JPH0717459B2 - Method for producing highly insulating and highly alumina-based porcelain composition - Google Patents

Method for producing highly insulating and highly alumina-based porcelain composition

Info

Publication number
JPH0717459B2
JPH0717459B2 JP60283661A JP28366185A JPH0717459B2 JP H0717459 B2 JPH0717459 B2 JP H0717459B2 JP 60283661 A JP60283661 A JP 60283661A JP 28366185 A JP28366185 A JP 28366185A JP H0717459 B2 JPH0717459 B2 JP H0717459B2
Authority
JP
Japan
Prior art keywords
alumina
highly
sintering
porcelain composition
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60283661A
Other languages
Japanese (ja)
Other versions
JPS62143866A (en
Inventor
一郎 吉田
馨 葛岡
学 山田
Original Assignee
日本電装株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電装株式会社 filed Critical 日本電装株式会社
Priority to JP60283661A priority Critical patent/JPH0717459B2/en
Publication of JPS62143866A publication Critical patent/JPS62143866A/en
Publication of JPH0717459B2 publication Critical patent/JPH0717459B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高絶縁性を有する高アルミナ質磁器組成物の製
造方法に関するものであり、特に自動車等の内燃機関用
の点火栓用碍子、半導体製品等の絶縁基板等として用い
られて有効なものである。
Description: TECHNICAL FIELD The present invention relates to a method for producing a high-alumina porcelain composition having a high insulating property, and in particular, an insulator for a spark plug for an internal combustion engine of an automobile or the like, and a semiconductor. It is effectively used as an insulating substrate for products and the like.

〔従来の技術〕 高アルミナ質磁器は、耐熱性を含めて化学的に極めて安
全であり、機械的強度が優れ、しかも製造法が量産に適
しているため内燃機関用点火栓等の電気絶縁材として広
く実用化されている。
[Prior Art] High-alumina porcelain is chemically extremely safe including heat resistance, has excellent mechanical strength, and its manufacturing method is suitable for mass production. Has been widely used as.

一方、近年内燃機関の高性能化のために、点火栓に対す
る要求電圧は益々高まる傾向にあり、点火栓の絶縁碍子
に対する耐電圧特性の向上が要求されてきている。
On the other hand, in recent years, the required voltage for the spark plug has been increasing more and more due to higher performance of the internal combustion engine, and it has been required to improve the withstand voltage characteristic of the insulator of the spark plug.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

これに対して点火栓に使用される従来のSiO2−MgO−CaO
系のガラス質フラックスを有する焼結体において、アル
ミナの含有率を高めることによりフラックスを少なくし
て耐電圧を改善したものが知られているが、上記要求に
対してはまだ十分とは言えないのが現状である。
In contrast, conventional SiO 2 -MgO-CaO used for spark plugs
It is known that, in a sintered body having a glassy flux of the system, the flux is reduced by increasing the alumina content to improve the withstand voltage, but it cannot be said to be sufficient for the above requirements. is the current situation.

そこで本発明者らが耐電圧の向上を目的として絶縁破壊
のメカニズムを詳細に検討した結果絶縁破壊が以下の2
つの原因の奏合により発生することが明らかとなった。
Therefore, the inventors of the present invention have studied the mechanism of the dielectric breakdown in detail for the purpose of improving the withstand voltage.
It became clear that it was caused by the combination of two causes.

すなわち第1の原因は、第6図の焼結対組成図に示す如
く絶縁破壊が焼結体表面に発生するボイドと呼ばれる凹
部Bや焼結体内部の粒界A中に存在する気孔C等の欠陥
に、高電圧印加により電界が集中し、この集中電界によ
りイオン電流が流れて絶縁破壊に至るというものであ
る。
That is, the first cause is a recess B called a void where dielectric breakdown occurs on the surface of the sintered body as shown in the sintering vs. composition diagram of FIG. 6, and pores C existing in the grain boundary A inside the sintered body. An electric field is concentrated on the defect (1) by applying a high voltage, and the concentrated electric field causes an ion current to flow, resulting in dielectric breakdown.

