JPH04240326A - Heat accumulative air conditioner and its operating method - Google Patents

Heat accumulative air conditioner and its operating method

Info

Publication number
JPH04240326A
JPH04240326A JP2268791A JP2268791A JPH04240326A JP H04240326 A JPH04240326 A JP H04240326A JP 2268791 A JP2268791 A JP 2268791A JP 2268791 A JP2268791 A JP 2268791A JP H04240326 A JPH04240326 A JP H04240326A
Authority
JP
Japan
Prior art keywords
heat
heat exchanger
refrigerant
heat storage
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2268791A
Other languages
Japanese (ja)
Inventor
Kensaku Maeda
健作 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2268791A priority Critical patent/JPH04240326A/en
Publication of JPH04240326A publication Critical patent/JPH04240326A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Air-Conditioning Systems (AREA)

Abstract

PURPOSE:To enable a mid-night electrical power of which charge fee is low to be effectively utilized by a method wherein a heat accumulative layer and a heat accumulative heat exchanger are installed in an air conditioner, the heat accumulative heat exchanger is installed at a higher floor than the heat accumulative layer or at a housetop and the heat exchanger is connected to the heat accumulative layer through a circulation path. CONSTITUTION:During a cooling heat accumulative operation, a pump 14 in a refrigerant circuit is stopped, a three-way valve 16 is changed over so as to communicate the passages 42 and 33b to each other. In a water system, a pump 17 is operated. After refrigerant coming out of a compressor 1 is condensed at a heat source side heat exchanger 2, it is stored in a receiver 5. In addition, after its pressure is reduced at an adjusting valve 15, it is heat exchanged with cold water within the heat accumulative heat exchanger 12 to evaporate it so as to cause the gaseous refrigerant to be flowed again into the compressor 1. In turn, the water in the heat accumulative layer 11 mounted at an underground location is heat exchanged with the refrigerant at the heat accumulative heat exchanger 12 and cooled, thereafter it is returned back to the heat accumulative layer 11 again. Then, during a cooling operation, the compressor 1 is stopped, the cold water stored in the heat accumulative layer 11 is used to take out the cold heat with the utilization side heat exchangers 3a to 3d and to perform a cooling operation.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、蓄熱空調装置に係り、
特に圧縮機と熱源側熱交換器と利用側熱交換器とを冷媒
経路で順次接続して冷媒回路を構成した空調装置とその
運転方法に関するものである。
[Industrial Application Field] The present invention relates to a heat storage air conditioner,
In particular, the present invention relates to an air conditioner in which a refrigerant circuit is constructed by sequentially connecting a compressor, a heat source side heat exchanger, and a user side heat exchanger through a refrigerant path, and an operating method thereof.

【0002】0002

【従来の技術】従来、この種の空調装置は、図9のフロ
ー構成図に示されるように構成されている。図9におい
ては建物10の屋上部分に圧縮機1と熱源側熱交換器2
と冷暖房サイクル切換弁4とレシーバ5とアキュームレ
ータ6と調節弁7等をケーシング9内に収納し、室外機
として設置し、建物10内の各階に複数台の利用側熱交
換器3a〜3dと各々の利用側熱交換器に対応して調節
弁8a〜8dを室内機として設置し、各機器を冷媒経路
30〜38で順次接続して冷媒経路を構成していた。
2. Description of the Related Art Conventionally, this type of air conditioner has been constructed as shown in the flow diagram of FIG. In FIG. 9, a compressor 1 and a heat source side heat exchanger 2 are installed on the roof of a building 10.
The heating and cooling cycle switching valve 4, the receiver 5, the accumulator 6, the control valve 7, etc. are housed in a casing 9 and installed as an outdoor unit, and a plurality of user-side heat exchangers 3a to 3d are installed on each floor of the building 10. Regulating valves 8a to 8d were installed as indoor units corresponding to the user-side heat exchangers, and each device was sequentially connected by refrigerant paths 30 to 38 to form a refrigerant path.

