JPH04247601A - Ceramic resistor and manufacture thereof - Google Patents

Ceramic resistor and manufacture thereof

Info

Publication number
JPH04247601A
JPH04247601A JP3013528A JP1352891A JPH04247601A JP H04247601 A JPH04247601 A JP H04247601A JP 3013528 A JP3013528 A JP 3013528A JP 1352891 A JP1352891 A JP 1352891A JP H04247601 A JPH04247601 A JP H04247601A
Authority
JP
Japan
Prior art keywords
ceramic resistor
weight
resistor
clay
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3013528A
Other languages
Japanese (ja)
Inventor
Shigeru Kudo
茂 工藤
Yoshikatsu Matsuzaka
松坂 嘉功
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Konetsu Kogyo Co Ltd
Original Assignee
Tokai Konetsu Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Konetsu Kogyo Co Ltd filed Critical Tokai Konetsu Kogyo Co Ltd
Priority to JP3013528A priority Critical patent/JPH04247601A/en
Publication of JPH04247601A publication Critical patent/JPH04247601A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To provide a ceramic resistor with high breakdown voltage, especially a ceramic resistor for suppressing electron gun discharge and a method for fabricating the same. CONSTITUTION:A ceramic resistor comprises a mixture containing insulating inorganic material powder as an aggregate, carbon powder as a conductive material and clay as a binder, which is molded and baked with an insulating layer not containing carbon formed on a surface, wherein apparent porosity is 15% or less. The ceramic resistor can be fabricated by molding and baking a mixture containing 55 to 56wt. part of insulating inorganic material powder whose average particle diameter is 1mum or less, 5 to 10wt. part of carbon powder and 35 to 45wt. part of clay.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はセラミック抵抗体及びそ
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic resistor and a method for manufacturing the same.

【0002】0002

【従来の技術】従来より陰極線管内に装着された電子銃
の各グリッド間での異常放電により画像に悪影響が出た
り、各種半導体の破壊や誤動作が起こり、大きな問題と
なっていた。この異常放電の電流を抑制する一つの手段
として陰極線管内における電子銃のグリッド間のリード
線を抵抗体に置き換え、この抵抗体にサージエネルギー
(過電圧により発生するエネルギー)を吸収させる方法
が採用され、この電子銃の放電抑制用の抵抗体としてセ
ラミック抵抗体を使用することが検討されている。
2. Description of the Related Art Conventionally, abnormal discharge between the grids of an electron gun installed in a cathode ray tube has caused serious problems, such as adversely affecting images and causing destruction or malfunction of various semiconductors. One way to suppress this abnormal discharge current is to replace the lead wire between the grids of the electron gun in the cathode ray tube with a resistor, and have this resistor absorb surge energy (energy generated by overvoltage). The use of a ceramic resistor as a resistor for suppressing discharge in this electron gun is being considered.

【0003】セラミック抵抗体は、骨材である絶縁性無
機材料の粉末、導電材である炭素粉末、結合材である粘
土を混合、成形、焼成することにより製造される。酸化
性ガス含有雰囲気、例えば大気中で焼成することにより
、抵抗体表面近傍の炭素が酸化消失して表面近傍に絶縁
層が形成され、この絶縁層と炭素を含む内部の抵抗層か
らなる二重層構造の抵抗体となる。この抵抗体は、絶縁
層と抵抗層が一体的に形成され、耐絶縁性、耐熱性に優
れている。しかし、従来の電子銃放電抑制用のセラミッ
ク抵抗体は、粒径の大きい骨材を使用して製造されてい
るため、絶縁層の見掛け気孔率が20%程度の多孔質体
であり、絶縁破壊電圧が低いという問題がある。そのた
め、特に、陰極線管製造プロセスの最終工程で行われて
いるノッキング処理において、絶縁層の絶縁破壊により
クラックが生じ、これが陰極線管内における塵埃による
不良の原因となっている。
Ceramic resistors are manufactured by mixing, molding, and firing a powder of an insulating inorganic material as an aggregate, carbon powder as a conductive material, and clay as a binding material. By firing in an atmosphere containing an oxidizing gas, such as the air, carbon near the surface of the resistor is oxidized and disappears, forming an insulating layer near the surface, and a double layer consisting of this insulating layer and an internal resistance layer containing carbon. It becomes the resistor of the structure. This resistor has an insulating layer and a resistance layer integrally formed, and has excellent insulation resistance and heat resistance. However, because the conventional ceramic resistor for suppressing electron gun discharge is manufactured using aggregate with large particle size, it is a porous body with an apparent porosity of about 20% in the insulating layer, resulting in dielectric breakdown. There is a problem with low voltage. Therefore, especially in the knocking treatment performed in the final step of the cathode ray tube manufacturing process, cracks occur due to dielectric breakdown of the insulating layer, which causes defects due to dust inside the cathode ray tube.