また、第2の原因は、従来用いられていたSiO2−MgO−C
aO系の焼結助剤は比較的低融点の粒界Aを形成し、前記
イオン電流により容易に溶融して絶縁破壊に至るという
点である。
The second cause is the conventionally used SiO 2 --MgO--C.
The aO-based sintering aid forms a grain boundary A having a relatively low melting point, and is easily melted by the ion current to cause dielectric breakdown.

以上の実験観察の結果に基づき、本発明者らは焼結体の
粒界組織の改良に着目して耐絶縁性を高めることを目的
とする。
Based on the results of the above experimental observations, the present inventors focus on improving the grain boundary structure of the sintered body and aim to enhance the insulation resistance.

〔問題点を解決するための手段〕[Means for solving problems]

粒径0.6〜2μmのアルミナ微粉粒95〜99重量%と、粒
径0.5μm以下のア、ルミナ超微粉粒1〜5重量%と、M
gO,Y2O3,ZrO2,La2O3より選ばれた、少なくとも一つの添
加物の0.1〜0.4重量%(前記アルミナ超微粉粒に対して
1〜8重量%)との混合原料粉末を、形成,焼結するこ
とによって焼結体とすることを特徴とする高絶縁性高ア
ルミナ質磁器組成物の製造方法を採用するものである。
95 to 99% by weight of alumina fine particles with a particle size of 0.6 to 2 μm, and 1 to 5% by weight of A, LUMINA ultrafine particles with a particle size of 0.5 μm or less, M
Mixed raw material powder with at least one additive selected from gO, Y 2 O 3 , ZrO 2 and La 2 O 3 and 0.1 to 0.4% by weight (1 to 8% by weight based on the alumina ultrafine powder particles). The method for producing a highly insulating and highly alumina-based porcelain composition is characterized in that a sintered body is formed by forming and sintering.

〔作用〕[Action]

上記第1発明によれば、粒系0.5μm以下のアルミナ超
微粉粒が焼結後に形成される粒界の融点を高めることに
より、粒界の溶融を抑制し耐電圧を高めることができ、
また上記第2発明によれば、上記構成にさらにMgO、Y2O
3、ZrO2、La2O3のうち少なくともひとつを加えることによ
り、上記第1発明の方法により生じ易い空孔等の欠陥の
発生を抑制し、さらに耐電圧を高めることができるもの
である。
According to the first aspect of the present invention, by increasing the melting point of the grain boundary formed after sintering of the alumina ultrafine particles having a grain size of 0.5 μm or less, it is possible to suppress melting of the grain boundary and increase the withstand voltage,
According to the second aspect of the invention, in addition to the above configuration, MgO, Y 2 O
By adding at least one of 3 , ZrO 2 and La 2 O 3 , it is possible to suppress the generation of defects such as voids that are likely to occur by the method of the first invention, and further increase the withstand voltage.

〔発明の効果〕〔The invention's effect〕

従って本発明の製造方法によれば、高アルミナ質磁器組
成物の耐絶縁性を大幅に向上させることができ、高電圧
の印加される部品の絶縁体として有効に使用できる。
Therefore, according to the manufacturing method of the present invention, the insulation resistance of the high-alumina porcelain composition can be significantly improved, and it can be effectively used as an insulator of a component to which a high voltage is applied.

〔実施例〕〔Example〕

以下本発明を実施例に基づいて詳細に説明する。 Hereinafter, the present invention will be described in detail based on examples.

