JPS62187156A - Manufacture of high insulation high alumina ceramic composition - Google Patents

Manufacture of high insulation high alumina ceramic composition

Info

Publication number
JPS62187156A
JPS62187156A JP61028144A JP2814486A JPS62187156A JP S62187156 A JPS62187156 A JP S62187156A JP 61028144 A JP61028144 A JP 61028144A JP 2814486 A JP2814486 A JP 2814486A JP S62187156 A JPS62187156 A JP S62187156A
Authority
JP
Japan
Prior art keywords
withstand voltage
alumina
grain boundaries
voltage
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61028144A
Other languages
Japanese (ja)
Inventor
学 山田
一郎 吉田
馨 葛岡
渥美 守弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP61028144A priority Critical patent/JPS62187156A/en
Publication of JPS62187156A publication Critical patent/JPS62187156A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高絶縁性を有する高アルミナ質磁器組成物の製
造方法に関するものであり、特に自動車等の内燃機関の
点火栓用絶縁碍子等として用いられて有効なものである
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing a high alumina porcelain composition having high insulation properties, particularly as an insulator for spark plugs of internal combustion engines such as automobiles. It is used and effective.

〔従来の技術〕[Conventional technology]

高アルミナ質磁器は、耐熱性を含めて化学的に極めて安
定であり、機械的強度が優れているため内燃機関用点火
栓等の電気絶縁材として広く実用化されている。
High alumina porcelain is chemically extremely stable, including heat resistance, and has excellent mechanical strength, so it is widely used as an electrical insulating material for internal combustion engine spark plugs and the like.

一方、近年内燃機関の高性能化のために、点火栓に対す
る要求電圧は益々高まる傾向にあり、点火栓の絶縁碍子
に対する耐電圧特性の向上が要求されてきている。
On the other hand, in recent years, as the performance of internal combustion engines has improved, the voltage required for spark plugs has tended to increase more and more, and there has been a demand for improvements in the withstand voltage characteristics of the insulators of spark plugs.

従来より高アルミナ質磁器の製造方法としては、アルミ
ナ粉末にS iOz −MgO−CaO混合系の金属酸
化物を焼結助剤として加え焼結する方法が知られている
が、このものでは焼結後に焼結助剤が低融点の粒界を形
成し、耐電圧を低下させることが知られている。この耐
電圧低下の原因であるガラス質粒界をなくせば耐電圧が
向上できるのであるが、アルミナ粉末のみでは焼結がお
こりに(く、非常に焼結温度を高める必要があり、価格
上界の原因となるとともに高温では異常粒成長を起こし
てしまい焼結体の強度が大幅に低下してしまうという問
題があった。
Conventionally, a method for manufacturing high alumina porcelain has been known, in which SiOz-MgO-CaO mixed metal oxide is added to alumina powder as a sintering aid and sintered. It is known that the sintering aid later forms grain boundaries with a low melting point and lowers the withstand voltage. The withstand voltage can be improved by eliminating the vitreous grain boundaries, which are the cause of this decrease in withstand voltage, but alumina powder alone does not cause sintering, and requires a very high sintering temperature, which increases the price limit. In addition to causing abnormal grain growth at high temperatures, there is a problem in that the strength of the sintered body is significantly reduced.

そこで本発明は、耐電圧低下の原因となる粒界に着目し
、少量の焼結助剤を用い、アルミナの結晶成長を適度に
促すことによって、耐電圧低下の原因となる粒界の割合
を低下させるとともに、粒界自体を高融点でかつ緻密に
形成させることにより耐電圧を向上させることを目的と
する。
Therefore, the present invention focuses on the grain boundaries that cause a decrease in withstand voltage, and uses a small amount of sintering aid to appropriately promote alumina crystal growth, thereby reducing the proportion of grain boundaries that cause a decrease in withstand voltage. The purpose is to improve the withstand voltage by lowering the grain boundaries and forming the grain boundaries themselves to have a high melting point and be dense.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するために本発明は、 第1の必須添加成分としてMgOを0.2〜2.5wt
%、第2の必須添加成分としてy2o、、La20:I
 、ZrO□より選ばれた1つ以上を合計でl〜10w
t%を含み、残部がA 1 ! 03からなる原料混合
物を、所望の形状に成形し、真空または水素雰囲気中で
1650〜1800℃の温度で焼結するという高絶縁性
高アルミナ質磁器組成物の製造方法を採用するものであ
る。
In order to achieve the above object, the present invention includes 0.2 to 2.5 wt of MgO as the first essential additive component.
%, y2o as the second essential additional component, La20:I
, one or more selected from ZrO□ in total from l to 10w
t%, and the remainder is A 1! A method for manufacturing a highly insulating, high alumina ceramic composition is adopted in which a raw material mixture consisting of 03 is formed into a desired shape and sintered at a temperature of 1650 to 1800° C. in a vacuum or hydrogen atmosphere.

