JPH04349387A - Conductive heating element - Google Patents

Conductive heating element

Info

Publication number
JPH04349387A
JPH04349387A JP17119691A JP17119691A JPH04349387A JP H04349387 A JPH04349387 A JP H04349387A JP 17119691 A JP17119691 A JP 17119691A JP 17119691 A JP17119691 A JP 17119691A JP H04349387 A JPH04349387 A JP H04349387A
Authority
JP
Japan
Prior art keywords
heating element
ceramic
temperature
conductive
conductive heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17119691A
Other languages
Japanese (ja)
Inventor
Koji Sakawaki
坂脇 弘二
Hirokatsu Kanda
博克 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining Co Ltd
Original Assignee
Mitsui Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining Co Ltd filed Critical Mitsui Mining Co Ltd
Priority to JP17119691A priority Critical patent/JPH04349387A/en
Publication of JPH04349387A publication Critical patent/JPH04349387A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide conductive heating element for a ceramic heater having uniform conductivity by adding thin piece graphite which has a high aspect ratio as conductive material to a ceramic, etc., of an originally electric insulator and molding and then, sintering it. CONSTITUTION:Thin piece graphite with a grain size of 1-100mum, a thickness of 1mum or less and an aspect ratio of 10-5000 is used as conductivity endowing material, 0.5-10 parts by weight of the graphite are uniformly dispersed in 100 parts by weight of matrix made up of ceramic, glass or a mixture of glass and ceramic. Insulation sheets are piled up on and under that green sheet 1, and an insulation paste layer 3 is formed at the side of the green sheet 1 and they are degreased at a temperature of 400 deg.C or less, and thereafter, sintered at a temperature of 450-1500 deg.C. A direct current-flow type conductive heating element with high conductivity, speedily answering to a current flow, good in temperature-up characteristic, uniformly heating by applying a low voltage and good in heat resistance.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、産業用、民生用の広い
分野にわたって利用できる発熱体への直接通電により発
熱が可能なセラミックヒーター用導電性発熱体に関する
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductive heating element for a ceramic heater, which can be used in a wide range of industrial and consumer fields and can generate heat by direct energization to the heating element.

【0002】0002

【従来の技術】現在使用されているセラミックヒーター
の大部分は、セラミックスよりなるマトリックス中に埋
め込んだ金属抵抗発熱体に電気を通じ、その抵抗発熱に
より熱エネルギーを得るものである。このようなセラミ
ックヒーターとしては、アルミナを主成分とするマトリ
ックス中にタングステン、モリブデンの金属抵抗発熱体
を埋設したもの、コージェライトを主成分とするマトリ
ックス中にパラジウム・白金等の金属抵抗発熱体を埋設
したもの、ホウケイ酸ガラスとアルミナを主成分とする
マトリックス中に銅からなる金属抵抗発熱体を埋設した
もの(特開昭62−20678号公報)等が知られてい
る。
BACKGROUND OF THE INVENTION Most of the ceramic heaters currently in use conduct electricity through a metal resistance heating element embedded in a ceramic matrix, and obtain thermal energy by the resistance heating. Such ceramic heaters include those in which a metal resistance heating element such as tungsten or molybdenum is embedded in a matrix whose main component is alumina, or one in which a metal resistance heating element such as palladium or platinum is embedded in a matrix whose main component is cordierite. There are known methods in which a metal resistance heating element made of copper is embedded in a matrix mainly composed of borosilicate glass and alumina (Japanese Patent Application Laid-Open No. 62-20678).

【0003】しかしながら、このようなセラミックヒー
ターにおいては、発熱温度分布を均一にするため、線条
体である発熱抵抗体を波状、渦巻状、蛇行状等の形状に
加工し、均一に配置する等の工夫が成されているが、発
熱抵抗体近傍のみが強く発熱し、発熱温度分布を均一に
するには未だ十分ではない、厚いマトリックスを介して
の熱伝導であるため発熱の応答が遅い、セラミックヒー
ター製造時に高温焼成や焼成雰囲気調整が必要等の課題
が残されていた。このため、最近、耐熱性セラミックに
炭素等の導電性材料を添加して、全体にわたって均一な
発熱が可能な発熱体とする試みがなされている。ところ
が、従来導電性材料として使用されている天然黒鉛や人
造黒鉛を機械的に粉砕したり、カーボンブラックを黒鉛
化処理して得られる黒鉛粉等の炭素材料はセラミック原
料への均一分散が難しく、得られる材料の導電性に大き
なばらつきが生じたり成形体全体の導電性が不均一にな
る等大きな問題があった。
However, in such ceramic heaters, in order to make the heat generation temperature distribution uniform, the heat generating resistor, which is a filament, is processed into a shape such as wavy, spiral, meandering, etc., and arranged uniformly. However, only the area near the heating resistor generates strong heat, and it is still not sufficient to make the heat generation temperature distribution uniform.The response of heat generation is slow due to heat conduction through a thick matrix. Issues such as the need for high-temperature firing and the need to adjust the firing atmosphere during the manufacture of ceramic heaters remained. For this reason, attempts have recently been made to add conductive materials such as carbon to heat-resistant ceramics to create a heating element that can generate heat uniformly throughout. However, carbon materials such as graphite powder, which are obtained by mechanically crushing natural graphite or artificial graphite or graphitizing carbon black, which are conventionally used as conductive materials, are difficult to uniformly disperse in ceramic raw materials. There were major problems such as large variations in the conductivity of the resulting material and non-uniform conductivity of the entire molded body.

【0004】このような問題を解決し、均一な導電性を
有するセラミック材料を得るため、様々な手法が試みら
れており、例えば、予め炭素と無機材料とを混練り、加
熱処理後、解砕し、これを前処理原料として、再び混練
り、成形及び燒結する方法(特開昭59−217668
号公報)、また炭素材のセラミック成形体中への充填を
緊密にするため、セラミックを燒結しながら窒化する方
法(特開昭60−19505号公報)が開示されている
。しかしながら、これらの方法によっても、なおセラミ
ックヒーター製造工程が複雑化したり、また特定のセラ
ミック材料に限られる等の問題があった。
[0004] In order to solve these problems and obtain ceramic materials with uniform conductivity, various methods have been tried. A method of kneading, molding and sintering this as a pre-treated raw material (Japanese Unexamined Patent Publication No. 59-217668)
Japanese Patent Application Laid-open No. 19505/1983 discloses a method of nitriding ceramic while sintering it in order to tightly fill a ceramic molded body with a carbon material. However, these methods still have problems such as complicating the ceramic heater manufacturing process and being limited to specific ceramic materials.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記の問題
点を解決し、直接通電発熱が可能で、通電応答が速く、
耐熱衝撃性にも優れ、発熱が均一であるという特性を有
し、しかも製造方法が容易な発熱体、及びこの発熱体と
一体化した電気絶縁層を有するセラミックヒーター用導
電性発熱体を提供することを目的とする。
[Problems to be Solved by the Invention] The present invention solves the above problems, allows direct energization to generate heat, has a fast energization response, and
To provide a heating element that has excellent thermal shock resistance, uniform heat generation, and is easy to manufacture, and a conductive heating element for a ceramic heater having an electrical insulating layer integrated with the heating element. The purpose is to

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記問題
点を解決すべく鋭意検討の結果、本来電気絶縁体である
セラミック等に導電性材料として、高いアスペクト比を
有する薄片状黒鉛を添加し、成形後燒結させることによ
り、均一な導電性を持つセラミック性形体が得られるこ
とを見いだし、本発明を完成するに至った。
[Means for Solving the Problems] As a result of intensive studies to solve the above-mentioned problems, the present inventors have developed flaky graphite with a high aspect ratio as a conductive material for ceramics, etc., which are originally electrical insulators. It was discovered that a ceramic shaped body with uniform conductivity could be obtained by adding it and sintering it after molding, leading to the completion of the present invention.