純度99.8%以上で平均粒径0.6μmに調整されたAl2O3
粉粒からなる主成分を97wt%、焼結温度が1300℃程度と
非常に低く、表面が活性な平均粒径0.15μmの低温焼結
性アルミナ超微粉粒(大明化学(株)製)からなる副成
分を3wt%混合した原料粉末の適宜の量の水を加えてア
ルミナボールを用いて湿式で24時間混合粉砕を行った。
粉砕後造粒のためポリビニルアルコール(PVA)の10wt
%水溶液を原料粉末に対し10wt%点火し再混合した後乾
燥を行った。次にこの乾燥造粒原料をさらに粗粉砕し、
60メッシュの目の粗さのふるいにかけることにより、粒
径のそろった原料粉末Aを作製した。
97 wt% of the main component consisting of Al 2 O 3 fine particles with a purity of 99.8% or more and an average particle size of 0.6 μm, the sintering temperature is very low at about 1300 ° C., and the surface has an active average particle size of 0.15 μm. A low-temperature sinterable alumina ultrafine powder (manufactured by Daimei Chemical Co., Ltd.) was added as a raw material powder containing 3% by weight of a sub-ingredient, and an appropriate amount of water was added to the mixture. .
10 wt% of polyvinyl alcohol (PVA) for granulation after crushing
% Aqueous solution was ignited at 10 wt% with respect to the raw material powder, remixed, and then dried. Next, this dry granulation raw material is further roughly crushed,
A raw material powder A having a uniform particle size was produced by sieving with a 60-mesh mesh.

この原料粉末Aを金型に入れ面圧500kg/cm2で加圧して
直径30mmの円盤状に成形した後、耐熱アルミナ質製容器
中に0.1〜0.5mmのAl2O3の粉末を分散させた上へ、成形
体を載置し、電気炉中で100℃/hrの昇温率で1650℃まで
昇温、1650℃で2時間保持、その後100℃/hrで降温する
ことによりかさ比重3.72g/cm2、相対密度(かさ比重の
真比重に占める割合)94%の焼結体が得られた(組織図
を第1図に示す)。
This raw material powder A is put into a mold and pressed at a surface pressure of 500 kg / cm 2 to form a disk shape with a diameter of 30 mm, and then 0.1 to 0.5 mm of Al 2 O 3 powder is dispersed in a heat-resistant alumina container. The molded product is placed on top of it, heated up to 1650 ° C at a heating rate of 100 ° C / hr in an electric furnace, kept at 1650 ° C for 2 hours, and then cooled at 100 ° C / hr to obtain a bulk specific gravity of 3.72. A sintered body having a g / cm 2 and a relative density (ratio of the bulk specific gravity to the true specific gravity) of 94% was obtained (structure chart is shown in FIG. 1).

次にこの焼結体をダイヤモンド砥粒等を用いた研磨盤を
用いて厚さ1.0±0.05mmに研磨加工を施し、第2図に示
す耐電圧測定装置にて耐電圧を実測した。焼結体10の一
面に電極11を導電ペースト等により貼り付けシリコンオ
イル12中に浸漬する。そして焼結体10の電極11の対向す
る面に、先端をニードル状に尖らせたプローブ13を固定
し、この状態で電極11とプローブ13との間で定電圧電源
14から発振器15とコイル16により発生させた高電圧を、
高電圧プローブ17とオシロスコープ18でモニターしなが
ら30 cycle/秒の周波数で毎秒0.2KVづつ電圧を上昇させ
試料の破壊した電圧をその焼結体試料の耐電圧とした。
Next, this sintered body was polished to a thickness of 1.0 ± 0.05 mm using a polishing machine using diamond abrasive grains and the withstand voltage was measured by a withstand voltage measuring device shown in FIG. An electrode 11 is attached to one surface of the sintered body 10 with a conductive paste or the like and immersed in a silicon oil 12. Then, a probe 13 having a needle-like tip is fixed to the facing surface of the electrode 11 of the sintered body 10, and in this state, a constant voltage power supply is provided between the electrode 11 and the probe 13.
High voltage generated by oscillator 15 and coil 16 from 14
While monitoring with the high-voltage probe 17 and the oscilloscope 18, the voltage was increased by 0.2 KV per second at a frequency of 30 cycle / sec, and the breakdown voltage of the sample was defined as the withstand voltage of the sintered sample.