【0004】0004

【発明が解決しようとする課題】本発明の目的は、絶縁
破壊電圧が高いセラミック抵抗体、特に電子銃放電抑制
用のセラミック抵抗体を提供することである。本発明の
もう一つの目的は、上記絶縁破壊電圧が高いセラミック
抵抗体の製造方法を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a ceramic resistor having a high dielectric breakdown voltage, particularly a ceramic resistor for suppressing electron gun discharge. Another object of the present invention is to provide a method for manufacturing the ceramic resistor having a high dielectric breakdown voltage.

【0005】[0005]

【課題を解決するための手段】本発明の目的は、骨材と
して絶縁性無機材料粉末、導電材として炭素粉末、結合
材として粘土を含む混合物を成形、焼成し、表面に炭素
を含まない絶縁層を形成させたセラミック抵抗体におい
て、気孔率が15%以下であることを特徴とするセラミ
ック抵抗体により達成される。
[Means for Solving the Problems] The object of the present invention is to form and fire a mixture containing insulating inorganic material powder as an aggregate, carbon powder as a conductive material, and clay as a binding material, and to provide an insulating material that does not contain carbon on the surface. This is achieved by a layered ceramic resistor characterized by a porosity of 15% or less.

【0006】本発明のセラミック抵抗体は、例えば平均
粒子径1μm以下の絶縁性無機材料粉末を使用すること
により製造することができる。本発明に使用される絶縁
性無機材料としては、アルミナ、シリカ、ムライト、ス
テアタイト、フォルステライト、コージェライト、ジル
コン、ベリリア、窒化硼素、窒化アルミニウム等が挙げ
られる。本発明に使用される絶縁性無機材料粉末は、平
均粒子径(累積分布50重量%における粒子径)が1μ
m以下のものである。好ましくは、累積分布90重量%
における粒子径が3μm以下、さらに好ましくは2μm
以下のものが適当である。
The ceramic resistor of the present invention can be manufactured, for example, by using an insulating inorganic material powder having an average particle size of 1 μm or less. Examples of insulating inorganic materials used in the present invention include alumina, silica, mullite, steatite, forsterite, cordierite, zircon, beryllia, boron nitride, aluminum nitride, and the like. The insulating inorganic material powder used in the present invention has an average particle size (particle size at 50% by weight of cumulative distribution) of 1 μm.
m or less. Preferably, the cumulative distribution is 90% by weight
The particle size is 3 μm or less, more preferably 2 μm.
The following are suitable.