【0007】すなわち、本発明は、導電性付与材料とし
て、粒子径が1〜100μm、厚さが1μm以下、アス
ペクト比が10〜5,000の薄片状黒鉛を用い、該黒
鉛0.5〜10重量部を、セラミック、ガラス、または
ガラスとセラミックとの混合物よりなるマトリックス1
00重量部中に均一に分散させたことを特徴とする導電
性発熱体、あるいはこの導電性発熱体面上に、導電性発
熱体と一体化した前記マトリックス材料よりなる絶縁層
を有することを特徴とする導電性発熱体である。
That is, in the present invention, flaky graphite having a particle diameter of 1 to 100 μm, a thickness of 1 μm or less, and an aspect ratio of 10 to 5,000 is used as the conductivity imparting material. The weight part is a matrix made of ceramic, glass, or a mixture of glass and ceramic.
00 parts by weight, or having an insulating layer made of the matrix material integrated with the conductive heating element on the surface of the conductive heating element. It is a conductive heating element.

【0008】本発明の導電性発熱体のマトリックスを構
成するセラミックの例としては、アルミナ、シリカアル
ミナ、コージェライト、ムライト、ペタライト、チタニ
ア、ジルコニア等の酸化物系セラミック、窒化珪素、炭
化珪素等の非酸化物系セラミックあるいはこれらの混合
物等を挙げることができ、これらのセラミックの中から
輻射特性や耐熱衝撃性等、製品に望まれる特性や機能に
応じて適当なセラミックを選ぶことができる。また、ガ
ラスの例としては、ホウケイ酸ガラス、アルミノケイ酸
ガラス、ソーダ石灰ガラス等のケイ酸塩ガラス、オキシ
ナイトライドガラス等を挙げることができ、これらのガ
ラスの中から、ヒーターとして用いられる使用温度(概
略50〜500℃)で軟化し形状変形を起こさない組成
を有するガラスを選定して用いればよい。またこれらの
原料は、熱衝撃による破壊を防ぐ意味において、熱膨脹
係数が40×10−7(1/℃)程度以下のものが望ま
しい。
Examples of ceramics constituting the matrix of the conductive heating element of the present invention include oxide ceramics such as alumina, silica alumina, cordierite, mullite, petalite, titania, and zirconia, silicon nitride, silicon carbide, etc. Examples include non-oxide ceramics and mixtures thereof, and an appropriate ceramic can be selected from among these ceramics depending on the properties and functions desired for the product, such as radiation characteristics and thermal shock resistance. Examples of glass include borosilicate glass, aluminosilicate glass, silicate glass such as soda lime glass, and oxynitride glass. A glass having a composition that softens at a temperature of approximately 50 to 500° C. and does not cause shape deformation may be selected and used. In order to prevent destruction due to thermal shock, these raw materials preferably have a coefficient of thermal expansion of approximately 40×10 −7 (1/° C.) or less.

【0009】セラミック、ガラスとも、それぞれ単独で
用いることができるが、セラミックにガラスを添加する
ことにより燒結温度を下げることができるので製造工程
上有益である。その反面ガラス成分の添加により、得ら
れる導電性発熱体の耐熱温度は低下するので、使用目的
や製造条件を勘案して適宜ガラスの添加割合を定めれば
よい。
Both ceramic and glass can be used alone, but adding glass to ceramic can lower the sintering temperature, which is beneficial in terms of the manufacturing process. On the other hand, since the addition of the glass component lowers the heat resistance temperature of the resulting conductive heating element, the proportion of glass to be added may be appropriately determined in consideration of the purpose of use and manufacturing conditions.

【0010】本発明の導電性発熱体において、導電性付
与材料として添加される薄片状黒鉛は、粒子径が1〜1
00μm,厚さが1μm以下でアスペクト比が10〜5
,000と非常に特殊な形状を有する黒鉛である。さら
に好ましくは、粒子径が1〜50μm、厚さが1μm以
下でアスペクト比が200〜3,000であり、平均粒
子径としては、10〜30μm程度である。ここで、薄
片状黒鉛粉末の粒子径が100μmよりも大きいと、薄
片状黒鉛粉末を原料マトリックス中に均一に分散させる
ことが困難になり、また1μmよりも小さいと導電経路
を形成しにくくなる、あるいは導電経路を形成させるた
めに薄片状黒鉛粉末の使用量を増加せざるを得ず、緻密
な燒結体が得にくくなる。このような薄片状黒鉛は、例
えば天然黒鉛を酸処理、熱処理等により膨張させて得ら
れる膨脹黒鉛を、水系溶媒中に分散させておき超音波を
付与して破砕する等の方法によって製造することができ
る(特開平2−153810号公報等)。この薄片状黒
鉛は、天然黒鉛等の原料黒鉛がその結晶形態を保持した
まま、層間が剥離したような状態で粉末化されたもので
、前記のような特種な形状と高い結晶性を示すものであ
る。この高い結晶性を有するため、本発明で使用する薄
片状黒鉛粉末は、酸化雰囲気においても酸化されにくい
という特徴を有する。例えば、中国産天然黒鉛から得ら
れた薄片状黒鉛は、六方晶系の黒鉛の発達した、格子定
数0.67nmで結晶子の厚み70nm、結晶の広がり
100nm程度の高い結晶性を有する薄片状黒鉛である
。因に上市されている黒鉛粉末は種々あるが、例えば、
粒子径1〜30μm(15μm以下95%)、2〜70
μm(44μm以下95%)、2〜100μm(75μ
m以下95%)等の粒径区分で、粒子径の大きさとほぼ
同等ないし1/2程度の厚みを有した、あたかもブロッ
ク状の形状をなしている。このように形状がブロック状
の黒鉛粉を用いた場合は、少ない使用量で導電経路を形
成させることが困難であり、導電経路を形成させるため
に使用量を増せば、緻密な燒結体が得られにくい等の問
題がある。一方、本発明で使用する薄片状黒鉛粉末は、
厚みが非常に薄いため、隣接する黒鉛粉末が重なり易く
少ない使用量で導電経路を形成することができる。
In the conductive heating element of the present invention, the flaky graphite added as the conductivity imparting material has a particle size of 1 to 1
00μm, thickness is 1μm or less, aspect ratio is 10-5
,000, which has a very special shape. More preferably, the particle size is 1 to 50 μm, the thickness is 1 μm or less, and the aspect ratio is 200 to 3,000, and the average particle size is about 10 to 30 μm. Here, if the particle size of the flaky graphite powder is larger than 100 μm, it will be difficult to uniformly disperse the flaky graphite powder in the raw material matrix, and if it is smaller than 1 μm, it will be difficult to form a conductive path. Alternatively, in order to form conductive paths, the amount of flaky graphite powder used must be increased, making it difficult to obtain a dense sintered body. Such flaky graphite can be produced, for example, by dispersing expanded graphite obtained by expanding natural graphite through acid treatment, heat treatment, etc. in an aqueous solvent and crushing it by applying ultrasonic waves. (Japanese Unexamined Patent Publication No. 2-153810, etc.). This flaky graphite is made by powdering raw material graphite such as natural graphite in a state where the layers are exfoliated while retaining its crystalline form, and exhibits the special shape and high crystallinity described above. It is. Because of this high crystallinity, the flaky graphite powder used in the present invention has the characteristic that it is difficult to be oxidized even in an oxidizing atmosphere. For example, flaky graphite obtained from natural graphite produced in China is a highly crystalline flaky graphite with developed hexagonal graphite, a lattice constant of 0.67 nm, a crystallite thickness of 70 nm, and a crystal spread of about 100 nm. It is. There are various graphite powders on the market, for example,
Particle size 1-30 μm (95% below 15 μm), 2-70
μm (44μm or less 95%), 2-100μm (75μm or less)
It has a block-like shape with a thickness that is approximately equal to or approximately 1/2 the size of the particle size. When using block-shaped graphite powder like this, it is difficult to form a conductive path with a small amount of use, and if the amount used is increased to form a conductive path, a dense sintered body can be obtained. There are problems such as difficulty in being exposed. On the other hand, the flaky graphite powder used in the present invention is
Since the thickness is very thin, adjacent graphite powders tend to overlap, and a conductive path can be formed with a small amount of usage.