その結果上記実施例のものは33KV/mmであった。一方比
較のために行った平均粒径2.5μmのアルミナ95wt%とC
aO−MgO−SiO2系フラックス5wt%からなる原料粉末から
上記と同様の方法により作製したものでは24KV/mmであ
り、本発明のものは40%近い耐電圧の向上がみられた。
As a result, it was 33 KV / mm in the above example. On the other hand, for comparison, 95 wt% alumina with an average particle size of 2.5 μm and C
The value of 24 KV / mm was produced by the same method as described above from the raw material powder consisting of 5 wt% of aO-MgO-SiO 2 based flux, and that of the present invention showed an improvement in withstand voltage of nearly 40%.

このように耐電圧の向上した原因は、粒界部に存在する
フラックスがSiO2−MgO−CaO系のガラス質フラックスの
ため高電圧印加時にガラス中に含まれる可動イオン、電
子等によるジュール発熱で融解しやすい(従来のフラッ
クスの融点、1200〜1300℃)のに対し、本発明は低温焼
結性アルミナ超微粉粒に従来のフラックスの役割をさせ
ることに焼結を行わせるとともに、一端焼結後はアルミ
ナ焼結体となり、高融点化(融点2050℃)できるので粒
界の融点を大幅に高められるためであると考えられる。
The reason why the withstand voltage is improved in this way is that the flux existing at the grain boundaries is a glassy flux of SiO 2 -MgO-CaO system, and it is due to Joule heat generation by mobile ions, electrons, etc. contained in the glass when a high voltage is applied. In contrast to the fact that it easily melts (melting point of conventional flux, 1200 to 1300 ° C), the present invention allows low-temperature sinterable alumina ultrafine powder particles to perform the function of conventional flux and perform sintering, and at the same time It is considered that after that, it becomes an alumina sintered body, and the melting point can be increased (melting point 2050 ° C), so that the melting point at the grain boundary can be significantly increased.

次に上記実施例において低温焼結性アルミナ超微粉粒の
みを副成分として添加するだけでも従来品に比較し高い
電圧を示すが、低温焼結性アルミナ超微粉粒の焼結温度
が主成分のアルミナ微粉粒と大きく異なるため、焼結時
に若干の空孔組織が発生する。これを抑制するために高
融点のMgO(融点2800℃)、Y2O3(融点2400℃)、ZrO2
(融点2765℃)のうちいずれかを低温焼結性アルミナに
対し1〜8wt%、(全体から見て0.1〜0.4wt%)添加す
る事により、焼結体の緻密化が図れる事がわかった。そ
の結果を第3図に示す。図からわかるようにこれらの添
加物の添加量は低温焼結性アルミナに対し1〜8wt%で
密度が大きく、耐電圧も高くなることが明らかとなっ
た。これは、添加物と低温焼結性アルミナ微粉粒が高融
点化合物へ変化する事により低温焼結性アルミナ微粉粒
のみを添加して焼結した場合よりも焼結速度を遅くする
ことができ、低温焼結製アルミナのみで焼結した時には
焼結速度が速すぎるため生じた空孔を減少させることが
できたものと考えられる。第4図は主成分であるアルミ
ナ微粉粒の粒径を0.6μmとし、それに各粒径の副成分
とてる低温焼結性アルミナ微粉粒を1,3,5wt%それぞれ
添加した結果を示すもので、粒径0.1〜0.5μmの低温焼
結性アルミナ微粉粒を1〜5wt%添加した時いずれも従
来よりも高耐電圧が得られるが3〜5wt%でより効果が
大きい。また低温焼結性アルミナの粒径は小さいほど耐
電圧が高いが現在得られるものの下限は0.10μm程度で
ある。
Next, in the above examples, even if only low-temperature sinterable alumina ultrafine particles are added as a subcomponent, a high voltage is shown as compared with the conventional product, but the sintering temperature of low-temperature sinterable alumina ultrafine particles is the main component. Since it is significantly different from the fine alumina particles, some pore structure is generated during sintering. In order to suppress this, high melting point MgO (melting point 2800 ° C), Y 2 O 3 (melting point 2400 ° C), ZrO 2
It was found that the densification of the sintered body can be achieved by adding one of (melting point 2765 ° C) to the low temperature sinterability alumina in an amount of 1 to 8 wt% (0.1 to 0.4 wt% as a whole). . The results are shown in FIG. As can be seen from the figure, it was clarified that the addition amount of these additives was 1 to 8 wt% with respect to the low temperature sinterable alumina, and the density was high and the withstand voltage was also high. This is because the additive and the low temperature sinterable alumina fine powder particles are changed to a high melting point compound, so that the sintering rate can be slower than the case of sintering by adding only the low temperature sinterable alumina fine powder particles, It is considered that when the sintering was performed only with the low-temperature sintered alumina, the sintering rate was too fast, and thus the voids generated could be reduced. Fig. 4 shows the results obtained by setting the particle size of the main component, alumina fine powder, to 0.6 μm, and adding 1,3,5 wt% of low-temperature sinterable alumina fine powder, which is a subcomponent of each particle size, to it. When 1 to 5 wt% of low-temperature sinterable alumina fine particles with a particle size of 0.1 to 0.5 μm were added, a high withstand voltage was obtained in all cases, but the effect was greater with 3 to 5 wt%. Further, the smaller the particle size of the low temperature sinterable alumina, the higher the withstand voltage, but the lower limit of what is currently obtained is about 0.10 μm.