【0003】このように構成した従来の装置では、蓄熱
装置を持たないため、料金の割安な深夜電力を使用して
夜間蓄熱を行い、日中にそれを利用して冷暖房を行うこ
とができず、電力料金の割高な日中に装置の運転の電力
を消費するため、運転費用がかさむ欠点や、夏季の日中
に電力需要のピークを生じさせ、社会問題の原因ともな
る欠点があった。
[0003] Conventional devices configured in this manner do not have a heat storage device, so they store heat at night using cheaper late-night electricity, and cannot be used for heating and cooling during the day. However, since electricity is consumed to operate the device during the day when electricity rates are relatively high, there are drawbacks such as high operating costs and the drawback that the peak demand for electricity occurs during the daytime in summer, causing social problems.

【0004】0004

【発明が解決しようとする課題】本発明は、上記の欠点
を取除くため、空調装置に蓄熱槽を組合せることにより
、夜間蓄熱等電力使用の少ないときに蓄熱し、その熱量
を有効に利用できる蓄熱空調装置とその運転方法を提供
することを目的とする。
[Problems to be Solved by the Invention] In order to eliminate the above-mentioned drawbacks, the present invention combines a heat storage tank with an air conditioner to store heat during times when power consumption is low, such as during night heat storage, and effectively utilize the amount of heat. The purpose of the present invention is to provide a heat storage air conditioner and its operating method.

【0005】[0005]

【課題を解決するための手段】上記目的を達成させるた
めに、本発明では、圧縮機と熱源側熱交換器と利用側熱
交換器とを冷媒経路で順次接続して冷媒回路を構成した
空調装置において、該装置に付帯する蓄熱槽と蓄熱用熱
交換器とを設け、該蓄熱用熱交換器は、蓄熱槽よりも上
層階又は屋上に設置され、蓄熱槽とを結ぶ循環経路が設
けられており、該蓄熱槽の熱移送流体と前記冷媒回路の
冷媒とを熱交換させるように構成したことを特徴とする
蓄熱空調装置としたものである。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides an air conditioner in which a refrigerant circuit is configured by sequentially connecting a compressor, a heat source side heat exchanger, and a user side heat exchanger through a refrigerant path. The device is provided with a heat storage tank and a heat storage heat exchanger attached to the device, the heat storage heat exchanger is installed on a higher floor or on the roof than the heat storage tank, and a circulation path is provided to connect the heat storage tank. The heat storage air conditioner is characterized in that the heat transfer fluid in the heat storage tank and the refrigerant in the refrigerant circuit are configured to exchange heat.

【0006】また、上記のもう一つの目的を達成するた
めに、本発明では、上記の蓄熱空調装置の運転において
、利用側熱交換器から蓄熱槽内の冷熱を取り出す冷房運
転時には、前記蓄熱用熱交換器内で冷媒を凝縮させると
ともに、凝縮した冷媒を利用側熱交換器に導き蒸発させ
、また、利用側熱交換器から蓄熱槽内の温熱を取り出す
暖房運転時には、前記蓄熱用熱交換器内で冷媒を蒸発さ
せるとともに、蒸発した冷媒を利用側熱交換器に導き凝
縮させる様に運転することとしたものである。
[0006] In addition, in order to achieve another object described above, in the present invention, in the operation of the above-mentioned heat storage air conditioner, during the cooling operation in which the cold heat in the heat storage tank is extracted from the heat exchanger on the user side, the heat storage During heating operation, in which the refrigerant is condensed in the heat exchanger, the condensed refrigerant is guided to the heat exchanger on the user side and evaporated, and the warm heat in the heat storage tank is taken out from the heat exchanger on the user side, the heat exchanger for heat storage is used. The system is operated so that the refrigerant is evaporated within the heat exchanger and the evaporated refrigerant is led to the user-side heat exchanger and condensed.