【0007】本発明のセラミック抵抗体は、平均粒子径
1μm以下の骨材、例えばアルミナ又はムライト55〜
65重量部と、結合材としての粘土(好ましくは仮焼粘
土及び超精製粘土の混合物)35〜45重量部の混合物
100重量部に、炭素粉末、好ましくは5〜10重量部
を混合し、所定の形状、例えば直径2〜5mm程度の棒
状に押し出し成形し、トンネル炉等で、一般的には大気
中、1000℃以上、好ましくは1200℃程度の高温
で10分間程度焼成して表面近傍の炭素を酸化消失せし
めた後、所定の長さに切断し、電極を取り付けることに
より製造できる。セラミック抵抗体の抵抗値は、炭素粉
末の量、抵抗体の形状、焼成時間、焼成温度等を適宜調
整することにより所望の値とすることができる。
The ceramic resistor of the present invention is made of aggregate having an average particle diameter of 1 μm or less, such as alumina or mullite 55-55.
Carbon powder, preferably 5 to 10 parts by weight, is mixed with 100 parts by weight of a mixture of 65 parts by weight and 35 to 45 parts by weight of clay as a binder (preferably a mixture of calcined clay and ultra-refined clay), and For example, it is extruded into a rod shape with a diameter of about 2 to 5 mm, and fired in a tunnel furnace or the like at a high temperature of 1000°C or higher, preferably about 1200°C, for about 10 minutes to remove the carbon near the surface. It can be manufactured by oxidizing the material, cutting it into a predetermined length, and attaching an electrode. The resistance value of the ceramic resistor can be set to a desired value by appropriately adjusting the amount of carbon powder, the shape of the resistor, firing time, firing temperature, etc.

【0008】上記本発明のセラミック抵抗体は、陰極線
管内の電子銃の放電抑制に特に有利に用いられる。
The ceramic resistor of the present invention is particularly advantageously used for suppressing discharge of an electron gun in a cathode ray tube.

【0009】[0009]

【実施例】以下、実施例により本発明をさらに詳細に説
明する。 実施例1 アルミナ(平均粒子径0.2μm)60重量部、粘土原
料(仮焼粘土及び超精製粘土の混合物)40重量部及び
カーボンブラック6.5重量部を、直径2.5mmの棒
状に押し出し成形し、トンネル炉中、大気雰囲気下、1
200℃で約10分間焼成した後、20.0mmの長さ
に切断し、絶縁層の厚さ約0.5mmのセラミック抵抗
体を作製した。 実施例2 実施例1において、平均粒子径0.3μmのアルミナを
使用した他は同様にしてセラミック抵抗体を作製した。 実施例3 実施例1において、平均粒子径0.4μmのアルミナを
使用した他は同様にしてセラミック抵抗体を作製した。 実施例4 実施例1において、平均粒子径1.0μmのアルミナを
使用した他は同様にしてセラミック抵抗体を作製した。 実施例5 実施例1において、アルミナ55重量部及び粘土原料4
5重量部を使用した他は同様にしてセラミック抵抗体を
作製した。 実施例6 実施例1において、アルミナ65重量部及び粘土原料3
5重量部を使用した他は同様にしてセラミック抵抗体を
作製した。 比較例 アルミナ(平均粒子径4.6μm)60重量部、粘土原
料(仮焼粘土及び超精製粘土の混合物)40重量部及び
カーボンブラック3.3重量部を充分混合、捏合し、直
径2.5mmの棒状に押し出し成形し、トンネル炉中、
大気雰囲気下、1200℃で約10分間焼成した後、2
0.0mmの長さに切断し、絶縁層の厚さ約0.5mm
のセラミック抵抗体を作製した。
[Examples] The present invention will be explained in more detail with reference to Examples below. Example 1 60 parts by weight of alumina (average particle size 0.2 μm), 40 parts by weight of clay raw material (a mixture of calcined clay and ultra-refined clay), and 6.5 parts by weight of carbon black were extruded into a rod shape with a diameter of 2.5 mm. Shaped, in tunnel furnace, under atmospheric atmosphere, 1
After firing at 200° C. for about 10 minutes, it was cut into a length of 20.0 mm to produce a ceramic resistor with an insulating layer thickness of about 0.5 mm. Example 2 A ceramic resistor was produced in the same manner as in Example 1 except that alumina having an average particle size of 0.3 μm was used. Example 3 A ceramic resistor was produced in the same manner as in Example 1 except that alumina having an average particle size of 0.4 μm was used. Example 4 A ceramic resistor was produced in the same manner as in Example 1 except that alumina having an average particle size of 1.0 μm was used. Example 5 In Example 1, 55 parts by weight of alumina and 4 parts by weight of clay raw material
A ceramic resistor was produced in the same manner except that 5 parts by weight was used. Example 6 In Example 1, 65 parts by weight of alumina and 3 parts of clay raw material
A ceramic resistor was produced in the same manner except that 5 parts by weight was used. Comparative Example 60 parts by weight of alumina (average particle size 4.6 μm), 40 parts by weight of clay raw material (a mixture of calcined clay and ultra-refined clay) and 3.3 parts by weight of carbon black were thoroughly mixed and kneaded to give a diameter of 2.5 mm. extruded into a rod shape, placed in a tunnel furnace,
After baking at 1200℃ for about 10 minutes in an air atmosphere, 2
Cut into a length of 0.0 mm, and the thickness of the insulating layer is approximately 0.5 mm.
A ceramic resistor was fabricated.