〔作用〕[Effect]

上記手段によれば、第1および第2の必須添加成分が緻
密で高融点の粒界の形成を助けるとともに、真空または
水素雰囲気中、前記温度範囲で焼結することによりアル
ミナの粒成長が適度に促進され、粒界の発達が抑制され
る。
According to the above means, the first and second essential additive components help form dense, high-melting-point grain boundaries, and the grain growth of alumina is moderate by sintering in the temperature range in vacuum or hydrogen atmosphere. is promoted, and the development of grain boundaries is suppressed.

〔実施例〕〔Example〕

以下本発明をその実施例に基づいて詳細に説明する。 The present invention will be described in detail below based on examples thereof.

純度99.9%以上で平均粒径0.25.crmのA 
l 203、第1の必須添加成分として純度99.9%
以上で平均粒径0.1μmのMgO1さらに第2の必須
添加成分Xとして純度99.9%以上で平均粒径0.5
μmのYz 03 、L a 203 、Z r Oz
を用い、それぞれ第1表に示す重量割合で12種の原料
粉末を調合した。
Purity 99.9% or higher, average particle size 0.25. A of crm
l 203, 99.9% purity as the first essential additive component
With the above, MgO1 with an average particle size of 0.1 μm and a second essential additive component X with a purity of 99.9% or more and an average particle size of 0.5
Yz 03 , L a 203 , Z r Oz in μm
Twelve kinds of raw material powders were prepared using the following methods, each having a weight ratio shown in Table 1.

次に混合した原料粉末に適宜の量の水を加えてアルミナ
ボールを用い湿式で混合粉砕を行った。
Next, an appropriate amount of water was added to the mixed raw material powders, and the mixture was wet mixed and pulverized using an alumina ball.

粉砕後造粒のためポリビニルアルコール(PVA)の1
3wt%水溶液を原料粉末に対し10wt%添加し再混
合した後乾燥を行った。次にこの乾燥造粒原料をさらに
粗粉砕し、60メソシユの目の粗さのふるいにかけるこ
とにより、粒径のそろった原料粉末を作製した。
1 of polyvinyl alcohol (PVA) for granulation after grinding.
A 3 wt % aqueous solution was added to the raw material powder in an amount of 10 wt %, mixed again, and then dried. Next, this dry granulated raw material was further coarsely pulverized and passed through a sieve with a mesh size of 60 mesh to produce a raw material powder with a uniform particle size.

この原料粉末を金型に入れ面圧500 kg/cnlで
加圧して形成した後、耐圧アルミナ製容器中に粒径0.
1〜0.5能のA&ZOffの粉末を分散させた上へ、
成形体を載置し、1000℃で約2時間仮焼した後、真
空炉または水素雰囲気炉中で100”C/ h rの昇
温率で1750℃まで昇温、1750℃で2時間保持し
、その後100℃/ h rで降温することによりサン
プル1〜12を作製した。
This raw material powder was put into a mold and pressed at a surface pressure of 500 kg/cnl, and then placed in a pressure-resistant alumina container with a particle size of 0.
On top of which A & Z Off powder of 1 to 0.5 capacity is dispersed,
The compact was placed and calcined at 1000°C for about 2 hours, then heated to 1750°C at a rate of 100”C/hr in a vacuum furnace or hydrogen atmosphere furnace, and held at 1750°C for 2 hours. Then, samples 1 to 12 were prepared by lowering the temperature at 100°C/hr.

これらの焼結体10の嵩比重は3.95〜3.98で、
例えばサンプル11kL1では相対密度(嵩比重の真比
重に占める割合)は99.5%で、焼結体中の気孔がほ
とんど含まれておらず、また第2図の組織を示す模式図
の如く、アルミナ結晶粒へ〇粒成長がすすみ、その平均
粒径が20μmと適度に大きくなっているために粒界B
の割合が小さくなっていることが確かめられた。
The bulk specific gravity of these sintered bodies 10 is 3.95 to 3.98,
For example, in sample 11kL1, the relative density (ratio of bulk specific gravity to true specific gravity) is 99.5%, almost no pores are included in the sintered body, and as shown in the schematic diagram of the structure in Figure 2, The grain boundary B
It was confirmed that the proportion of