添加物としてのY2O3、ZrO2,MgOについては焼結工程上、
低温焼結性Al2O3と同等の焼結性を持たせるために0.1〜
0.5μmにするのが好ましい。また、Y2O3、ZrO2、MgOの
他にLa2O3も同様の効果がある。
Y 2 O 3 as an additive, ZrO 2 , MgO in the sintering process,
Low temperature sinterability 0.1 ~ in order to have sinterability equivalent to Al 2 O 3
It is preferably 0.5 μm. In addition to Y 2 O 3 , ZrO 2 and MgO, La 2 O 3 has the same effect.

次に本発明の高絶縁性高アルミナ質磁器組成物が好適に
用いられる内燃機関用点火栓の構造を第5図に基づいて
説明する。点火栓20は、エンジンのシリンダ内に置かれ
高電圧を発生するコイルからの印加電圧によって中心電
極21と接地電極22の間に放電を行わせる事によってガソ
リンと空気の混合気を着火させる働きをもつ。ハウジン
グ23は接地電極22と同じ電位であるためハウジング23と
中心電極21間の放電が生じないように絶縁碍子24が置か
れる。燃料が通常空燃比よりも小さい場合や他の着火し
にくい燃料では中心電極と接地電極の間に通常より高電
圧を印加しないと良好な着火を生じさせることができな
い。しかるに電圧がある大きさ以上になると絶縁碍子24
の一部が破壊されピンホールが生ずる。この状態になる
と接地電極22と中心電極21間に生ずべき放電がハウジン
グ23と中心電極21間で生じてしまい失火を起こす。
Next, the structure of the ignition plug for an internal combustion engine, in which the highly insulating and highly alumina-based ceramic composition of the present invention is preferably used, will be described with reference to FIG. The spark plug 20 has a function of igniting a mixture of gasoline and air by causing discharge between the center electrode 21 and the ground electrode 22 by an applied voltage from a coil that is placed in the cylinder of the engine and generates a high voltage. Hold. Since the housing 23 has the same potential as the ground electrode 22, the insulator 24 is placed so that the discharge between the housing 23 and the center electrode 21 does not occur. If the fuel is smaller than the normal air-fuel ratio or other fuel that is difficult to ignite, good ignition cannot be generated unless a higher voltage than usual is applied between the center electrode and the ground electrode. However, if the voltage exceeds a certain level, the insulator 24
Part of it is destroyed and pinholes occur. In this state, a discharge that should occur between the ground electrode 22 and the center electrode 21 is generated between the housing 23 and the center electrode 21, causing misfire.