【0007】また、前記蓄熱空調装置において、冷媒回
路の熱源側熱交換器と利用側熱交換器とを結ぶ冷媒経路
に液管又はレシーバを設け、該液管又はレシーバに分岐
部を設けて該分岐部に蓄熱用熱交換器の液冷媒出入口を
接続するとともに、利用側熱交換器と冷暖房サイクル切
換用の切換弁とを結ぶ冷媒経路に分岐部を設け、該分岐
部に蓄熱用熱交換器のガス状冷媒出入口を接続し、さら
に、前記の液管又はレシーバに設けた分岐部と蓄熱用熱
交換器の液冷媒出入口とは、調節弁とポンプとを並列に
接続した経路を介して接続し、利用側熱交換器と冷暖房
サイクル切換用の切換弁とを結ぶ冷媒経路に設けた分岐
部は、三方切換弁であるのがよい。
Further, in the heat storage air conditioner, a liquid pipe or a receiver is provided in the refrigerant path connecting the heat exchanger on the heat source side and the heat exchanger on the user side of the refrigerant circuit, and a branch part is provided in the liquid pipe or receiver to The liquid refrigerant inlet/outlet of the heat storage heat exchanger is connected to the branch part, and a branch part is provided in the refrigerant path connecting the user-side heat exchanger and the switching valve for switching the cooling/heating cycle, and the heat storage heat exchanger is connected to the branch part. Further, the branch section provided in the liquid pipe or receiver and the liquid refrigerant inlet/outlet of the heat storage heat exchanger are connected via a path in which a control valve and a pump are connected in parallel. However, the branch section provided in the refrigerant path connecting the user-side heat exchanger and the switching valve for switching between heating and cooling cycles is preferably a three-way switching valve.

【0008】[0008]

【作用】本発明では、空調装置に蓄熱槽と蓄熱熱交換器
とを設け、それらを切換弁を配した経路で接続したこと
により、冷房蓄熱運転、冷房放熱運転、冷房運転等のさ
まざまな冷房運転ができ、また、暖房運転でも、暖房蓄
熱運転、暖房併用運転、暖房運転等の種々の運転を行う
ことができ、夜間蓄熱を行うこともできる。
[Function] In the present invention, the air conditioner is provided with a heat storage tank and a heat storage heat exchanger, and by connecting them through a path provided with a switching valve, various cooling operations such as cooling heat storage operation, cooling heat dissipation operation, and cooling operation can be performed. In addition, various operations such as heating operation, heating heat storage operation, heating combined operation, heating operation, etc. can be performed, and nighttime heat storage can also be performed.

【0009】[0009]

【実施例】以下、図面により本発明を具体的に説明する
が、本発明はこれらに限定されるものではない。図1は
本発明の蓄熱空調装置の実施例であるフロー構成図を示
す。図2〜8は図1における装置の各種作動形態の説明
図である。以下図を用いて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically explained below with reference to the drawings, but the present invention is not limited thereto. FIG. 1 shows a flow diagram of an embodiment of the heat storage air conditioner of the present invention. 2 to 8 are explanatory diagrams of various operating modes of the apparatus in FIG. 1. This will be explained below using figures.