次にこれらの焼結体10の耐電圧、耐チャネリング性、
曲げ強度を測定した結果について説明する。耐電圧の測
定は、この焼結体10をダイヤモンド砥粒等を用いた研
磨盤を用いて厚さ1.0±0゜95mmに研磨加工し、
第3図に示す耐電圧測定装置にて実測した。すなわち焼
結体10の一面に電極11を4電ペースト等により貼り
付はシリコーンオイル12中に浸漬する。そして焼結体
10の電極11の対向する面に、先端をニードル状に尖
らせたプローブ13を固定し、この状態で電極IIとプ
ローブ13との間に定電圧電源14から発振器15とコ
イル16とにより発生させた高電圧を、高電圧プローブ
17とオシロスコープ1日でモニターしながら30cy
cle/秒の周波数で毎秒Q、 zk vづつ電圧を上
昇させ試料の破壊した電圧をその焼結体試料の耐電圧と
した。
Next, the withstand voltage, channeling resistance, and
The results of measuring bending strength will be explained. The withstand voltage was measured by polishing the sintered body 10 to a thickness of 1.0±0°95 mm using a polishing disk using diamond abrasive grains, etc.
The voltage resistance was actually measured using the withstand voltage measuring device shown in FIG. That is, the electrode 11 is attached to one surface of the sintered body 10 using a 4-electrode paste or the like by immersing it in silicone oil 12. Then, a probe 13 having a needle-shaped tip is fixed to the surface facing the electrode 11 of the sintered body 10, and in this state, between the electrode II and the probe 13, a constant voltage power source 14 is connected to an oscillator 15 and a coil 16. The high voltage generated by
The voltage was increased by Q, zk v every second at a frequency of cle/second, and the voltage at which the sample broke down was taken as the withstand voltage of the sintered sample.

次に耐チャネリング性の測定は、焼結体10を直径3.
0 ”−0,05van、長さ8.0±0.05mmの
形状に研磨加工し、第4図に示す耐チャネリング性評価
装置を用いて評価した。すなわち焼結体10の両端に間
隔が2IImとなるよう金属キャップ19を接続し、密
封容器20中で4気圧の加圧下で高電圧発生器21で発
生させた30Hzの周波数の高電圧(15kv)を印加
し、その焼結体10表面上を沿面放電させた時の、放電
前と40時間放電した後の焼結体10の重量変化(消耗
減量)を測定し、時間当りの消耗減量を耐チャネリング
性とした。なお耐チャネリング性とは、焼結体の表面を
伝わって放電する沿面放電によりアルミナがけずられる
現象をいい、その実用的意味については後述する。− さらにこの焼結体10の曲げ強度の測定は、この焼結体
を3ml×4■lzX40mmの形状に加工し、スパン
;30鶴で3点曲げ強度を測る方法で行った。第1表に
おいて従来品は平均粒径2.5μmのAlt 0395
%とS i Ot  M g OCa O系助剤5wt
%からなる原料粉末を電気炉中でlOO℃/hrの昇温
率で1650℃まで昇温、1650℃で2時間保持、そ
の後100℃/ h rで降温する事により作製したも
のであり、表から明らかなごとく、それに比較して本発
明のものは、耐電圧で60%以上、強度で26%以上、
耐チャネリング性で10分の1という性能の向上が達成
された。(サンプルN11l、3) 従来品においては助剤(SiOz  Mg0−Cab)
が低融点であり、また粒界B中に気孔が多く存在するた
めに耐電圧が低いと考えられる。
Next, the channeling resistance was measured using a sintered body 10 with a diameter of 3 mm.
0"-0.05van, length 8.0±0.05mm, and evaluated using the channeling resistance evaluation device shown in FIG. The metal cap 19 is connected so that When subjected to creeping discharge, the weight change (loss of consumption) of the sintered body 10 before discharge and after 40 hours of discharge was measured, and the weight loss per unit of time was defined as channeling resistance.What is channeling resistance? , refers to a phenomenon in which alumina is damaged by creeping discharge that travels along the surface of a sintered body, and its practical meaning will be described later. It was processed into a shape of 3ml x 4cm x 40mm, and the three-point bending strength was measured using a span of 30 cranes.In Table 1, the conventional product was Alt 0395 with an average particle size of 2.5μm.
% and S i Ot M g OCa O-based auxiliary agent 5wt
% raw material powder was heated to 1650°C at a heating rate of 100°C/hr in an electric furnace, held at 1650°C for 2 hours, and then lowered at a rate of 100°C/hr. As is clear from the above, in comparison, the product of the present invention has a withstand voltage of 60% or more, a strength of 26% or more,
A 1/10 improvement in performance in channeling resistance was achieved. (Sample N11l, 3) In the conventional product, auxiliary agent (SiOz Mg0-Cab)
It is thought that the withstand voltage is low because it has a low melting point and there are many pores in the grain boundaries B.