【0011】本発明の導電性発熱体は、例えば次のよう
な方法によって製造することができる。まず、予め粉砕
し、粒度調整したセラミック粉末、ガラス粉末、または
セラミックとガラスとの混合物(以下、これらを総称し
て、原料マトリックス粉末という。)100重量部に、
導電性材料として前記の形状を有する薄片状黒鉛粉末を
0.5〜10重量部、好ましくは1〜5重量部添加し、
ニーダーやヘンシェルミキサーあるいはダブルコーン型
やV型のブレンダー等を通常の粉体混合機を用いて混合
する。ここで、薄片状黒鉛粉末は混合過程で長さ方向に
ついて幾分こわれて短くなるが、そのほとんどは1〜1
00μm以内の範囲内であり、また厚さ方向については
ほとんどこわれない。
The conductive heating element of the present invention can be manufactured, for example, by the following method. First, 100 parts by weight of a ceramic powder, glass powder, or a mixture of ceramic and glass (hereinafter collectively referred to as raw material matrix powder) that has been crushed in advance and whose particle size has been adjusted is added to
Adding 0.5 to 10 parts by weight, preferably 1 to 5 parts by weight of flaky graphite powder having the above shape as a conductive material,
Mix using a conventional powder mixer such as a kneader, Henschel mixer, double cone type or V type blender. Here, the flaky graphite powder is somewhat broken and shortened in the length direction during the mixing process, but most of it is 1 to 1
The thickness is within 0.00 μm, and there is almost no breakage in the thickness direction.

【0012】使用する原料マトリックス粉末は薄片状黒
鉛粉末との混合容易性から粒径が100μm程度以下の
ものが好ましいが、特に限定されるものではなく、用い
る混合、成形方法及び求める発熱体の特性により適当な
粒度のものを使用すればよい。薄片状黒鉛の添加量が0
.5重量部未満では導電経路が不連続化する等により導
電性付与効果が小さく、また、10重量部を超えると原
料マトリックス粉末粒子間の接点が減少する等により、
発熱体の緻密性が損なわれるので好ましくない。
The raw material matrix powder to be used preferably has a particle size of about 100 μm or less in view of ease of mixing with the flaky graphite powder, but is not particularly limited, and depends on the mixing and molding methods used and the characteristics of the heating element desired. Depending on the particle size, it is sufficient to use one with an appropriate particle size. Added amount of flaky graphite is 0
.. If it is less than 5 parts by weight, the conductive path becomes discontinuous and the effect of imparting conductivity is small, and if it exceeds 10 parts by weight, the contact points between the raw material matrix powder particles are reduced, etc.
This is not preferable because the compactness of the heating element is impaired.

【0013】本発明の導電性発熱体の原料として使用す
る薄片状黒鉛粉末は、形状が高アルペクト比の薄片状で
あるために、原料マトリックス粉末と混合する際に、黒
鉛粉末だけが分離したり、偏在する等の現象がなく、均
一に分散できるため、成形体や燒結体中でも均一な分散
状態が維持される。また、必要により、混合時に成形助
剤として水や有機系あるいは無機系のバインダーを添加
してもよい。
The flaky graphite powder used as a raw material for the conductive heating element of the present invention has a flaky shape with a high aspect ratio, so when mixed with the raw material matrix powder, only the graphite powder may separate. , uneven distribution, etc., and can be uniformly dispersed, so that a uniformly dispersed state is maintained even in molded bodies and sintered bodies. If necessary, water or an organic or inorganic binder may be added as a forming aid during mixing.

【0014】次に、原料マトリックス粉末と薄片状黒鉛
粉末との混合物を、一軸加圧成形や冷間等方圧縮成形等
の粉末加圧成形方法や、ドクターブレード法やカレンダ
ーロール法等により作製したグリーンシートを積層し成
形する方法、スリップキャスト成形方法、押し出し成形
方法等の成形方法を用いて所望の形状、寸法に成形する
Next, a mixture of raw material matrix powder and flaky graphite powder was produced by a powder pressure molding method such as uniaxial pressure molding or cold isostatic compression molding, a doctor blade method, a calendar roll method, etc. It is molded into a desired shape and size using a molding method such as a method in which green sheets are laminated and molded, a slip cast molding method, an extrusion molding method, or the like.

【0015】例えば、粉末加圧成形方法を用いる場合は
、成形圧は、2.9〜98.1MPa、特に9.8〜4
9.0MPa程度が好ましい。また、グリーンシートを
積層し成形する方法を用いる場合は、薄片状黒鉛粉末と
原料マトリックス粉末の混合物と有機ビヒクルとを混練
りし、ドクターブレード法やカレンダーロール法等によ
り原料の薄片状黒鉛粉末が原料マトリックス粉末中に均
一に分散したグリーンシートを導電性発熱体の発熱層用
に作製し、製品仕様に応じて前記グリーンシートを複数
枚積層し、加熱圧着によりラミネートする等の方法で成
形する。
For example, when using a powder pressure molding method, the molding pressure is 2.9 to 98.1 MPa, particularly 9.8 to 4 MPa.
Approximately 9.0 MPa is preferable. In addition, when using a method of laminating and forming green sheets, a mixture of flaky graphite powder and raw material matrix powder is kneaded with an organic vehicle, and the raw material flaky graphite powder is mixed using a doctor blade method, a calendar roll method, etc. A green sheet uniformly dispersed in a raw material matrix powder is prepared as a heat generating layer of a conductive heat generating element, and a plurality of green sheets are laminated according to the product specifications and formed by laminating by heat compression bonding or the like.

【0016】なお、成形方法により成形の過程で薄片状
黒鉛粉末は幾分こわれるが、この段階でこわれても薄片
状黒鉛で構築される導電経路が不連続化することはない
ので実質上、問題とならない。このことは次に説明する
燒結工程においても同様である。
[0016] Although the flaky graphite powder may be broken to some extent during the molding process due to the forming method, even if it is broken at this stage, the conductive path constructed by the flaky graphite will not become discontinuous, so it is practically no problem. Not. This also applies to the sintering process described below.

