリ
シリコン・ゲート電極の電圧はOvである。このゲート
電極の印加電圧が正方向に増大すれば信号電荷の蓄積状
態となり、負方向に増大すれば信号電荷の非蓄積状態と
なる。
The energy band diagram of the thermal equilibrium state (thermal equilibrium state when no voltage is applied) along the A-A'' section in Fig. 3 is shown in Fig. 4 (a). In the operating state, a positive voltage (15 to 20
Since V) is applied to the n-region 302, the energy band diagram becomes as shown in FIG. 4(b). At this time, the voltage of the polysilicon gate electrode is Ov. If the voltage applied to the gate electrode increases in the positive direction, the signal charge is accumulated, and if it increases in the negative direction, the signal charge is not accumulated.

な抵 ゲート酸化膜(SiO2)の両端に高電圧が印加
されると、埋め込みチャネル型CCDの場合は酸化膜内
に負電荷(電子)が発生したり注入されたりすることで
特性変化の原因となることがある。これζ友 第4図(
b)の点線で示すよう番へ  ゲート酸化膜中の電子が
ゲート酸化膜のエネルギー・バンドを変形することに由
来する力丈 膜厚TOXが厚い場合は大きな問題にはな
らない。
When a high voltage is applied across the gate oxide film (SiO2), in the case of a buried channel CCD, negative charges (electrons) are generated or injected into the oxide film, causing characteristic changes. It may happen. This is my friend Figure 4 (
As shown by the dotted line in b), the strength is due to the electrons in the gate oxide film changing the energy band of the gate oxide film.If the film thickness TOX is thick, this is not a big problem.

こうした現在のCCDの技術背景とは別に 将来のハイ
ビジョン時代の撮像機器に必要となる200万画素のC
CDともなると、半導体メモリのDRAMと同様に ス
ケーリング(微細化)の考察が重要な設計指針となる。
Apart from this current technological background of CCDs, there is also a 2 million pixel CCD that will be required for imaging equipment in the future high-definition era.
When it comes to CDs, consideration of scaling (miniaturization) is an important design guideline, just as with DRAM semiconductor memory.

  とりわ(す、ゲート絶縁膜厚の微細化(よ 第5図
の計算結果(絶縁膜の厚さdが1000人と500人の
時の最大転送電荷量N sigとゲート電極の電圧Vg
の関係)に示すよう心へ 同じダイナミック・レンジを
取り扱うのに絶縁膜厚の小さい方がゲート電極に印加す
る駆動パルスの振幅は小さくて済へ 低電圧化に有利で
あることがわかる。
In addition, miniaturization of the gate insulating film thickness (Fig. 5 calculation results (maximum transfer charge amount N sig and gate electrode voltage Vg when the insulating film thickness d is 1000 and 500 people)
It can be seen that the smaller the insulating film thickness, the smaller the amplitude of the drive pulse applied to the gate electrode, which is advantageous in lowering the voltage, as shown in the following relationship (relationship between the two).

発明が解決しようとする課題 ところ力丈 薄いゲート酸化膜(SiO2)では第4図
(c)に示すように 5IO2膜中で発生する負電荷(
電子)がn−8i〜5i02界面の電界を強へ その結
果として正孔のFowler−Nordheim トン
ネル電流(キャリアがトンネル効果でゲート酸化膜に注
入した後、ゲート酸化膜中を電界に従って流れることに
より生じる電流)を増加させ、CCDの正常動作を阻害
してしまう。このた八 第5図で示された500人相当
の薄いSiO2は使用することができない。
Problems to be Solved by the Invention In a thin gate oxide film (SiO2), as shown in Figure 4(c), negative charges (
electrons) strengthen the electric field at the n-8i~5i02 interface.As a result, the hole Fowler-Nordheim tunneling current (occurs when carriers are injected into the gate oxide film by the tunnel effect and then flow through the gate oxide film according to the electric field. (current) and impede the normal operation of the CCD. In addition, the thin SiO2 equivalent to 500 people shown in FIG. 5 cannot be used.