【0010】実施例及び比較例で作製したセラミック抵
抗体の比抵抗値、見掛け気孔率及び絶縁破壊電圧を測定
した。絶縁破壊電圧の測定方法は、以下のとおりである
。装置:ダイオードカーブトレーサー  Model 
5830, Max 30KV  菊水電子工業( 株
) 製) 、電源:半波整流(50Hz) 、周囲媒質
:フロリナート液(不活性液体、FC−77:住友3M
社製)また、見掛け気孔率APは、アルキメデス法によ
り測定した。
The specific resistance, apparent porosity, and dielectric breakdown voltage of the ceramic resistors produced in Examples and Comparative Examples were measured. The method for measuring dielectric breakdown voltage is as follows. Equipment: Diode curve tracer Model
5830, Max 30KV (manufactured by Kikusui Electronics Co., Ltd.), Power supply: Half-wave rectification (50Hz), Surrounding medium: Fluorinert liquid (inert liquid, FC-77: Sumitomo 3M)
Also, the apparent porosity AP was measured by the Archimedes method.

【0011】AP(%)=(W3 − W1)/ (W
3 − W2) × 100W1:乾燥重量 W2:水中重量(清水中で3時間煮沸し、常温まで冷却
後、水中に吊るして秤量) W3:飽水重量(水中重量測定後、試料を水から出して
表面の過剰水分を拭き取り秤量) 比抵抗値は導電層断面積から計算により求めた。
[0011] AP (%) = (W3 - W1)/ (W
3-W2) × 100W1: Dry weight W2: Weight in water (boiled in clean water for 3 hours, cooled to room temperature, hung in water and weighed) W3: Saturated weight (after measuring the weight in water, remove the sample from the water) Excess water on the surface was wiped off and weighed.) The specific resistance value was calculated from the cross-sectional area of the conductive layer.