従来の絶縁碍子材であるAl2O3にSiO2−MgO−CaO系のフ
ラックスを添加した材料はすでに説明したように第6図
の如く表面にボイトと呼ばれる凹部Bや、粒界に気孔C
が多く存在する。これに高電圧が印加されるとこれらの
欠陥に電位が集中しその電位勾配によって粒界A、およ
び気孔Cに存在する動きやすいイオンによる電流が流
れ、この電流による発熱がさらに可動イオン数を増加さ
せる事により、さらに電流が流れて発熱するというサイ
クルを繰り返す。この発熱量がアルミナの分解エネルギ
ーよりも過大となった時に破壊が生ずる。
As described above, the material obtained by adding a flux of SiO 2 —MgO—CaO system to Al 2 O 3 which is a conventional insulator material has a concave portion B called a void on the surface as shown in FIG.
There are many. When a high voltage is applied to this, the potential concentrates on these defects, and the potential gradient causes a current to flow due to the easily moving ions existing in the grain boundaries A and pores C, and the heat generated by this current further increases the number of mobile ions. By doing so, a cycle in which an electric current further flows to generate heat is repeated. When this calorific value becomes larger than the decomposition energy of alumina, destruction occurs.

本発明者らは破壊が最初粒界になるガラス成分から始ま
る事を見出しこの結果より粒界をより高融点材料とし、
かつ緻密にAl2Oを焼結させる添加剤を検討した結果低温
焼結性アルミナ超微粉粒を従来のガラス系フラックスの
かわりに用いるという考えに至った。この材質単体では
1300℃程度で焼結可能であるため従来フラックスと同等
の働きをし、一度焼結すれば従来と同等の融点をもつた
め従来品よりも耐電圧を高くできる。また添加量も少量
のため大きなコストアップにはならない。
The present inventors have found that the fracture starts from the glass component that becomes the first grain boundary, and as a result, the grain boundary is made to have a higher melting point material,
In addition, as a result of studying the additive for densely sintering Al 2 O, it came to the idea that low-temperature sinterable alumina ultrafine particles are used instead of the conventional glass-based flux. This material alone
Since it can be sintered at about 1300 ° C, it works like a conventional flux, and once sintered, it has a melting point similar to that of the conventional product, so the withstand voltage can be higher than that of the conventional product. Moreover, since the addition amount is small, the cost does not increase significantly.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の製造方法により製造された高絶縁性高
アルミナ質磁器組成物の組織を示す模式図、第2図は耐
電圧測定装置を示す系統図、第3図,第4図はそれぞれ
焼結体の相対密度、耐電圧を測定した結果を示す特性
図、第5図は本発明の製造方法による高絶縁性高アルミ
ナ質磁器組成物が好適に用いられる点火栓の構造を示す
半断面図、第6図は従来の高アルミナ質磁器組成物の組
織を示す模式図である。 A……粒界。
FIG. 1 is a schematic diagram showing the structure of a highly insulating and highly alumina-based porcelain composition produced by the production method of the present invention, FIG. 2 is a system diagram showing a withstand voltage measuring device, and FIGS. 3 and 4 are FIG. 5 is a characteristic diagram showing the results of measuring the relative density and withstand voltage of each sintered body, and FIG. 5 is a semi-finished structure showing the structure of a spark plug in which the highly insulating and highly alumina-based ceramic composition according to the production method of the present invention is preferably used. FIG. 6 is a schematic view showing the structure of a conventional high alumina ceramic composition. A ... Grain boundary.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】粒径0.6〜2μmのアルミナ微粉粒95〜99
重量%と、粒径0.5μm以下のアルミナ超微粉粒1〜5
重量%と、Mgo,Y2O3,ZrO2,La2O3より選ばれた、少なく
とも一つの添加物の0.1〜0.4重量%(前記アルミナ超微
粉粒に対して1〜8重量%)との混合原料粉末を、形
成,焼結することによって、焼結体とすることを特徴と
する高絶縁性高アルミナ質磁器組成物の製造方法。
1. Alumina fine powder particles 95-99 having a particle size of 0.6-2 .mu.m.
1% to 5% by weight of alumina ultrafine particles with a particle size of 0.5 μm or less
%, And 0.1 to 0.4% by weight of at least one additive selected from Mgo, Y 2 O 3 , ZrO 2 and La 2 O 3 (1 to 8% by weight with respect to the alumina ultrafine powder particles). 1. A method for producing a highly insulating and highly alumina-based porcelain composition, which comprises forming and sintering the mixed raw material powder of 1. to obtain a sintered body.
JP60283661A 1985-12-17 1985-12-17 Method for producing highly insulating and highly alumina-based porcelain composition Expired - Lifetime JPH0717459B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60283661A JPH0717459B2 (en) 1985-12-17 1985-12-17 Method for producing highly insulating and highly alumina-based porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60283661A JPH0717459B2 (en) 1985-12-17 1985-12-17 Method for producing highly insulating and highly alumina-based porcelain composition