【0010】図1は、圧縮機1と熱源側熱交換器2と利
用側熱交換器3a〜3dとを冷媒経路で順次接続して、
冷媒回路を構成した空調装置で、建物10の地下に蓄熱
槽11を設け、屋上に蓄熱槽の熱移送流体と前記冷媒回
路の冷媒とを熱交換させる蓄熱用熱交換器12を設け、
該蓄熱用熱交換器12と前記蓄熱槽11とを結ぶ熱移送
流体の循環経路、50a,50b→20→50→17→
51→12→52→19→53→21→53a,53b
を設ける。一方、冷媒回路には、熱源側熱交換器2と利
用側熱交換器3a〜3dとを結ぶ冷媒経路の液管、30
→7→31a→31b→5→32又はレシーバ5に分岐
部を設け、該分岐部に蓄熱用熱交換器12の液冷媒出入
口41を調節弁15及びポンプ14を並列に接続した経
路、40a→14→40b→13→40c→41及び、
5→43→15→41を介して接続するとともに、利用
側熱交換器3a〜3dと冷暖房サイクル切換用の切換弁
4とを結ぶ冷媒経路の管、3a〜3d→34a〜34d
→33a→(16)→33b→4の経路に分岐部を設け
、該分岐部を、蓄熱用熱交換器12のガス状冷媒出入口
42に接続する三方切換弁16としたものである。
FIG. 1 shows a compressor 1, a heat source side heat exchanger 2, and a user side heat exchanger 3a to 3d connected in sequence through a refrigerant path.
An air conditioner configured with a refrigerant circuit, a heat storage tank 11 is provided in the basement of the building 10, and a heat storage heat exchanger 12 is provided on the roof for exchanging heat between the heat transfer fluid of the heat storage tank and the refrigerant of the refrigerant circuit,
Circulation path for heat transfer fluid connecting the heat storage heat exchanger 12 and the heat storage tank 11, 50a, 50b→20→50→17→
51 → 12 → 52 → 19 → 53 → 21 → 53a, 53b
will be established. On the other hand, the refrigerant circuit includes liquid pipes 30 for refrigerant paths connecting the heat source side heat exchanger 2 and the usage side heat exchangers 3a to 3d.
→7→31a→31b→5→32 or a route in which a branch is provided in the receiver 5 and the liquid refrigerant inlet/outlet 41 of the heat storage heat exchanger 12 is connected in parallel with the control valve 15 and the pump 14, 40a→ 14 → 40b → 13 → 40c → 41 and,
5 → 43 → 15 → 41, and refrigerant path pipes connecting the user-side heat exchangers 3a to 3d and the switching valve 4 for switching the heating and cooling cycle, 3a to 3d → 34a to 34d
A branch is provided in the path →33a→(16)→33b→4, and the branch is a three-way switching valve 16 connected to the gaseous refrigerant inlet/outlet 42 of the heat storage heat exchanger 12.

【0011】尚本実施例では蓄熱槽11を地下に蓄熱用
熱交換器12を屋上に設ける様構成しているが、蓄熱槽
11は蓄熱用熱交換器12より下に位置すれば、本発明
の主旨を実現することは可能であり、従って蓄熱槽11
は建物に付帯する任意の場所でよく、また蓄熱用熱交換
器12は蓄熱槽よりも上層階あるいは屋上の任意の場所
に設置してさしつかえない。図1の実施例によれば各切
換弁の切換によって、図2〜8の各種運転形態に対応す
ることができる。以下にそれぞれの作用について説明す
る。以下、説明を簡単にするため、蓄熱槽には水を貯え
るものとし、又蓄熱槽の熱移動媒体として水を用いるも
のとするが、本発明は他の流体としてブライン等を用い
てもさしつかえないものである。
In this embodiment, the heat storage tank 11 is arranged underground and the heat exchanger 12 for heat storage is installed on the roof, but if the heat storage tank 11 is located below the heat exchanger 12 for heat storage, the present invention It is possible to realize the purpose of
may be located at any location attached to the building, and the heat storage heat exchanger 12 may be installed at any location above the heat storage tank or on the rooftop. According to the embodiment shown in FIG. 1, the various operating modes shown in FIGS. 2 to 8 can be handled by switching the respective switching valves. Each effect will be explained below. In order to simplify the explanation, water will be stored in the heat storage tank and water will be used as a heat transfer medium in the heat storage tank, but in the present invention, other fluids such as brine may also be used. It is something.