このA1.0.lの耐電圧を向上させるには、この助剤
をなくせば良いのであるが、助剤がないと低温では焼結
せず、高温で焼結すると異常粒成長がおきる。そこで、
本発明は微粒のAl1tOxに少量の粒成長抑制剤とし
て第1の必須添加成分であるMgO1及び粒界を高融点
化できる添加剤としての第2の必須添加成分XであるY
203 、La。
This A1.0. In order to improve the withstand voltage of L, it is possible to eliminate this auxiliary agent, but without the auxiliary agent, sintering will not occur at low temperatures, and abnormal grain growth will occur when sintering at high temperatures. Therefore,
In the present invention, a small amount of MgO1, which is the first essential additive component as a grain growth inhibitor, and Y, which is the second essential additive component X, as an additive that can increase the melting point of grain boundaries, are added to fine grains of Al1tOx.
203, La.

Oz 、Z r Q□より選ばれた1つ以上を添加し真
空または水素雰囲気の高温で焼結するものである。
One or more selected from Oz, Zr, Q□ is added and sintered at high temperature in vacuum or hydrogen atmosphere.

本方法では粒径は、通常大気中で焼結する時よりも雰囲
気の影言で粒成長速度が大きくなるという効果と、適度
にそれを抑制するMgOの効果とアルミナ粒界の高抵抗
化をはかる添加剤の効果を抑制する事により、第2図に
示す組織の様に適度に結晶粒径が大きくなり、粒界の空
孔が減少し緻密化したアルミナ焼結体になる。このアル
ミナ焼結体は粒界が高融点で空孔、ガラス層などの耐電
圧を低下させる要因を少なくできる組織であるため高い
耐電圧性能を有する。
In this method, the grain size is determined by the effect that the grain growth rate is higher due to the influence of the atmosphere than when sintering in the normal atmosphere, the effect of MgO to moderately suppress it, and the high resistance of alumina grain boundaries. By suppressing the effect of the additive, the crystal grain size becomes appropriately large, as shown in the structure shown in FIG. 2, and the pores at the grain boundaries are reduced, resulting in a dense alumina sintered body. This alumina sintered body has a structure in which grain boundaries have a high melting point and can reduce factors such as pores and glass layers that lower the withstand voltage, so it has high withstand voltage performance.

次にこの緻密なアルミナ焼結体のアルミナ平均粒子径と
耐電圧、曲げ強度の関係を調べた結果を第5図に示す。
Next, the relationship between the average alumina particle size, withstand voltage, and bending strength of this dense alumina sintered body was investigated, and the results are shown in FIG.

図から明らかでように平均粒径が大きくなると耐電圧が
向上し、曲げ強度が低下する事がわかった。例えば内燃
機関の点火栓用碍子は耐電圧のみならず機械的強度も要
求され、その曲げ強度は30kg/−以上必要である。
As is clear from the figure, as the average particle size increases, the withstand voltage improves and the bending strength decreases. For example, an insulator for a spark plug for an internal combustion engine is required not only to withstand voltage but also to have mechanical strength, and its bending strength must be 30 kg/- or more.

従ってアルミナ結晶粒の粒径を50μm以下とする必要
がある。しかしながら粒径を3μm以下にすると相対密
度が低く、粒界に空孔が多く存在するようになり、耐電
圧が低下する。粒径を3〜50μmに制御する事により
、高耐電圧、高強度なアルミナ焼結体が得られた。この
粒径は、粒成長抑制効果のあるMgOの添加量および焼
結温度によって変化するが、焼成温度は1650℃以下
では焼結できず、1800℃以上では異常粒成長がおこ
る。
Therefore, the grain size of the alumina crystal grains needs to be 50 μm or less. However, when the grain size is 3 μm or less, the relative density is low and many pores are present at the grain boundaries, resulting in a decrease in withstand voltage. By controlling the particle size to 3 to 50 μm, an alumina sintered body with high voltage resistance and high strength was obtained. This grain size changes depending on the amount of MgO added, which has the effect of suppressing grain growth, and the sintering temperature, but sintering cannot be performed at a firing temperature of 1,650°C or lower, and abnormal grain growth occurs at a firing temperature of 1,800°C or higher.

一方、MgOがQ、 2w t%以下では異常粒成長を
抑制できず、粒径は50μ以上となり、2.5 w t
%以上では、焼結密度が上がらない。すなわち、粒径が
3μm以下で空孔が多く生成し、耐電圧があがらない。
On the other hand, when MgO is Q, 2wt% or less, abnormal grain growth cannot be suppressed, and the grain size becomes 50μ or more, which is 2.5wt%.
% or more, the sintered density does not increase. That is, when the particle size is 3 μm or less, many pores are generated and the withstand voltage does not increase.