方スケーリング・ドライバーであるDRAMなどで(上
 薄い5i02より絶縁破壊特性が優れているONO膜
(S i 02/ S i sNi/ S i xNy
O2構成の三層膜)が使用されている。
ONO film (S i 02 / Si sNi / Si x Ny
A three-layer membrane with an O2 configuration is used.

そこで、第4図(c)の500人の薄いSiO2と等価
な膜厚のONO膜に置き換えた場合の熱平衡状態(電圧
は印加していない時の熱平衡状態)のエネルギー・バン
ド図を第6図(a)に示す。
Therefore, Fig. 6 shows the energy band diagram of the thermal equilibrium state (thermal equilibrium state when no voltage is applied) when replacing the 500 thin SiO2 films in Fig. 4(c) with an ONO film of equivalent film thickness. Shown in (a).

CCDが主動作状態にあり、しかもゲート電極の印加電
圧がOvの場合のエネルギー・バンド図を第6図(b)
に示す。
Figure 6(b) shows the energy band diagram when the CCD is in the main operating state and the voltage applied to the gate electrode is Ov.
Shown below.

第6図(b)に示すように n形シリコン側から下部5
i02膜601へ直接トンネリング(キャリアがゲート
酸化膜を突き抜けるようなトンネル効果現象)により注
入された正孔ζL  5i3N−膜中をPoole−F
renkel電流(窒化膜の伝導帯または価電子帯のキ
ャリアがトラップ準位との間を往来しながら電界に従っ
て流れる電流)となって流れ 薄い上部5iOa膜60
3を直接トンネリングでゲート電極604側へ抜ける。
As shown in Figure 6(b), the lower part 5 from the n-type silicon side
Holes injected into the i02 film 601 by direct tunneling (a tunnel effect phenomenon in which carriers penetrate the gate oxide film)
The thin upper 5iOa film 60 flows as a Renkel current (a current that flows according to the electric field while carriers in the conduction band or valence band of the nitride film move back and forth between the trap level and the electric field).
3 through direct tunneling to the gate electrode 604 side.

この結果 n形シリコンの表面はよりn形になろうとす
るた教 ゲート電極604の電圧を負方向に変化させて
もシリコン側からゲート電極へ正孔が大量に流れて行く
だけであり、蓄積状態から非蓄積状態へは変化させるこ
とができなり℃ こうした現象のため圏 ただ単に薄い
ONO膜をゲート絶縁膜として採用するだけではCCD
の最大転送電荷量が減少してしまう。
As a result, the surface of the n-type silicon tends to become more n-type.Even if the voltage of the gate electrode 604 is changed in the negative direction, a large amount of holes simply flow from the silicon side to the gate electrode, resulting in an accumulation state. Due to these phenomena, simply using a thin ONO film as the gate insulating film is not enough to change the CCD
The maximum transfer charge amount will decrease.

本発明はこの様な課題に注目し 最大転送電荷量(ダイ
ナミック性能)を損なう事なく、CCDの微細化に適し
た薄いゲート絶縁膜を用いた埋め込みチャネル型CCD
構造の半導体装置の提供を目的とする。
The present invention has focused on these issues, and has developed a buried channel CCD using a thin gate insulating film that is suitable for miniaturization of CCD without impairing the maximum transfer charge amount (dynamic performance).
The purpose is to provide a semiconductor device with this structure.

課題を解決するための手段 電荷転送領域となるシリコン上部のn型領域の表面Cへ
 アモルファス窒化膜を用いた三層ONO膜をゲート絶
縁膜として用いた埋め込みチャネル形CCD構造とする
Means for Solving the Problems A buried channel type CCD structure is adopted in which a three-layer ONO film using an amorphous nitride film is used as a gate insulating film on the surface C of the n-type region on the top of the silicon, which becomes a charge transfer region.