【0017】成形後、必要に応じ切削、加工等により形
状や寸法を整えたのち、400℃以下の温度で脱脂した
のち450〜1,500℃の温度で燒結する。脱脂温度
や燒結条件は使用したバインダーや原料マトリックス粉
末の種類、成形体の形状等に応じて適宜設定すればよく
、例えば原料マトリックス粉末がシリカアルミナ系セラ
ミックの場合は、1,100〜1,500℃の温度で0
.5〜5時間、ガラス成分の多い場合は、450〜90
0℃で10分〜1時間とすればよい。また、燒結は不活
性ガス雰囲気で行なうのが好ましいが、原料マトリック
ス中のガラス成分量が50重量%以上になると900℃
以下での燒結が可能となり、混入した薄片状黒鉛の酸化
の恐れがなくなるので空気中での燒結が可能である。 成形体の燒結後(導電性発熱体)の密度は1.85〜2
.20g/cm3 程度でよい。
After molding, the shape and dimensions are adjusted by cutting, processing, etc. as necessary, and then degreased at a temperature of 400°C or less, and then sintered at a temperature of 450 to 1,500°C. The degreasing temperature and sintering conditions may be set appropriately depending on the binder used, the type of raw material matrix powder, the shape of the molded body, etc. For example, when the raw material matrix powder is a silica-alumina ceramic, the 0 at temperature in °C
.. 5 to 5 hours, if there is a lot of glass component, 450 to 90
The heating time may be 10 minutes to 1 hour at 0°C. In addition, it is preferable to perform sintering in an inert gas atmosphere, but if the amount of glass components in the raw material matrix exceeds 50% by weight, sintering is performed at 900°C.
Sintering in air is possible because there is no risk of oxidation of mixed flaky graphite. The density of the molded body after sintering (conductive heating element) is 1.85 to 2.
.. Approximately 20 g/cm3 is sufficient.

【0018】導電性発熱体は通常、電気的絶縁、耐湿性
向上等のため、その表面に絶縁層を形成した形で使用す
る。この絶縁層は燒結して得られた導電性発熱体の表面
にゆう薬焼付や低融点ガラスの焼付け等の手法により形
成することができるが、本発明の導電性発熱体において
は、成形体の燒結時に、その表面を導電性付与材料であ
る薄片状黒鉛を添加していない原料マトリックス粉末と
有機ビヒクル成分で構成される層で被覆し燒結すること
によって発熱体本体と絶縁層が緊密に一体化した絶縁層
付導電性発熱体を得ることができる(以下、このものも
単に導電性発熱体という。)。また、この方法をとるこ
とにより燒結時に、薄片状黒鉛の酸化を防止できる効果
がある。
The conductive heating element is usually used with an insulating layer formed on its surface in order to improve electrical insulation and moisture resistance. This insulating layer can be formed on the surface of the conductive heating element obtained by sintering by a method such as powder baking or low melting point glass baking. At the time of sintering, the heating element body and the insulating layer are tightly integrated by covering the surface with a layer consisting of raw material matrix powder and organic vehicle component without adding flaky graphite, which is a conductive material, and sintering. A conductive heating element with an insulating layer can be obtained (hereinafter, this is also simply referred to as a conductive heating element). Furthermore, this method has the effect of preventing oxidation of flaky graphite during sintering.

【0019】絶縁層の形状は、例えば、薄片状黒鉛粉末
と原料マトリックス粉末の混合物と有機ビヒクルとを混
練りし、ドクターブレード法やカレンダーロール法等に
より薄片状黒鉛粉末が原料マトリックス粉末中に均一に
分散した発熱層用のグリーンシートを製品仕様に応じて
複数枚積層して作製した成形体を、同様の方法により作
製した導電性付与材料である薄片状黒鉛粉末を添加して
いない原料マトリックス粉末と有機ビヒクル成分で構成
される絶縁層用グリーンシートで挟み、これを加熱圧着
によりラミネートし、次いで成形体端部や側面の電極端
子取付け部として使用されない個所に原料マトリックス
粉末と有機ビヒクルからなる絶縁ペースト層をスクリー
ン印刷等の手法を用いて形成させたのち燒結させる方法
で行なうことができる。また、粘度調整した導電性付与
材料である薄片状黒鉛を添加していない原料マトリック
ス粉末のスラリーを調整し、これを予め燒結して得られ
た導電性発熱体あるいは燒結前の成形体に吹きつけたり
、前記スラリー中に導電性発熱体あるいは燒結前の成形
体を浸漬する等の方法を用いて導電性発熱体あるいは燒
結前の成形体にスラリーを付着させて絶縁層を形成させ
、乾燥後燒結する方法等を用いて行なうこともできる。 絶縁層の厚みはヒーターとして用いる場合の使用電圧等
により調整することができるが、例えば100V程度ま
での電圧の場合は、絶縁層厚みとして0.2mm程度で
あれば十分である。
The shape of the insulating layer can be determined, for example, by kneading a mixture of flaky graphite powder and raw material matrix powder with an organic vehicle, and then uniformly distributing the flaky graphite powder into the raw material matrix powder by a doctor blade method, a calendar roll method, etc. A molded body made by laminating multiple green sheets for the heat generating layer dispersed in the green sheet according to the product specifications is used as a raw material matrix powder that does not contain flaky graphite powder, which is a conductivity-imparting material, made by the same method. and an insulating layer green sheet made of an organic vehicle component, and then laminated by heat and pressure bonding, and then an insulating layer made of a raw material matrix powder and an organic vehicle is applied to the ends and sides of the molded body in areas that are not used as electrode terminal attachment parts. This can be done by forming a paste layer using a method such as screen printing and then sintering it. In addition, a slurry of raw material matrix powder without the addition of flaky graphite, which is a conductivity-imparting material whose viscosity has been adjusted, is prepared, and this slurry is sprayed onto a conductive heating element obtained by pre-sintering or a molded object before sintering. Using a method such as dipping the conductive heating element or the molded article before sintering into the slurry, the slurry is applied to the conductive heating element or the molded article before sintering to form an insulating layer, and then sintered after drying. It can also be carried out using a method or the like. The thickness of the insulating layer can be adjusted depending on the voltage used when used as a heater, but for example, in the case of a voltage up to about 100 V, an insulating layer thickness of about 0.2 mm is sufficient.

【0020】本発明の導電性発熱体は、導電性材料であ
る薄片状黒鉛が均一に分散されているため、成形体全体
が均一な導電性を有し、体積抵抗率が10−1〜103
 Ω・cmの範囲にあり、薄片状黒鉛の添加量を変える
ことにより、この範囲内で体積抵抗率を任意に調整する
ことができる。導電性付与材料として薄片状黒鉛粉末を
用いた場合、該黒鉛アスペクト比が大きいので、容積占
有率が小さい割に電流流路を多く形成することができ、
導電性が発現し易い。そのため、少ない添加量で高い導
電性を得ることができるので、原料マトリックスの特徴
を損なうことがないという利点がある。
[0020] In the conductive heating element of the present invention, since flaky graphite, which is a conductive material, is uniformly dispersed, the entire molded body has uniform conductivity and has a volume resistivity of 10-1 to 103.
The volume resistivity is in the range of Ω·cm, and the volume resistivity can be arbitrarily adjusted within this range by changing the amount of flaky graphite added. When flaky graphite powder is used as the conductivity imparting material, since the graphite aspect ratio is large, a large number of current flow paths can be formed despite the small volume occupancy.
Easily exhibits conductivity. Therefore, high conductivity can be obtained with a small amount of addition, so there is an advantage that the characteristics of the raw material matrix are not impaired.