第2図の必須添加成分Xが1wt%以下では高融点粒界
が生成されず高耐電圧が得られず、10wt%以上では
焼結密度が上がらない。すなわち粒径の大きなもの(5
0μm以上)と小さいもの(3μm以下)が不均一に存
在し、同時に空孔が多く生成し、耐電圧があがらない。
If the essential additive component X in FIG. 2 is less than 1 wt%, high melting point grain boundaries will not be generated and high withstand voltage will not be obtained, and if it is more than 10 wt%, the sintered density will not increase. In other words, those with a large particle size (5
0 μm or more) and small pores (3 μm or less) exist unevenly, and at the same time, many pores are generated and the withstand voltage does not increase.

従って主成分であるAl□03、第1.第2の必須添加
成分の重量割合は、第1図の三成分系組成図の斜線部で
示される領域が好適である。
Therefore, the main component Al□03, the first. The weight ratio of the second essential additive component is preferably in the region shown by the shaded area in the ternary composition diagram of FIG.

次に第2の必須添加成分であるYt Ch 、 l、a
toj、zro□の働きについて、さらに詳細に説明す
る。YZ O−+ 、Lag Chは、各々AlzOx
と反応して主に粒界にY3 A 1 s OIt、(融
点1970℃)、LaAl01(融点2110℃)を形
成する。ZrO,はAl2O2との反応性が弱いため粒
界とその近傍にZr0zの相を析出する。
Next, the second essential additive component Yt Ch , l, a
The functions of toj and zro□ will be explained in more detail. YZ O−+ and Lag Ch are each AlzOx
Y3 A 1 s OIt (melting point 1970°C) and LaAl01 (melting point 2110°C) are formed mainly at grain boundaries. Since ZrO has weak reactivity with Al2O2, a Zr0z phase is precipitated at and near grain boundaries.

(ZrOzは融点2675℃) この中でY、ozとAl1202の反応生成物は比較的
低温で生成するため低温でAl1zOsの焼結を進める
事ができる。MgOとY2O,を添加した組成を真空ま
たは水素雰囲気中1650〜1750℃で焼成した時高
い耐電圧が得られる理由としては、この焼成温度域で’
i’z 02とMgOの各々の焼結促進と焼結抑制の効
果を有効に利用して非常に緻密な組織が得られるためで
あると考えられる。(サンプル隘3.阻11) Lag oj 、Zr0zのうち1種およびMgOのA
1.O,への添加(磁4. l!15)はこれらとAl
tosの反応がyz O,に比べ若干高い温度で始まる
ため1650〜1750℃の焼成では若干嵩比重が小さ
くなる。しかし耐電圧は主に粒界に存在するZ r O
z 、L a A 103の融点が十分に高く、また嵩
比重も従来品よりも大きいので十分高い値が得られる。
(ZrOz has a melting point of 2675° C.) Among these, the reaction product of Y, oz and Al1202 is generated at a relatively low temperature, so it is possible to proceed with the sintering of Al1zOs at a low temperature. The reason why a high withstand voltage is obtained when a composition containing MgO and Y2O is fired at 1650 to 1750°C in a vacuum or hydrogen atmosphere is that in this firing temperature range,
This is thought to be because a very dense structure can be obtained by effectively utilizing the sintering promotion and sintering suppressing effects of i'z 02 and MgO, respectively. (Sample 3.11) One of Lag oj, Zr0z and A of MgO
1. The addition of O, (magnetic 4.l!15) to these and Al
Since the reaction of tos starts at a slightly higher temperature than that of yzO, the bulk specific gravity becomes slightly smaller when fired at 1650 to 1750°C. However, the withstand voltage is mainly due to ZrO present at grain boundaries.
Since the melting point of z, L a A 103 is sufficiently high, and the bulk specific gravity is also larger than that of conventional products, a sufficiently high value can be obtained.

ZrO□の添加量が10wt%より多くなるとZrO,
自体は高温でイオン導電性となるため耐電圧が低下する
。しかし、ZrO,をl 9wt%以下の適量添加する
事により強度向上と耐電圧向上においてとくに強度向上
に効果のある事がわかる。(サンプル1lkL5.Na
7)また、YZ 0.。
When the amount of ZrO□ added exceeds 10 wt%, ZrO,
Since the material itself becomes ionic conductive at high temperatures, its withstand voltage decreases. However, it can be seen that adding ZrO in an appropriate amount of 19 wt % or less is particularly effective in improving strength and withstanding voltage. (Sample 1lkL5.Na
7) Also, YZ 0. .