作用 本発明(よ 前記したアモルファス窒化膜(αSimN
n)のバンド・ギャップ・エネルギーが緻密な窒化膜(
SisN4)よりも増大することを利用して、CCDの
主要特性である最大転送電荷量に悪影響を与えずに C
CDのシリコン表面のゲート絶縁膜をスケーリングする
ことが可能になる。
Effects of the present invention (see above) The amorphous nitride film (αSimN)
Nitride film (n) with a dense band gap energy (
By utilizing the fact that SisN4) is larger than C
It becomes possible to scale the gate insulating film on the silicon surface of the CD.

実施例 以下に本発明の実施例を、図面に基づいて説明する。Example Embodiments of the present invention will be described below based on the drawings.

第1図(主 本発明の実施例の半導体装置の構造を示す
ものである。図から判るようににp基板101の上部に
形成されたn領域102と、n領域102の上部表面に
形成されたゲート絶縁膜となる厚さ’I’ onoのO
NO膜103と、ONO膜103の上に形成された第1
層のポリシリコン・ゲート電極104と、酸化膜(Si
O2)またはONO膜105を隔てて形成された第2層
のポリシリコン・ゲート電極106とで構成される。構
造上の特徴はONO膜103の窒化膜を緻密な多結晶構
造(S 13N= )ではなく、アモルファス結晶構造
(α−3imNn)で形成していることである。
FIG. 1 (main) shows the structure of a semiconductor device according to an embodiment of the present invention.As can be seen from the figure, there is an n-region 102 formed on the upper part of a p-substrate 101, and an n-region 102 formed on the upper surface of the n-region 102. The thickness of the gate insulating film is 'I' ono.
NO film 103 and a first film formed on ONO film 103
The polysilicon gate electrode 104 of the layer and the oxide film (Si
O2) or a second layer of polysilicon gate electrode 106 formed with an ONO film 105 in between. A structural feature is that the nitride film of the ONO film 103 is formed not in a dense polycrystalline structure (S13N=) but in an amorphous crystalline structure (α-3imNn).

製造方法的に1iONo膜の下部5i02は熱酸化によ
り300人程変形成し 続いて5iH−とNH3の反応
を利用するプラズマCVDあるいは光CVDでアモルフ
ァス構造の窒化膜を400人程変形成する。その後、α
−8imNn上にプラズマCVDあるいは光CVDでシ
リコン酸化窒化膜(SixNyoz)を50〜70人程
度を程度する。
In terms of manufacturing method, the lower part 5i02 of the 1iONo film is transformed by about 300 layers by thermal oxidation, and then a nitride film with an amorphous structure is transformed by about 400 layers by plasma CVD or photoCVD using the reaction of 5iH- and NH3. Then α
A silicon oxynitride film (SixNyoz) is formed on the -8imNn by plasma CVD or photoCVD using approximately 50 to 70 people.

第1図のA−A″断面沿った熱平衡状態(全ての電圧を
印加していない時の熱平衡状態)のエネルギー・バンド
図を第2図(a)に示す。アモルファス窒化膜のバンド
・ギャップ・エネルギーは多結晶の窒化膜に比べて0.
5eV程度増大している。
The energy band diagram of the thermal equilibrium state (thermal equilibrium state when no voltage is applied) along the A-A'' section in Fig. 1 is shown in Fig. 2(a).The band gap of the amorphous nitride film Energy is 0. compared to polycrystalline nitride film.
It has increased by about 5 eV.

第1図のCCDの主動作状態でft  n領域101に
対して正の電圧(15〜20v)がn領域102に印加
されるので、エネルギー・バンド図は第2図(b)に示
すようになる。この口紙  ポリシリコン・ゲート電極
の電圧はOvである。アモルファス窒化膜のバンド・ギ
ャップ・エネルギーが増大したた&n領域102の表面
の価電子帯の正孔に対しては障壁になる。つまりn領域
からSiO2膜202に注入される正孔は存在しない。
In the main operating state of the CCD shown in FIG. 1, a positive voltage (15 to 20 V) is applied to the n region 102 with respect to the ft n region 101, so the energy band diagram is as shown in FIG. 2(b). Become. The voltage of this opening polysilicon gate electrode is Ov. Since the band gap energy of the amorphous nitride film has increased, it becomes a barrier to holes in the valence band on the surface of the &n region 102. In other words, there are no holes injected into the SiO2 film 202 from the n region.