【0012】(a)冷房蓄熱運転 図2は蓄熱槽に冷水を蓄える冷房蓄熱運転の作動形態を
示す説明図である。本運転形態では冷媒回路のうち四方
弁4を経路33bと36、35と38をそれぞれ連通さ
せた冷房サイクル側に切換え、調節弁7を全開とし、調
節弁15を圧縮機1に液バックを生じさせない様に冷媒
流量の自動調節を行う調節状態とし弁13を全閉としポ
ンプ14を停止状態とし、三方弁16を経路42と33
bを連通させる様に切換する。また、水系統ではポンプ
17を運転し、切換弁20を経路50と50bを連通さ
せる様切換え、切換弁21を経路53と53aを連通さ
せる様切換する。
(a) Cooling heat storage operation FIG. 2 is an explanatory diagram showing the operating form of the cooling heat storage operation in which cold water is stored in a heat storage tank. In this mode of operation, the four-way valve 4 in the refrigerant circuit is switched to the cooling cycle side in which paths 33b and 36, 35 and 38 are communicated with each other, the control valve 7 is fully opened, and the control valve 15 is switched to the cooling cycle side in which the paths 33b and 36, 35 and 38 are communicated, and the control valve 15 is switched to the cooling cycle side in which the paths 33b and 36, 35 and 38 are communicated. The valve 13 is fully closed, the pump 14 is stopped, and the three-way valve 16 is connected to the paths 42 and 33.
Switch so that b is connected. In addition, in the water system, the pump 17 is operated, the switching valve 20 is switched to communicate the routes 50 and 50b, and the switching valve 21 is switched to communicate the routes 53 and 53a.

【0013】このようにして装置を運転することによっ
て、圧縮機1を出た冷媒はガス状冷媒の経路1→38→
4→35→2の順に流れ、熱源側熱交換器2で凝縮した
のち、液状冷媒の経路2→30→7→31a→31b→
5の順に流れレシーバ5に貯り、さらに経路43を経て
調節弁15で減圧されたのち、蓄熱用熱交換器内12で
冷水と熱交換して蒸発しガス状冷媒の経路、42→16
→33b→4→36→6→37→1の順に流れて再び圧
縮機に流入してサイクルを形成する。一方蓄熱槽内の水
は、11→50b→20→50→17→51→12の順
に流れ、前記蓄熱用熱交換器12に至り、冷媒と熱交換
して冷却されたのち、12→52→19→53→21→
53a→11の順に流れ、冷却されて蓄熱槽11に戻る
。このようにして、冷房蓄熱運転を行うことができる。
By operating the apparatus in this manner, the refrigerant leaving the compressor 1 follows the gaseous refrigerant path 1→38→
4 → 35 → 2, and after condensing in the heat source side heat exchanger 2, the liquid refrigerant path 2 → 30 → 7 → 31a → 31b →
The flow is stored in the receiver 5 in the order of 5, further passes through the path 43, is depressurized by the regulating valve 15, and then exchanges heat with cold water in the heat storage heat exchanger 12 and evaporates, resulting in a gaseous refrigerant path 42→16.
→33b→4→36→6→37→1 and flows into the compressor again to form a cycle. On the other hand, the water in the heat storage tank flows in the order of 11 → 50b → 20 → 50 → 17 → 51 → 12, reaches the heat storage heat exchanger 12, is cooled by exchanging heat with the refrigerant, and then 12 → 52 → 19→53→21→
It flows in the order of 53a→11, is cooled, and returns to the heat storage tank 11. In this way, cooling heat storage operation can be performed.

【0014】尚、蓄熱槽11は温度成層形の蓄熱槽を例
示し、そのため出入口を切換する必要があることは当業
者にとって自明であるので説明は省略する。また動力回
収水車19はポンプ17の所要動力を節約するためのも
のであるが、本発明の実施に当って構成上必ず必要な機
器ではなく省略してもさしつかえない。
The heat storage tank 11 is an example of a temperature stratification type heat storage tank, and it is obvious to those skilled in the art that it is necessary to switch the entrance and exit, so a description thereof will be omitted. Although the power recovery water turbine 19 is intended to save the power required for the pump 17, it is not an absolutely necessary device in implementing the present invention and may be omitted.