L at Os +  Z r Ozとも添加量を増加
させるとAl1o*への同容限界を超えて、焼結過程で
、助剤の未反応部が残り焼成体が不均一となるため焼結
助剤の働きをしなくなる。助剤添加量としてはl 9w
t%以下が適当でこれをこえると前記のように焼結組織
が不均一質となり十分な耐電圧が得られない。
If the addition amount of L at Os + Z r Oz is increased, the same capacity limit as Al1o* will be exceeded, and in the sintering process, an unreacted part of the auxiliary will remain and the fired product will become non-uniform. It stops working. The amount of additive added is l 9w.
A suitable value is t% or less; if it exceeds this, the sintered structure becomes non-uniform as described above and a sufficient withstand voltage cannot be obtained.

助剤がYt Owl 、  L az C1+ 、 Z
 r Otをあわせて19wt%以下であれば(サンプ
ル1lh6〜8)従来例に比較し十分高い耐電圧が得ら
れる。
Auxiliary agents are Yt Owl, L az C1+, Z
If rOt is 19wt% or less (samples 1lh6 to 8), a sufficiently high withstand voltage can be obtained compared to the conventional example.

これらの結果より、十分高い耐電圧を得るためには、ア
ルミナ材自体の緻密組織化と粒界とその付近を高融点材
質にすれば良い事がわかる。
These results show that in order to obtain a sufficiently high withstand voltage, the alumina material itself should have a dense structure and the grain boundaries and their vicinity should be made of a material with a high melting point.

一般にアルミナ質磁器の強度については通常、焼結時の
結晶粒の大きさが重要で強度を向上させるためには微細
な粒子により緻密な組織を形成するように製造法が検討
されている。強度を必要とされる材料は結合エネルギー
が大きいため非常に高温か、多量の助剤を添加して微粒
から成る緻密な焼結体を得るよう試みられている。
Generally, the size of crystal grains during sintering is important for the strength of alumina porcelain, and in order to improve the strength, manufacturing methods are being considered to form a dense structure using fine particles. Since materials that require strength have a large bonding energy, attempts have been made to obtain dense sintered bodies made of fine particles by heating them at very high temperatures or by adding large amounts of auxiliary agents.

本案の方法によれば、助剤として高融点材粒界を形成す
るY2O3、La2O3、ZrO,の量を適当に選定す
る事により平均粒子径の制御が可能となるため従来より
も耐電圧、曲げ強度の優れたアルミナ質磁器組成物を得
る事ができる。
According to the proposed method, the average particle diameter can be controlled by appropriately selecting the amount of Y2O3, La2O3, and ZrO, which form high-melting point material grain boundaries as auxiliary agents. An alumina porcelain composition with excellent strength can be obtained.

次に本発明の高アルミナ質磁器が有効に用いられる内燃
機関用点火栓について第6図に基づいて詳述する。沿面
放電型の点火栓30は、エンジンのシリンダ内に置かれ
高電圧を発生するコイルからの印加電圧によって中心電
極31と接地電極32の間で、絶縁碍子34の沿面放電
部34aに沿って放電を行わせる事によってガソリンと
空気の混合気を着火させる働きをもつもので、絶縁碍子
上を沿面放電させるため、カーボンが燃えて、くすぶり
がなくなり、着火性が向上するという効果を有する点火
栓である。燃料が通常空燃比よりも小さい場合や他の着
火しにくい燃料では中心電極31と接地電極32の間に
通常より高電圧を印加しないと良好な着火を生じさせる
ことができない。
Next, a spark plug for an internal combustion engine in which the high alumina porcelain of the present invention is effectively used will be described in detail with reference to FIG. The creeping discharge type ignition plug 30 generates a discharge along the creeping discharge portion 34a of the insulator 34 between the center electrode 31 and the ground electrode 32 by the applied voltage from a coil that is placed in the cylinder of the engine and generates high voltage. This spark plug has the function of igniting the mixture of gasoline and air by causing a creeping discharge on the insulator, which burns the carbon, eliminates smoldering, and improves ignitability. be. When the fuel has a lower air-fuel ratio than the normal air-fuel ratio or other fuels that are difficult to ignite, good ignition cannot be achieved unless a voltage higher than normal is applied between the center electrode 31 and the ground electrode 32.

しかるに電圧がある大きさ以上になると絶縁碍子34の
一部が破壊されピンホールが生ずる。この状態になると
接地電極32と中心電極3I間に生ずるべき放電がハウ
ジング33と中心電極31間で生じてしまい失火を起こ
す。
However, when the voltage exceeds a certain level, a portion of the insulator 34 is destroyed and a pinhole is created. In this state, a discharge that should have occurred between the ground electrode 32 and the center electrode 3I occurs between the housing 33 and the center electrode 31, causing a misfire.