従って、厚いゲート酸化膜の場合と同様に ゲート電極
の電圧を正方向に増大ずれは信号電荷の蓄積状態となり
、負方向に増大すれは信号電荷の非蓄積状態となる。
Therefore, as in the case of a thick gate oxide film, increasing the gate electrode voltage in the positive direction results in a signal charge accumulation state, and increasing in the negative direction results in a signal charge non-storage state.

発明の効果 本発明によれば 電荷転送領域の動作性能である最大転
送電荷量に悪影響を与えずに薄いゲート絶縁膜としてO
NO膜を採用することが可能になるため、CCDのシリ
コン表面のゲート絶縁膜をスケーリングすることが可能
になる。この結果CCDの絶縁膜がより薄くなると共に
転送パルスの振幅も小さくなり、高画素化のための設計
指針であるスケーリングから帰結される電源電圧の低減
も可能になり、本発明がもたらす実用的な効果は極めて
大きい。
Effects of the Invention According to the present invention, O2 can be used as a thin gate insulating film without adversely affecting the maximum transfer charge amount, which is the operational performance of the charge transfer region.
Since it becomes possible to employ the NO film, it becomes possible to scale the gate insulating film on the silicon surface of the CCD. As a result, the insulating film of the CCD becomes thinner and the amplitude of the transfer pulse becomes smaller, making it possible to reduce the power supply voltage resulting from scaling, which is a design guideline for increasing the number of pixels. The effect is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のCCD型半導体装置の構造
医 第2図は第1図の実施例のA−A’断面に沿うエネ
ルギー・バンド@ 第3図は従来のCCD型半導体装置
の構造医 第4図は第3図の従来例のA−A′断面に沿
うエネルギー・バンド諷第5図は絶縁膜の厚さの大小が
ゲート電圧と最大転送電荷量の関係に及ぼす影響を計算
した結果の諷 第6図は薄い酸化膜と等価なONO膜を
用いた場合の第3図の従来例のA−A’断面に沿うエネ
ルギー・バンド図である。 101、301・・・p基板 102、302・・・n領域 103、104、303、304・・・ゲート絶縁膜2
01、602・・・窒化風 202、601・・・下部酸化膜 203、603・・・上部酸化風 104.304・・・第1層ポリシリコン・ゲート電極 106.306・・・第2層ポリシリコン・ゲート電極 代理人の氏名 弁理士 粟野重孝 はか1名第 図 (b)
Figure 1 shows the structure of a CCD type semiconductor device according to an embodiment of the present invention. Figure 2 shows the energy band along the AA' cross section of the embodiment shown in Figure 1. Figure 3 shows a conventional CCD type semiconductor device. Figure 4 shows the energy band along the A-A' cross section of the conventional example in Figure 3. Figure 5 shows the influence of the thickness of the insulating film on the relationship between the gate voltage and the maximum transferred charge. Summary of Calculated Results FIG. 6 is an energy band diagram along the AA' cross section of the conventional example of FIG. 3 when an ONO film equivalent to a thin oxide film is used. 101, 301...P substrate 102, 302...N region 103, 104, 303, 304...Gate insulating film 2
01, 602...Nitriding air 202, 601...Lower oxide film 203, 603...Upper oxidizing air 104.304...First layer polysilicon gate electrode 106.306...Second layer poly Name of silicon gate electrode agent: Patent attorney Shigetaka Awano Figure (b)

Claims (2)