【0012】結果を次表に示す。絶縁破壊電圧は、10
回の測定の平均値である。 ─────────────────────────
──────────              実
施例  実施例  実施例  実施例  実施例  実
施例  比較例                1 
     2      3      4     
 5      6          ──────
─────────────────────────
────  アルミナの   平均粒子径    0.2     0.3   
  0.4     1.0     0.2    
 0.2     4.6   (μm) ─────────────────────────
──────────  絶縁層の   厚み          0.49    0.5
0    0.49    0.49    0.49
    0.51    0.48(mm) ─────────────────────────
──────────  比抵抗値   (Ωcm)     42.0    18.0 
    9.9     2.5    24.9  
 235.1   110.5 ──────────
─────────────────────────
  見掛け     気孔率        1.6     4.4 
    6.3    12.0     1.5  
   1.8    21.9   (%) ─────────────────────────
──────────  絶縁破壊     電圧         24.8    20.5
    19.2    18.8    23.7 
   25.5    18.7    (KV)  ─────────────────────────
──────────実施例1〜4及び比較例で使用し
たアルミナの平均粒子径と絶縁破壊電圧との関係を図1
に、得られたセラミック抵抗体の見掛け気孔率と絶縁破
壊電圧との関係を図2にそれぞれ示す。表及び図1から
、従来品より高い絶縁破壊電圧を得るためには、アルミ
ナの平均粒子径は、1.0μm以下、好ましくは0.5
μm以下であることが必要であることがわかる。また、
表及び図2から、本発明のセラミック抵抗体の見掛け気
孔率は15%以下、好ましくは12%以下、更に好まし
くは8%以下であることがわかる。
The results are shown in the following table. The dielectric breakdown voltage is 10
This is the average value of multiple measurements. ──────────────────────────
────────── Example Example Example Example Example Example Example Comparative example 1
2 3 4
5 6 ──────
──────────────────────────
──── Average particle size of alumina 0.2 0.3
0.4 1.0 0.2
0.2 4.6 (μm) ──────────────────────────
────────── Insulating layer thickness 0.49 0.5
0 0.49 0.49 0.49
0.51 0.48 (mm) ──────────────────────────
────────── Specific resistance value (Ωcm) 42.0 18.0
9.9 2.5 24.9
235.1 110.5 ──────────
──────────────────────────
Apparent porosity 1.6 4.4
6.3 12.0 1.5
1.8 21.9 (%) ──────────────────────────
────────── Dielectric breakdown voltage 24.8 20.5
19.2 18.8 23.7
25.5 18.7 (KV) ──────────────────────────
────────── Figure 1 shows the relationship between the average particle diameter and dielectric breakdown voltage of alumina used in Examples 1 to 4 and comparative examples.
FIG. 2 shows the relationship between the apparent porosity and dielectric breakdown voltage of the obtained ceramic resistor. From the table and FIG. 1, in order to obtain a higher dielectric breakdown voltage than conventional products, the average particle diameter of alumina must be 1.0 μm or less, preferably 0.5 μm or less.
It can be seen that it is necessary that the thickness be less than μm. Also,
It can be seen from the table and FIG. 2 that the apparent porosity of the ceramic resistor of the present invention is 15% or less, preferably 12% or less, and more preferably 8% or less.

【0013】[0013]

【発明の効果】本発明のセラミック抵抗体は、絶縁破壊
電圧が高く、特に電子銃放電抑制用のセラミック抵抗体
として有用である。
The ceramic resistor of the present invention has a high dielectric breakdown voltage and is particularly useful as a ceramic resistor for suppressing electron gun discharge.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】アルミナの平均粒子径と絶縁破壊電圧との関係
を示す図面である。
FIG. 1 is a drawing showing the relationship between the average particle diameter of alumina and dielectric breakdown voltage.