【0015】(b)冷房放熱運転(蓄熱100%)図3
は圧縮機1を運転することなく蓄熱槽11に蓄えた冷水
を使用して利用側熱交換器3a〜3dから冷熱を取出す
運転の作動形態を示す説明図である。本運転形態では冷
媒回路のうち、弁7を全閉とし、弁13を全閉とし、ポ
ンプ14を停止状態とし、三方弁16と経路33aを連
通させる様切換する。また水系統はポンプ17を運転し
、切換弁20を経路50と50aを連通させる様切換え
、切換弁21を経路53と53bを連通させる様切換す
る。
(b) Cooling heat radiation operation (heat storage 100%) Figure 3
1 is an explanatory diagram showing an operating mode of an operation in which cold water stored in a heat storage tank 11 is used to extract cold heat from the user-side heat exchangers 3a to 3d without operating the compressor 1. FIG. In this mode of operation, in the refrigerant circuit, the valve 7 is fully closed, the valve 13 is fully closed, the pump 14 is stopped, and the three-way valve 16 is switched to communicate with the path 33a. In addition, the water system operates the pump 17, switches the switching valve 20 to communicate the routes 50 and 50a, and switches the switching valve 21 to communicate the routes 53 and 53b.

【0016】このようにして装置を運転することによっ
て、冷媒回路のうち、33b→4→36→6→37→1
→38→4→35→2→30→7の経路は閉そくされて
作動せず、単に、5→32→8a(〜8d)→3a(〜
3d)→34a(〜34d)→33a→16→42→1
2→41→15→43→5の回路が次の様にして作動す
る。すなわち、レシーバ5内の液冷媒は自重によって液
状冷媒の経路(液管)32→8a(〜8d)を経て利用
側熱交換器3a(〜3d)に流入し、ここで気温25℃
前後の室内空気と熱交換して蒸発し、気化してガス状冷
媒の経路34a(〜34d)→33a→42を経て蓄熱
用熱交換器12内に流入し、水温5℃前後の冷水と熱交
換して凝縮し、液化して経路41→15→43を経てレ
シーバ5に戻る。冷媒には蓄熱用熱交換器12では冷水
により冷却されて5℃前後の飽和温度に相当する飽和圧
力に向って圧力を降下させる作用が働き、一方利用側熱
交換器3a〜3cでは25℃前後の飽和温度に相当する
飽和圧力に向って圧力を上昇させる作用が働くため、冷
媒蒸気はこの作用を駆動源にして利用側熱交換器3a〜
3dかつ経路34a(〜34d)→33a→16→42
を経て蓄熱用熱交換器12に自然に流入する。尚、液冷
媒の流動を円滑にするため、経路32にポンプを取付け
てもさしつかえない。
By operating the device in this manner, the refrigerant circuit 33b→4→36→6→37→1
→ 38 → 4 → 35 → 2 → 30 → 7 path is blocked and does not work, simply 5 → 32 → 8a (~8d) → 3a (~
3d) → 34a (~34d) → 33a → 16 → 42 → 1
The circuit 2→41→15→43→5 operates as follows. That is, the liquid refrigerant in the receiver 5 flows by its own weight through the liquid refrigerant path (liquid pipe) 32 → 8a (~8d) into the user side heat exchanger 3a (~3d), where the temperature is 25°C.
It evaporates by exchanging heat with the indoor air before and after it, vaporizes, flows into the heat storage heat exchanger 12 via the gaseous refrigerant path 34a (~34d) → 33a → 42, and generates cold water with a water temperature of around 5°C and heat. It is exchanged, condensed, liquefied, and returned to the receiver 5 via the path 41→15→43. In the heat storage heat exchanger 12, the refrigerant is cooled by cold water, which acts to lower the pressure toward the saturation pressure corresponding to the saturation temperature of around 5°C, while in the user-side heat exchangers 3a to 3c, the pressure is lowered to around 25°C. Since the action of increasing the pressure toward the saturation pressure corresponding to the saturation temperature of
3d and route 34a (~34d) → 33a → 16 → 42
It naturally flows into the heat storage heat exchanger 12 through the process. Note that a pump may be attached to the path 32 in order to smooth the flow of the liquid refrigerant.