従来の絶縁碍子材であるAl2O,にSiO□−MgO
−CaO系のフラックスを添加した材料は表面にボイド
と呼ばれる凹部や、粒界に気孔が多く存在する。これに
高電圧が印加されると、これらの欠陥に電位が集中しそ
の電位勾配によって粒界に存在する動きやすいイオンに
よる電流が流れ、この電流による発熱がさらに可動イオ
ン数を増加させる事によりさらに電流が流れて発熱する
というサイクルを繰り返す。この発熱量がアルミナの分
解エネルギーよりも過大となった時に破壊が生ずる。
Conventional insulator materials Al2O, SiO□-MgO
A material to which -CaO-based flux is added has many recesses called voids on the surface and many pores at grain boundaries. When a high voltage is applied to these defects, the potential concentrates on these defects, and the potential gradient causes a current to flow due to the easily mobile ions existing at the grain boundaries.The heat generated by this current further increases the number of mobile ions, which further increases the number of mobile ions. The cycle of current flowing and heat generation repeats. Destruction occurs when this calorific value exceeds the decomposition energy of alumina.

本発明者等は破壊が最初粒界にあるガラス成分から始ま
る事を見出し、本発明に至ったもので、粒界をより高融
点の材料とし、緻密にさせ、粒径を大きくする事により
耐電圧を向上させる事ができる。
The inventors of the present invention discovered that fracture initially begins with the glass component at the grain boundaries, which led to the present invention. Voltage can be improved.

また、上記のような沿面放電型点火栓の場合には、絶縁
碍子34のチャネリング性が問題になっており、従来の
磁器では低融点の助材として用いられたSing −M
gO−CaOが放電により、溶融、蒸発し、大きな溝が
生成するため火花放電が溝中で生じガソリン着火性が悪
くなる。これに対しても本発明によれば、粒界が高融点
で緻密に形成できるため溝の生成が少なく、着火性が低
下しないという効果もある。
In addition, in the case of the above-mentioned creeping discharge type spark plug, the channeling properties of the insulator 34 are a problem, and Sing-M, which is used as a low melting point auxiliary material in conventional porcelain,
gO--CaO is melted and evaporated due to the discharge, and large grooves are formed, so that spark discharge occurs in the grooves and the gasoline ignitability deteriorates. On the other hand, according to the present invention, the grain boundaries can be formed densely with a high melting point, so there are few grooves formed and the ignitability does not deteriorate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の高アルミナ!磁器の原料組成割合の領
域を示す三成分系組成図、第2図は前記高アルミナ質磁
器の組織を示す拡大模式図、第3図9第4図は耐電圧及
び耐チャネリング性の測定装置を示す模式図、第5図は
平均粒径と耐電圧、曲げ強度との関係を示す特性図、第
6図は本発明の高アルミナ質磁器が有効に用いられる内
燃機関用点火栓の構造を示す部分破断面図である。
Figure 1 shows the high alumina of the present invention! Figure 2 is an enlarged schematic diagram showing the structure of the high alumina porcelain, Figure 3 is a diagram showing the composition ratio of raw materials for porcelain, and Figure 4 is a diagram showing a measuring device for voltage resistance and channeling resistance. Fig. 5 is a characteristic diagram showing the relationship between average particle size, withstand voltage, and bending strength, and Fig. 6 shows the structure of a spark plug for internal combustion engines in which the high alumina porcelain of the present invention is effectively used. It is a partially broken sectional view.

Claims (1)

【特許請求の範囲】[Claims]  第1の必須添加成分としてMgOを0.2〜2.5w
t%、第2の必須添加成分としてY_2O_3、La_
2O_3、ZrO_2より選ばれた1つ以上を合計で1
〜10wt%を含み、残部がAl_2O_3からなる原
料混合物を、所望の形状に成形し、真空または水素雰囲
気中で1650〜1800℃の温度で焼結することを特
徴とする高絶縁性高アルミナ質磁器組成物の製造方法。
0.2-2.5w of MgO as the first essential additive component
t%, Y_2O_3, La_ as the second essential additive component
2O_3, one or more selected from ZrO_2 in total 1
~10wt%, with the remainder being Al_2O_3, is formed into a desired shape and sintered at a temperature of 1650 to 1800°C in a vacuum or hydrogen atmosphere.Highly insulating high alumina porcelain Method for producing the composition.
JP61028144A 1986-02-12 1986-02-12 Manufacture of high insulation high alumina ceramic composition Pending JPS62187156A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61028144A JPS62187156A (en) 1986-02-12 1986-02-12 Manufacture of high insulation high alumina ceramic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61028144A JPS62187156A (en) 1986-02-12 1986-02-12 Manufacture of high insulation high alumina ceramic composition