Publications (2)

Publication Number Publication Date
JPS62143866A JPS62143866A (en) 1987-06-27
JPH0717459B2 true JPH0717459B2 (en) 1995-03-01

Family

ID=17668420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60283661A Expired - Lifetime JPH0717459B2 (en) 1985-12-17 1985-12-17 Method for producing highly insulating and highly alumina-based porcelain composition

Country Status (1)

Country Link
JP (1) JPH0717459B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2800030B2 (en) * 1989-07-07 1998-09-21 株式会社村田製作所 Manufacturing method of ceramic substrate
JP4530380B2 (en) 1999-11-29 2010-08-25 日本特殊陶業株式会社 Spark plug insulator and spark plug including the same
JP4854420B2 (en) * 2005-09-28 2012-01-18 京セラ株式会社 Alumina sintered body, processing apparatus member and processing apparatus using the same, sample processing method, and method for producing alumina sintered body
CN110028308B (en) * 2019-05-22 2021-09-10 厦门博赢技术开发有限公司克拉玛依分公司 Ceramic heat-insulating composite material and preparation method and application thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5696777A (en) * 1979-12-29 1981-08-05 Matsushita Electric Ind Co Ltd Alumina ceramic composition for electronic parts
JPS60151271A (en) * 1984-01-14 1985-08-09 トヨタ自動車株式会社 Manufacture of ceramic product

Also Published As

Publication number Publication date
JPS62143866A (en) 1987-06-27

Similar Documents

Publication Publication Date Title
US3558959A (en) Silicon carbide semi-conductor igniter structure
KR101185256B1 (en) Ceramic with improved high temperature electrical properties for use as a spark plug insulator
JPH0717436B2 (en) Method for producing highly insulating and highly alumina-based porcelain composition
KR20170041212A (en) Corona ignition device with improved seal
JPH0712969B2 (en) Alumina porcelain and spark plug
CN106981824B (en) Spark plug
KR20020019922A (en) Glass cermic material, method for producing the same and spark plug containing such a glass cremic material
JPH0717459B2 (en) Method for producing highly insulating and highly alumina-based porcelain composition
JPS62187156A (en) Manufacture of high insulation high alumina ceramic composition
US6320317B1 (en) Glass seal resistor composition and resistor spark plugs
JP6440602B2 (en) Spark plug
US5852340A (en) Low-voltage type igniter plug having a semiconductor for use in jet and other internal combustion engines and a method of making the semiconductor
US4120829A (en) Electrically semi-conducting ceramic body
US2515790A (en) Ceramic dielectric material and method of making
CA1080590A (en) Electrically semi-conducting ceramic body
JP4995863B2 (en) Insulator for spark plug, method for manufacturing the same, and spark plug using the same
US3376367A (en) Method of manufacturing a spark gap semiconductor
US2988662A (en) Spark plug with improved auxiliary spark gap
JPS62171958A (en) Manufacture of high insulation high alumina ceramic composition
JP2564842B2 (en) Alumina porcelain composition
JPH09315849A (en) Aluminous sintered compact or insulator for spark plug and its production
JPH09227221A (en) Alumina porcelain and insulator for spark plug
US2975145A (en) Semi-conductive ceramic composition
JPS62100474A (en) Manufacture of high insulation high alumina base ceramic composition
JP2017201576A (en) Spark plug

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term