【0021】また、原料マトリックスより形成された絶
縁層を有する導電性発熱体は、発熱体基材の原料マトリ
ックス粉末成分組成と絶縁層の成分組成が同じであるた
め、ヒーターとして使用時、発熱体本体と絶縁層とが熱
膨張率の違いにより剥離したりすることがなく、また導
電ペーストの焼付けや金属溶射等により電極装着をする
ことによって、簡単にヒーターとして使用することがで
きるため、従来のヒーター製造方法のように発熱体の周
囲に例えばアルミナ等の絶縁層を設けるという工程が不
要であり、ヒーター製造方法の簡略化のみならず、ヒー
ターの小型化、軽量化等の要求に対応できる。
[0021] Furthermore, since the conductive heating element having the insulating layer formed from the raw material matrix has the same composition of the raw material matrix powder of the heating element base material and the component composition of the insulating layer, when used as a heater, the heating element The main body and the insulating layer do not separate due to differences in thermal expansion coefficients, and can be easily used as a heater by attaching electrodes by baking conductive paste or metal spraying. Unlike the heater manufacturing method, there is no need for the step of providing an insulating layer such as alumina around the heating element, and the method not only simplifies the heater manufacturing method, but also meets the demands for miniaturization and weight reduction of the heater.

【0022】この発熱体には、電圧を負荷することによ
り容易に通電でき、成形体全体が均一に発熱する。しか
も、形状、寸法及び体積抵抗率を任意に選定し、また、
通電量を調節することにより、発熱温度を任意にコント
ロールすることが可能である。すなわち、数V〜100
V程度の電圧負荷で、通電開始から10分以内に室温か
ら600℃程度までの発熱が可能で、安定した発熱状態
を維持することができる。特に10−1〜10Ω・cm
の低体積抵抗のものは、数V〜40V程度の低電圧で発
熱が可能であり、小型の低電力型の発熱素子として利用
することができ、また、低電圧のため、感電の危険性が
小さく、安全上も有利である。この導電性発熱体は、導
電ペーストの焼付けや金属溶射等により電極装着をする
ことによって、簡単にヒーター素子とすることができる
[0022] This heating element can be easily energized by applying a voltage, and the entire molded body generates heat uniformly. Moreover, the shape, dimensions and volume resistivity can be selected arbitrarily, and
By adjusting the amount of electricity, it is possible to arbitrarily control the heat generation temperature. That is, several V~100
With a voltage load of about V, heat can be generated from room temperature to about 600° C. within 10 minutes from the start of electricity supply, and a stable heat generation state can be maintained. Especially 10-1~10Ω・cm
Those with low volume resistance can generate heat at a low voltage of a few V to 40 V, and can be used as a small, low-power heating element. Also, because of the low voltage, there is no risk of electric shock. It is small and has an advantage in terms of safety. This conductive heating element can be easily made into a heater element by attaching electrodes to it by baking a conductive paste, metal spraying, or the like.

【0023】本発明の導電性発熱体は、暖房用、調理用
、乾燥用あるいは燃料気化器用等の発熱部材として有用
なものである。
The conductive heating element of the present invention is useful as a heating member for heating, cooking, drying, fuel vaporizers, and the like.

【0024】なお、本発明の導電性発熱体は、前述した
ように、特定の薄片状黒鉛粉末を用いることを特徴とす
るが、該発熱体中に、薄片状黒鉛粉末の当初の形状がど
の程度保持されているかは、必ずしも明確ではない。し
かし、該薄片状黒鉛粉末を用いることによって初めて達
成される優れた導電特性を、黒鉛含有量との関係におい
て計測することによって知ることが可能である。
As mentioned above, the conductive heating element of the present invention is characterized by using a specific flaky graphite powder. It is not necessarily clear to what extent this is maintained. However, it is possible to know the excellent conductive properties achieved for the first time by using the flaky graphite powder by measuring the relationship with the graphite content.

【0025】[0025]

【実施例】以下、実施例により本発明をさらに具体的に
説明する。
[Examples] The present invention will be explained in more detail with reference to Examples below.

【0026】原料マトリックス粉末として、セラミック
マトリックスを用いた例を実施例1〜5、比較例1〜2
に、ガラスあるいはガラスとセラミックとの混合物マト
リックスを用いた例を実施例6〜16、比較例3〜7に
示す。
Examples 1 to 5 and Comparative Examples 1 to 2 use ceramic matrix as the raw material matrix powder.
Examples 6 to 16 and Comparative Examples 3 to 7 show examples using glass or a mixture matrix of glass and ceramic.

【0027】なお、実施例1〜16、比較例3〜7で用
いた薄片状黒鉛粉末は次の要領で作製したものである。
The flaky graphite powder used in Examples 1 to 16 and Comparative Examples 3 to 7 was produced in the following manner.

【0028】中国産天然鱗片状黒鉛粉末を、硫酸と硝酸
の混酸(重量比で、硫酸:硝酸=11:1)で処理して
黒鉛層間化合物とし、水洗、乾燥後これを窒素ガス雰囲
気下、800℃に急熱し、30分間保持して膨脹黒鉛粉
末を得た。次いでこの膨脹黒鉛粉末を水に分散させ、周
波数50Hzの超音波を作用させて粉砕し、薄片状黒鉛
粉末を得た。
Natural flaky graphite powder produced in China was treated with a mixed acid of sulfuric acid and nitric acid (sulfuric acid: nitric acid = 11:1 by weight) to form a graphite intercalation compound, washed with water, dried, and then treated in a nitrogen gas atmosphere. The mixture was rapidly heated to 800°C and maintained for 30 minutes to obtain expanded graphite powder. Next, this expanded graphite powder was dispersed in water and pulverized by applying ultrasonic waves at a frequency of 50 Hz to obtain flaky graphite powder.

【0029】(実施例1)250μm以下に粒度調整し
たペタライトN−10(西村陶業製)100gに粒径1
0〜50μm(平均粒径20μm)、厚さ約0.1μm
、アスペクト比100〜500の薄片状黒鉛粉末2.5
gを添加し、ニーダーにて5分間攪拌混合した。得られ
た混合物の50gを48mmφの円筒形型枠にて4.9
MPaの圧力で加圧成形し、予備成形体を得た。この予
備成形体を電気炉中で、窒素雰囲気下に、室温から1,
300℃までを毎分3℃の割合で昇温し、さらに1,3
00℃で1時間焼成したのち、毎分3℃の速度で500
℃まで降温した。さらに室温まで放冷して得られた導電
性発熱体の密度は、1.9g/cm3 で、十分燒結さ
れていた。この発熱体から25×38×4.5mmの大
きさの直方体の形の試料を切出し、長さ方向端面に燒結
型Agペーストを塗り、150℃で乾燥し電極取出し面
を形成させた。この試料の四端子法測定による体積抵抗
率は1.3Ω・cmであった。また、これと同一の試料
に室温下で、12V及び18Vの電圧を負荷させること
によって、それぞれ2.7A及び4.6Aの電流で通電
したところ、約5分及び約2分でそれぞれの試料全体が
ほぼ400℃及び500℃まで昇温し、通電を続けるこ
とで以後安定した状態で同温度に保持することができた
(Example 1) Particle size 1 was added to 100 g of Petalite N-10 (manufactured by Nishimura Pottery) whose particle size was adjusted to 250 μm or less.
0 to 50 μm (average particle size 20 μm), thickness approximately 0.1 μm
, flaky graphite powder with an aspect ratio of 100 to 500 2.5
g was added thereto, and the mixture was stirred and mixed in a kneader for 5 minutes. 50g of the obtained mixture was placed in a 48mmφ cylindrical mold for 4.9
Pressure molding was performed at a pressure of MPa to obtain a preform. This preform was heated in an electric furnace under a nitrogen atmosphere from room temperature to
The temperature is raised to 300℃ at a rate of 3℃ per minute, and then
After firing at 00℃ for 1 hour, 500℃ was fired at a rate of 3℃ per minute.
The temperature dropped to ℃. The conductive heating element obtained by further cooling to room temperature had a density of 1.9 g/cm 3 and was sufficiently sintered. A rectangular parallelepiped sample measuring 25 x 38 x 4.5 mm was cut out from this heating element, and a sintered Ag paste was applied to the longitudinal end face and dried at 150°C to form an electrode extraction surface. The volume resistivity of this sample measured by the four-terminal method was 1.3 Ω·cm. In addition, when the same sample was loaded with a voltage of 12V and 18V at room temperature and a current of 2.7A and 4.6A was applied, the entire sample was completely removed in about 5 minutes and about 2 minutes. The temperature rose to approximately 400°C and 500°C, and by continuing to supply electricity, the temperature could be maintained at the same temperature in a stable state.