Publications (1)

Publication Number Publication Date
JPS62187156A true JPS62187156A (en) 1987-08-15

Family

ID=12240566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61028144A Pending JPS62187156A (en) 1986-02-12 1986-02-12 Manufacture of high insulation high alumina ceramic composition

Country Status (1)

Country Link
JP (1) JPS62187156A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01201068A (en) * 1988-02-05 1989-08-14 Ulvac Corp Ceramic insulating material
JP2001048637A (en) * 1999-08-04 2001-02-20 Ngk Spark Plug Co Ltd Alumina-base sintered body and its production
JP2001335360A (en) * 2000-05-24 2001-12-04 Ngk Spark Plug Co Ltd Insulating material for spark plug and spark plug
CN1316695C (en) * 2002-12-31 2007-05-16 中国建筑材料科学研究院 Ceramic light-gathering cavity material, ceramic light-gathering cavity and making method thereof
JP2007269524A (en) * 2006-03-30 2007-10-18 Kyocera Corp Insulating ceramic, ceramic heater using the same and heater integrated element
US7598661B2 (en) * 2006-06-23 2009-10-06 Federal-Mogul World Wide, Inc Spark plug
JP2010077012A (en) * 2008-09-01 2010-04-08 Ngk Insulators Ltd Aluminum oxide sintered compact and method for producing the same
JP2014220136A (en) * 2013-05-09 2014-11-20 日本特殊陶業株式会社 Insulator for spark plug and spark plug

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01201068A (en) * 1988-02-05 1989-08-14 Ulvac Corp Ceramic insulating material
JP2001048637A (en) * 1999-08-04 2001-02-20 Ngk Spark Plug Co Ltd Alumina-base sintered body and its production
JP2001335360A (en) * 2000-05-24 2001-12-04 Ngk Spark Plug Co Ltd Insulating material for spark plug and spark plug
JP4620217B2 (en) * 2000-05-24 2011-01-26 日本特殊陶業株式会社 Spark plug insulator and spark plug
CN1316695C (en) * 2002-12-31 2007-05-16 中国建筑材料科学研究院 Ceramic light-gathering cavity material, ceramic light-gathering cavity and making method thereof
JP2007269524A (en) * 2006-03-30 2007-10-18 Kyocera Corp Insulating ceramic, ceramic heater using the same and heater integrated element
US7598661B2 (en) * 2006-06-23 2009-10-06 Federal-Mogul World Wide, Inc Spark plug
JP2010077012A (en) * 2008-09-01 2010-04-08 Ngk Insulators Ltd Aluminum oxide sintered compact and method for producing the same
TWI447088B (en) * 2008-09-01 2014-08-01 Ngk Insulators Ltd Alumina sintered body and its preparation method
JP2014220136A (en) * 2013-05-09 2014-11-20 日本特殊陶業株式会社 Insulator for spark plug and spark plug

Similar Documents

Publication Publication Date Title
US3558959A (en) Silicon carbide semi-conductor igniter structure
JP2007510617A (en) Ceramic with advanced high temperature electrical properties for use as a spark plug insulator
JP2001335360A (en) Insulating material for spark plug and spark plug
KR20120087907A (en) Spark plug
JPS62132765A (en) Manufacture of high insulation high alumina base ceramic composition
JPH0712969B2 (en) Alumina porcelain and spark plug
JPS62187156A (en) Manufacture of high insulation high alumina ceramic composition
CN106981824B (en) Spark plug
US3037140A (en) Electrically semi-conducting ceramic body
JPS631262B2 (en)
JP4748693B2 (en) High voltage endurance alumina-based sintered body and method for producing the same
JP2017062879A (en) Spark plug
JP3734293B2 (en) Resistor plug
JPH0717459B2 (en) Method for producing highly insulating and highly alumina-based porcelain composition
CA1080590A (en) Electrically semi-conducting ceramic body
US5028346A (en) Semi-conducting ceramic
JP2564842B2 (en) Alumina porcelain composition
JPH09315849A (en) Aluminous sintered compact or insulator for spark plug and its production
JPS62171958A (en) Manufacture of high insulation high alumina ceramic composition
JP4859079B2 (en) Spark plug insulator and spark plug using the same
JPH04118883A (en) Ceramic sintered body and speak plug
JPH1053459A (en) Alumina porcelain composition
US5082806A (en) Semi-conducting ceramic
JPS62100474A (en) Manufacture of high insulation high alumina base ceramic composition
JP7390501B2 (en) Insulators and spark plugs