【図2】セラミック抵抗体の見掛け気孔率と絶縁破壊電
圧との関係を示す図面である。
FIG. 2 is a drawing showing the relationship between the apparent porosity and dielectric breakdown voltage of a ceramic resistor.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  骨材として絶縁性無機材料粉末、導電
材として炭素粉末、結合材として粘土を含む混合物を成
形、焼成し、表面に炭素を含まない絶縁層を形成させた
セラミック抵抗体において、見掛け気孔率が15%以下
であることを特徴とするセラミック抵抗体。
1. A ceramic resistor in which a mixture containing insulating inorganic material powder as an aggregate, carbon powder as a conductive material, and clay as a binder is molded and fired to form an insulating layer that does not contain carbon on the surface, A ceramic resistor characterized by an apparent porosity of 15% or less.
【請求項2】  骨材として絶縁性無機材料粉末55〜
65重量部、導電材として炭素粉末5〜10重量部、結
合材として粘土35〜45重量部を含む混合物を成形、
焼成し、表面に炭素を含まない絶縁層を形成させたセラ
ミック抵抗体を製造する方法において、前記絶縁性無機
材料粉末の平均粒子径が1μm以下であることを特徴と
する請求項1記載のセラミック抵抗体の製造方法。
[Claim 2] Insulating inorganic material powder 55~ as aggregate
Molding a mixture containing 65 parts by weight, 5 to 10 parts by weight of carbon powder as a conductive material, and 35 to 45 parts by weight of clay as a binder.
2. A method for producing a ceramic resistor by firing to form an insulating layer that does not contain carbon on the surface, wherein the ceramic according to claim 1, wherein the insulating inorganic material powder has an average particle size of 1 μm or less. Method of manufacturing a resistor.
JP3013528A 1991-02-04 1991-02-04 Ceramic resistor and manufacture thereof Withdrawn JPH04247601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3013528A JPH04247601A (en) 1991-02-04 1991-02-04 Ceramic resistor and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3013528A JPH04247601A (en) 1991-02-04 1991-02-04 Ceramic resistor and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH04247601A true JPH04247601A (en) 1992-09-03

Family

ID=11835660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3013528A Withdrawn JPH04247601A (en) 1991-02-04 1991-02-04 Ceramic resistor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH04247601A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5509558A (en) * 1993-07-16 1996-04-23 Kabushiki Kaisha Toshiba Metal oxide resistor, power resistor, and power circuit breaker
US5629666A (en) * 1994-05-23 1997-05-13 Kabushiki Kaisha Toshiba Power resistor, method of manufacturing the same, and power circuit breaker

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5509558A (en) * 1993-07-16 1996-04-23 Kabushiki Kaisha Toshiba Metal oxide resistor, power resistor, and power circuit breaker
US5629666A (en) * 1994-05-23 1997-05-13 Kabushiki Kaisha Toshiba Power resistor, method of manufacturing the same, and power circuit breaker

Similar Documents

Publication Publication Date Title
US5509558A (en) Metal oxide resistor, power resistor, and power circuit breaker
CN111559913B (en) Carbon ceramic linear resistor and preparation method of side composite insulating layer thereof
EP0667626A2 (en) Voltage non-linear resistor and fabricating method thereof
US3813296A (en) Insulating coating for electrical devices
JPH04247601A (en) Ceramic resistor and manufacture thereof
CN111747731B (en) Magnesium oxide based ultrahigh pressure dielectric ceramic and preparation method thereof
JPS6059721B2 (en) Manufacturing method of ceramic resistor
JPH0629103A (en) Ceramic resistor and its manufacturing method
JP3076916B2 (en) Spark plug
JPH05258910A (en) Power resistor
JP2010103440A (en) Current-voltage nonlinear resistor and method of manufacturing the same
JP3254950B2 (en) Voltage non-linear resistor, its manufacturing method and application
JP2735320B2 (en) Non-linear resistor
JPH09227221A (en) Alumina porcelain and insulator for spark plug
JP2001319801A (en) Low-resistance ceramic resistor for high voltage and its manufacturing method
JPH0717459B2 (en) Method for producing highly insulating and highly alumina-based porcelain composition
CN111635257B (en) Carbon ceramic linear resistance porous high-resistance coating and preparation method thereof
JP3486108B2 (en) Power resistor, method of manufacturing the same, and power resistor
JP3567537B2 (en) Surge voltage absorbing resistor and method of manufacturing the same
JPH03250605A (en) Manufacture of voltage non-linearity resistor
JPH04349387A (en) Conductive heating element
JPS6355904A (en) Oxide resistor
JPH04561B2 (en)
JPH08162305A (en) Manufacture of nonlinear resistor
JPS5923049B2 (en) Insulating ceramics for high frequency circuit boards

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514