【0030】(実施例2)薄片状黒鉛粉末の添加量を変
え、成形圧力9.8MPaとした他は実施例1と同様に
操作し、導電性発熱体を作製した。得られた発熱体の体
積抵抗率は次のとおりであった。
(Example 2) A conductive heating element was produced in the same manner as in Example 1, except that the amount of flaky graphite powder added was changed and the molding pressure was 9.8 MPa. The volume resistivity of the heating element obtained was as follows.

【0031】 添加量(g)            1.3  1.
5  1.8  2.0  2.3体積抵抗率(Ω・c
m)    18  7.4  3.0  1.7  
0.9 (実施例3)実施例1と同じ条件で調整した混合原料3
00gを130mm角の角柱形の型枠に充填し、9.8
MPaの圧力で圧縮成形し、130×130×12mm
の予備成形体を得た。この成形体を、実施例1と同一の
条件で焼成し、導電性発熱体を得た。この発熱体の密度
は2.2g/cm3 であり、体積抵抗率は0.8Ω・
cmであった。これを切削、研磨し、113×120×
10mmの試料とし、端子間隔113mmで13Vの電
圧を負荷して約10Aの電流を流したところ、約10分
間で220℃まで昇温し、そのまま安定した状態に維持
することができた。また、この試料の表面温度を、9等
分した領域で測定したところ、9領域ともほぼ220℃
であり、均一な温度分布を示していた。
Addition amount (g) 1.3 1.
5 1.8 2.0 2.3 Volume resistivity (Ω・c
m) 18 7.4 3.0 1.7
0.9 (Example 3) Mixed raw material 3 prepared under the same conditions as Example 1
00g was filled into a 130mm square prismatic mold, and 9.8
Compression molded at a pressure of MPa, 130 x 130 x 12 mm
A preformed body was obtained. This molded body was fired under the same conditions as in Example 1 to obtain a conductive heating element. The density of this heating element is 2.2g/cm3, and the volume resistivity is 0.8Ω・
It was cm. This was cut and polished to a size of 113 x 120 x
When a 10 mm sample was used and a voltage of 13 V was applied with a terminal spacing of 113 mm and a current of about 10 A was applied, the temperature rose to 220° C. in about 10 minutes and was able to maintain a stable state. In addition, when the surface temperature of this sample was measured in 9 equally divided areas, it was found that all 9 areas were approximately 220 degrees Celsius.
, indicating a uniform temperature distribution.

【0032】(実施例4)実施例3と同一の条件で作製
した導電性発熱体の表面に、149μm以下に調整した
フリット(商品名3127、日本フェロ社製)60gと
水40gで調製したゆう薬を吹き付け、乾燥後、窒素雰
囲気下に1,100℃で加熱して焼付けを行なった。得
られた表面被覆処理導電性発熱体は、表面は絶縁されて
いたが、発熱体全体の体積抵抗率及び通電特性は、実施
例3の試料と全く同一であった。
(Example 4) On the surface of the conductive heating element produced under the same conditions as in Example 3, a frit prepared with 60 g of frit (trade name 3127, manufactured by Nippon Ferro Co., Ltd.) adjusted to 149 μm or less and 40 g of water was applied. After spraying the chemical and drying, baking was performed by heating at 1,100° C. in a nitrogen atmosphere. Although the surface of the obtained surface-coated conductive heating element was insulated, the volume resistivity and current conduction characteristics of the heating element as a whole were exactly the same as those of the sample of Example 3.

【0033】この試料をほぼ9等分して、39×39×
10mmの大きさに分割し、各々にAg導電性ペースト
を焼付けて端子を取付け(端子間距離39mm)、二端
子法で体積対抗率を測定したところ、いずれも0.8Ω
・cmであった。さらに、各試料に電圧7Vで10Aの
電流を通電したところ、いずれの試料も約5分で410
℃に達し、その温度で30分以上安定に保持することが
できた。
This sample was divided into approximately 9 equal parts, 39×39×
Divided into 10 mm pieces, baked with Ag conductive paste and attached terminals to each piece (distance between terminals: 39 mm), and measured the volume ratio using the two-terminal method. Both were 0.8 Ω.
・It was cm. Furthermore, when a current of 10 A was applied to each sample at a voltage of 7 V, each sample lost 410 volts in about 5 minutes.
℃ and could be stably maintained at that temperature for more than 30 minutes.

【0034】(実施例5)ペタライトN−10の代わり
にコージェライトN−53(西村陶業製)を使用し、焼
成温度を1,100℃とした他は実施例1と同様に操作
し、導電性発熱体を得た。この発熱体の密度は、1.7
g/cm3 で、体積抵抗率は2.9Ω・cmであった
。 また、実施例1と同じ方法で通電試験を行なった結果は
、12Vの電圧負荷で電流量は1.2A、発熱温度は2
25℃であった。
(Example 5) The same procedure as in Example 1 was conducted except that Cordierite N-53 (manufactured by Nishimura Ceramics) was used instead of Petalite N-10 and the firing temperature was changed to 1,100°C. A sex heating element was obtained. The density of this heating element is 1.7
g/cm3, and the volume resistivity was 2.9Ω·cm. In addition, the results of conducting a current test using the same method as in Example 1 showed that the current amount was 1.2A under a voltage load of 12V, and the heat generation temperature was 2.
The temperature was 25°C.

【0035】(比較例1)薄片状黒鉛粉末の代わりに市
販の黒鉛粉末(粒径1〜5μm、厚さ0.2〜0.6μ
m、アスペクト比2〜8)を使用した他は実施例3と同
条件で操作し、燒結体を得た。120×120×10m
mの試料の体積抵抗率は1.2×103 Ω・cmと大
きく、さらに39×39×10mmに9分割した試料の
体積抵抗率は0.7×103 〜1.5×103 Ω・
cmの間でばらついていた。
(Comparative Example 1) Commercially available graphite powder (particle size 1 to 5 μm, thickness 0.2 to 0.6 μm) was used instead of flaky graphite powder.
A sintered body was obtained by operating under the same conditions as in Example 3, except that a sintered body with an aspect ratio of 2 to 8) was used. 120×120×10m
The volume resistivity of the sample of m is as large as 1.2×103 Ω・cm, and the volume resistivity of the sample divided into 9 pieces of 39×39×10 mm is 0.7×103 to 1.5×103 Ω・
It varied between cm.