【特許請求の範囲】[Claims] (1)第1導電型の第1の半導体領域と、前記第1の半
導体領域の上部に形成された第2導電型の第2の半導体
領域と、前記第2の半導体領域の表面に形成されたゲー
ト絶縁膜と、前記ゲート絶縁膜上に形成されたゲート電
極を主な構成要素として有し、しかも前記ゲート絶縁膜
がアモルファス窒化膜を用いたONO(SiO_2/α
−SimNn/Si_xN_yO_z)三層構造のゲー
ト絶縁膜であることを特徴とする半導体装置。
(1) A first semiconductor region of a first conductivity type, a second semiconductor region of a second conductivity type formed on the top of the first semiconductor region, and a second semiconductor region formed on the surface of the second semiconductor region. The main components are a gate insulating film and a gate electrode formed on the gate insulating film, and the gate insulating film is an ONO (SiO_2/α) using an amorphous nitride film.
-SimNn/Si_xN_yO_z) A semiconductor device characterized by having a gate insulating film having a three-layer structure.
(2)単結晶シリコンの表面に酸化膜(SiO_2)を
形成する第1の工程と、前記酸化膜表面にアモルファス
な窒化膜(α−Si_mN_n)を形成する第2の工程
と、前記窒化膜の表面を酸化して酸化膜(Si_xN_
yO_z)を形成する第3の工程を含むことを特徴とす
る三層ONO構造の絶縁膜の製造方法。
(2) A first step of forming an oxide film (SiO_2) on the surface of single crystal silicon, a second step of forming an amorphous nitride film (α-Si_mN_n) on the surface of the oxide film, and a second step of forming an amorphous nitride film (α-Si_mN_n) on the surface of the oxide film. Oxidize the surface to form an oxide film (Si_xN_
A method for manufacturing an insulating film having a three-layer ONO structure, the method comprising a third step of forming an insulating film having a three-layer ONO structure.
JP2127283A 1990-05-16 1990-05-16 Semiconductor device and manufacture thereof Pending JPH0425033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2127283A JPH0425033A (en) 1990-05-16 1990-05-16 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2127283A JPH0425033A (en) 1990-05-16 1990-05-16 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0425033A true JPH0425033A (en) 1992-01-28

Family

ID=14956140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2127283A Pending JPH0425033A (en) 1990-05-16 1990-05-16 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0425033A (en)

Similar Documents

Publication Publication Date Title
KR100218849B1 (en) Manufacturing method of solid-state image pickup device
JPH0425033A (en) Semiconductor device and manufacture thereof
US7084000B2 (en) Solid-state imaging device and method for manufacturing the same
JPH06120262A (en) Charge transfer device
JPH03203378A (en) Thin film transistor
JP3162440B2 (en) Method for manufacturing solid-state imaging device
JP3270254B2 (en) Solid-state imaging device
JPH0423331A (en) Semiconductor device
JPH10125892A (en) Manufacture of solid-state image sensor
JP2507066B2 (en) Charge transfer device and manufacturing method thereof
JP3075348B2 (en) Semiconductor device and manufacturing method thereof
JPH10144904A (en) Semiconductor device and its manufacture, and solid-state image pickup element and its manufacture
JPS63115361A (en) Thin film semiconductor device
JP2755578B2 (en) Rewritable read-only memory
JPH0417341A (en) Semiconductor device
JPH07254691A (en) Fabrication of solid state image sensor
JP2004014711A (en) Semiconductor device and method for manufacturing the same
JP3119619B2 (en) Charge coupled device and method of manufacturing the same
JP3302189B2 (en) Charge-coupled device
JP2835754B2 (en) Semiconductor imaging device and method of manufacturing the same
JPH1084053A (en) Method of manufacturing semiconductor memory
JP3176715B2 (en) Method for manufacturing solid-state imaging device
JPH06310698A (en) Solid image pickup device and its manufacture
JPH07106543A (en) Manufacture of solid-state image sensing device
KR19980037036A (en) Structure of CDD solid state image pickup device and its manufacturing method `