【0036】(比較例2)黒鉛粉末の使用量を3.5g
とした他は比較例1と同様に操作し、2個の燒結体を作
製した。各々の体積抵抗率はそれぞれ5.2及び6.7
Ω・cmであり、同一条件で製造してもその性状にばら
つきが生じていることがわかる。
(Comparative Example 2) The amount of graphite powder used was 3.5g.
Two sintered bodies were produced in the same manner as in Comparative Example 1 except for the following. The volume resistivity of each is 5.2 and 6.7 respectively
Ω·cm, and it can be seen that even if they are manufactured under the same conditions, there are variations in their properties.

【0037】(実施例6〜16)原料として、軟化点8
00℃、熱膨張率30×10−7/℃の特性を有し、平
均粒径3μmに粒度調整したホウケイ酸ガラス粉末、平
均粒径20μmに粒度調整した薄片状黒鉛粉末(粒子形
が1〜100μm、厚さが1μm以下、アスペクト比が
10〜5,000、平均粒径20μm)、セラミック粉
末としてそれぞれ平均粒径2μmに粒度調整したアルミ
ナ、ムライト、コージェライト粉末を用いた。また、原
料マトリックス粉末に、バインダーとしてのエチルセル
ロースをα−ターピネオールに溶解させた有機ビヒクル
を加えたものをスリーロールミルを用いて混練りし適度
な粘度としたものを絶縁ペーストとして用いた。
(Examples 6 to 16) As raw materials, softening point 8
00℃, thermal expansion coefficient of 30 x 10-7/℃, borosilicate glass powder whose particle size is adjusted to an average particle size of 3 μm, flaky graphite powder whose particle size is adjusted to an average particle size of 20 μm (particle size is 1 to 100 μm, thickness of 1 μm or less, aspect ratio of 10 to 5,000, average particle size of 20 μm), and alumina, mullite, and cordierite powder each adjusted to an average particle size of 2 μm as ceramic powder. In addition, an insulating paste was used by adding an organic vehicle in which ethyl cellulose as a binder was dissolved in α-terpineol to the raw material matrix powder and kneading the mixture using a three-roll mill to obtain an appropriate viscosity.

【0038】原料マトリックス粉末に、表1に示す配合
比率で薄片状黒鉛粉末をそれぞれ外割で添加して均質な
混合物とした。この混合物100重量部に対して、アク
リル系樹脂16重量部、フタル酸ジブチル3重量部、ト
ルエン22重量部、エタノール48重量部を加えたもの
を、アルミナ製ボールを装填したポリエチレン製ポット
ミルを用いて24時間混合して均質なスラリーを調製し
た。
[0038] To the raw material matrix powder, flaky graphite powder was added in proportions as shown in Table 1 to form a homogeneous mixture. To 100 parts by weight of this mixture, 16 parts by weight of acrylic resin, 3 parts by weight of dibutyl phthalate, 22 parts by weight of toluene, and 48 parts by weight of ethanol were added using a polyethylene pot mill equipped with alumina balls. A homogeneous slurry was prepared by mixing for 24 hours.

【0039】次いで、ドクターブレード法を用いて、前
記スラリーより厚さ0.3mmのグリーンシートを作製
し、発熱層用シートとした。また、同様にして、原料マ
トリックス粉末のみのグリーンシートを作製し、絶縁層
用シートとした。
Next, a green sheet with a thickness of 0.3 mm was produced from the slurry using a doctor blade method, and was used as a sheet for a heat generating layer. Further, in the same manner, a green sheet containing only the raw material matrix powder was produced and used as a sheet for an insulating layer.

【0040】次いで図1の例に示すように、発熱層用シ
ート1を3枚重ねて、その上下に絶縁層用シート2をそ
れぞれ1枚ずつ重ねたものを圧着したのち、100×5
0mmの成形体となし、成形体の側面に絶縁ペースト層
3を形成させたものを大気雰囲気中で図2に示す脱脂・
焼成の温度パターン例を用いて脱脂、燒結させた。
Next, as shown in the example of FIG. 1, three sheets 1 for the heat generating layer are stacked and one sheet 2 for the insulating layer is stacked on top and bottom of the sheets 2, respectively.
A molded product with a thickness of 0 mm and an insulating paste layer 3 formed on the side surface of the molded product was degreased and degreased as shown in FIG. 2 in an air atmosphere.
Degreasing and sintering were performed using an example firing temperature pattern.

【0041】得られたセラミック発熱体端面に電極取出
し面を形成させヒーターとし、50Vの電圧を印加して
通電発熱させた。この時の電気抵抗値及び通電発熱時の
発熱体表面の温度を非接触放射温度計で測定した結果を
表1に示す。
An electrode extraction surface was formed on the end face of the obtained ceramic heating element to serve as a heater, and a voltage of 50 V was applied to generate electricity. Table 1 shows the results of measuring the electrical resistance value at this time and the temperature of the surface of the heating element during energization and heating using a non-contact radiation thermometer.

【0042】また、発熱層用シートのみを用いて同様の
操作で作製した発熱体の特性も、絶縁層を形成させた発
熱体とほぼ同様の特性を示した。
[0042] Furthermore, the properties of a heat generating element produced in the same manner using only the sheet for the heat generating layer were almost the same as those of the heat generating element on which an insulating layer was formed.

【0043】また、絶縁層を形成させた導電性発熱体端
面に電極取出し面を形成させヒーターとし、ヒーターの
両端子間に通電し、所定温度に達し温度が安定した時点
で、絶縁抵抗試験を測定した結果、絶縁抵抗は300℃
で800MΩ以上、500℃で3MΩ以上であり、十分
な絶縁性を有している。
[0043] Also, an electrode extraction surface is formed on the end face of the conductive heating element on which an insulating layer has been formed, and electricity is applied between both terminals of the heater. When a predetermined temperature is reached and the temperature is stabilized, an insulation resistance test is carried out. As a result of measurement, insulation resistance was 300℃
The resistance is 800MΩ or more at temperature, and 3MΩ or more at 500°C, and has sufficient insulation properties.

【0044】[0044]

【表1】 (比較例3〜6)実施例6〜16と同じ原料を用いて、
薄片状黒鉛粉末を表1に示す配合比率でそれぞれ外割り
で添加し、そののちの操作は実施例6〜16と同様の操
作を行なって成形体を作製し、特性を測定した結果を表
1に示す。
[Table 1] (Comparative Examples 3 to 6) Using the same raw materials as Examples 6 to 16,
The flaky graphite powder was added in portions at the compounding ratio shown in Table 1, and the subsequent operations were the same as in Examples 6 to 16 to produce a molded body, and the properties were measured. The results are shown in Table 1. Shown below.

【0045】実施例6〜16では、50Vの電圧印加の
場合、約30秒で一定温度となり、ヒーターとして十分
な特性を示しているのに対して、比較例3、比較例5で
は、導電性物質である薄片状黒鉛粉末の含有量が少ない
ため通電できず、また比較例4、比較例6では、逆に導
電性物質である薄片状黒鉛粉末の含有量が多すぎるため
、緻密な燒結体が得られなかった。
In Examples 6 to 16, when a voltage of 50 V is applied, the temperature reaches a constant temperature in about 30 seconds, and exhibits sufficient characteristics as a heater, whereas in Comparative Examples 3 and 5, the conductive Because the content of flaky graphite powder, which is a conductive substance, is too low in content, electricity cannot be applied.On the other hand, in Comparative Examples 4 and 6, the content of flaky graphite powder, which is a conductive substance, is too high, resulting in a dense sintered body. was not obtained.

【0046】[0046]

【発明の効果】本発明の導電性発熱体は、高結晶性で、
導電性付与効果の大きい薄片状黒鉛粉末が、原料マトリ
ックス粉末中に均一に分散しているので、導電性が大き
く、通電し対する応答が速く昇温特性に優れ、低い電圧
付加により均一に発熱する、耐熱性の優れた直接通電型
の導電性発熱体であって、所望する形状の導電性発熱体
とすることができるため、ヒーターの小型・軽量化等の
要求にも対応でき、各種電熱装置等のヒーター素子とし
て有用な材料である。
[Effect of the invention] The conductive heating element of the present invention has high crystallinity,
The flaky graphite powder, which has a large effect of imparting conductivity, is uniformly dispersed in the raw material matrix powder, so it has high conductivity, has a fast response to electricity, has excellent temperature rise characteristics, and generates heat evenly with low voltage application. , is a direct current type conductive heating element with excellent heat resistance, and can be made into a desired shape, so it can meet the demands for smaller and lighter heaters, and can be used in various electric heating devices. It is a material useful as a heater element such as.

【0047】また、導電性発熱体に絶縁層を形成させる
ことにより、電気絶縁性に加えて薄片状黒鉛粉末の酸化
を防止でき、耐湿性も向上するため、ヒーター寿命の長
命化効果がある。発熱体本体の基材である原料マトリッ
クス粉末成分組成と絶縁層の成分組成が同じであるため
、ヒーターとして使用時、発熱体本体と絶縁層とが熱膨
張率の違いにより剥離したりすることがなく、また導電
ペーストの焼付けや金属溶射等により電極装着をするこ
とで簡単にヒーターとすることができるため、ヒーター
製造方法の簡略化ができる。
Furthermore, by forming an insulating layer on the conductive heating element, in addition to providing electrical insulation, oxidation of the flaky graphite powder can be prevented and moisture resistance is improved, which has the effect of extending the life of the heater. Since the composition of the raw material matrix powder, which is the base material of the heating element body, and the composition of the insulating layer are the same, when used as a heater, the heating element body and the insulation layer may separate due to the difference in coefficient of thermal expansion. Moreover, the heater can be easily manufactured by attaching electrodes by baking a conductive paste or metal spraying, which simplifies the manufacturing method of the heater.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】絶縁層を形成させた発熱体の作製時の、発熱層
用、絶縁層用のグリーンシートの積層及び絶縁ペースト
層の形成例を示す概念図である。
FIG. 1 is a conceptual diagram showing an example of laminating green sheets for a heat generating layer and an insulating layer and forming an insulating paste layer when manufacturing a heat generating element on which an insulating layer is formed.

【図2】グリーンシートを作製し、これを積層、燒結さ
せて発熱体を製造する場合の脱脂・燒結の温度パターン
例を示すグラフである。
FIG. 2 is a graph showing an example of a temperature pattern for degreasing and sintering when a heating element is manufactured by producing green sheets, laminating and sintering them.

【符号の説明】[Explanation of symbols]

1    発熱層用シート 2    絶縁層用シート 3    絶縁ペースト層 1 Sheet for heat generating layer 2 Insulating layer sheet 3 Insulating paste layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  導電性付与材料として、粒子径が1〜
100μm、厚さが1μm以下、アスペクト比が10〜
5,000の薄片状黒鉛を用い、該黒鉛0.5〜10重
量部を、セラミック、ガラス、またはガラスとセラミッ
クとの混合物よりなるマトリックス100重量部中に均
一に分散させたことを特徴とする導電性発熱体。
[Claim 1] The conductivity-imparting material has a particle size of 1 to 1.
100μm, thickness 1μm or less, aspect ratio 10~
5,000 flake graphite is used, and 0.5 to 10 parts by weight of the graphite is uniformly dispersed in 100 parts by weight of a matrix made of ceramic, glass, or a mixture of glass and ceramic. Conductive heating element.
【請求項2】  請求項1に記載の導電性発熱体面上に
、導電性発熱体と一体化した前記マトリックス材料より
なる絶縁層を有することを特徴とする導電性発熱体。
2. A conductive heating element, comprising an insulating layer made of the matrix material and integrated with the conductive heating element, on a surface of the conductive heating element according to claim 1.
JP17119691A 1990-08-03 1991-07-11 Conductive heating element Pending JPH04349387A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17119691A JPH04349387A (en) 1990-08-03 1991-07-11 Conductive heating element

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2-205111 1990-08-03
JP20511190 1990-08-03
JP17119691A JPH04349387A (en) 1990-08-03 1991-07-11 Conductive heating element

Publications (1)

Publication Number Publication Date
JPH04349387A true JPH04349387A (en) 1992-12-03

Family

ID=26493996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17119691A Pending JPH04349387A (en) 1990-08-03 1991-07-11 Conductive heating element

Country Status (1)

Country Link
JP (1) JPH04349387A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011248190A (en) * 2010-05-28 2011-12-08 Konica Minolta Business Technologies Inc Heat generating belt for fixing device and image forming device
JP2016029223A (en) * 2014-07-25 2016-03-03 株式会社アイテック Carbon-containing paper
JP2020161413A (en) * 2019-03-27 2020-10-01 株式会社デンソー Electric resistor, honeycomb structure, and electric heating catalyst device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011248190A (en) * 2010-05-28 2011-12-08 Konica Minolta Business Technologies Inc Heat generating belt for fixing device and image forming device
US8872072B2 (en) 2010-05-28 2014-10-28 Konica Minolta Business Technologies, Inc. Heat-producing element for fixing device and image forming apparatus
JP2016029223A (en) * 2014-07-25 2016-03-03 株式会社アイテック Carbon-containing paper
JP2020161413A (en) * 2019-03-27 2020-10-01 株式会社デンソー Electric resistor, honeycomb structure, and electric heating catalyst device
CN113631266A (en) * 2019-03-27 2021-11-09 株式会社电装 Resistor, honeycomb structure, and electrically heated catalyst device

Similar Documents

Publication Publication Date Title
KR100617342B1 (en) Aluminum nitride sintered body containing carbon fibers and method of manufacturing the same
CN106376107B (en) High-power silicon nitride ceramic heating plate and manufacturing method of high-power silicon nitride ceramic heating plate with soft inside and hard outside
US5086210A (en) Mo5 Si3 C ceramic material and glow plug heating element made of the same
KR102543746B1 (en) Ceramic heating element, manufacturing method and use thereof
JPH04349387A (en) Conductive heating element
US6146550A (en) Electrical resistance heating element for an electric furnace and process for manufacturing such a resistance element
EP0469628A1 (en) Electrically conductive heating element
JP3611345B2 (en) Ceramic and its use
JP2773997B2 (en) Ceramic heater and method of manufacturing the same
JP2537606B2 (en) Ceramic Heater
JP3618369B2 (en) Ceramic heating element
JP3486108B2 (en) Power resistor, method of manufacturing the same, and power resistor
JPH05217663A (en) Heat emitting body of ceramic material and manufacture of the same
JP3488650B2 (en) Power resistor, method of manufacturing the same, and power resistor
JP2001313156A (en) Electrode structure of thin plate for infrared ray heater
JP3885265B2 (en) Manufacturing method of ceramic circuit board
JP2636978B2 (en) Conductive ceramic sintered body and method of manufacturing the same
JP2001319966A (en) Electrostatic chuck
JP2003327419A (en) Discharge body for generating ozone
JPS6259858B2 (en)
JPH04129189A (en) Ceramic heater
JPH06116009A (en) Manufacture of ceramic heating element
JP3425097B2 (en) Resistance element
JPH1140322A (en) Ceramic heater and its manufacture
JPH11106256A (en) Production of barium titanate-based semiconductor material