【0017】一方蓄熱槽にはあらかじめ冷やされた冷水
が蓄えられた状態から作動が始まるものとして、冷水は
11→51a→20→50→17→51→12→52→
19→53→21→35b→11の順に流れ、蓄熱用熱
交換器12では冷媒を冷却し、自らは温められて蓄熱槽
11に戻る。このようにして、本運転形態では圧縮機1
を運転することなく、蓄熱槽11に蓄えた冷水を使用し
て利用側熱交換器3a(〜3d)から冷熱を取出すこと
ができる。
On the other hand, assuming that the operation starts with pre-chilled cold water stored in the heat storage tank, the cold water goes from 11 → 51a → 20 → 50 → 17 → 51 → 12 → 52 →
The refrigerant flows in the order of 19→53→21→35b→11, cools the refrigerant in the heat storage heat exchanger 12, and returns to the heat storage tank 11 after being warmed. In this way, in this operating mode, the compressor 1
Cold water can be taken out from the user-side heat exchanger 3a (~3d) by using the cold water stored in the heat storage tank 11 without operating the heat exchanger 3a (~3d).

【0018】(c)冷房放熱運転(熱源機・蓄熱併用)
図4は圧縮機1を運転することによる冷房作用と蓄熱槽
11の冷却作用を併せて利用側熱交換器3a〜3dから
取出すことができる運転の作動形態を示す説明図である
。本運転形態では、冷媒回路のうち、四方弁4は経路3
3bと36を連通させ、経路35と38を連通させる様
切換え、調節弁7は圧縮機1に液バックを生じさせない
様に冷媒流量の自動調節を行う調節状態とし、三方弁1
6は経路42と33aと33bの全てに連通する様切換
え、調節弁15は全開とし、弁13を全閉とし、ポンプ
14を停止状態とする。また水系統はポンプ17を運転
し切換弁20を経路50と50aを連通させる様切換え
、切換弁21を経路53と53bを連通させる切換する
(c) Cooling heat radiation operation (combined use of heat source device and heat storage)
FIG. 4 is an explanatory diagram showing an operation mode in which the cooling effect by operating the compressor 1 and the cooling effect of the heat storage tank 11 can be extracted from the user-side heat exchangers 3a to 3d. In this operating mode, the four-way valve 4 is connected to the path 3 in the refrigerant circuit.
3b and 36 are in communication, and the paths 35 and 38 are in communication, the control valve 7 is set to an adjustment state in which the refrigerant flow rate is automatically adjusted so as not to cause liquid back in the compressor 1, and the three-way valve 1
6 is switched to communicate with all of the paths 42, 33a, and 33b, the control valve 15 is fully opened, the valve 13 is fully closed, and the pump 14 is stopped. In the water system, the pump 17 is operated, the switching valve 20 is switched to communicate the routes 50 and 50a, and the switching valve 21 is switched to communicate the routes 53 and 53b.

【0019】このようにして装置を運転することによっ
て、圧縮機1を出た冷媒はガス状冷媒の経路、1→38
→4→35→2の順に流れ、熱源側熱交換器2で凝縮し
たのち液状冷媒の経路、2→30→7を経て、調節弁7
で減圧され、さらに経路31a→31b→5を経てレシ
ーバ5に流入する。レシーバ5にはこの他後述する様に
蓄熱用熱交換器12で凝縮した液冷媒も流入する。レシ
ーバ5内の液冷媒は自重によって経路32→8a(〜8
d)を経て利用側熱交換器3a(〜3d)に流入し、こ
こで気温25℃前後の室内空気と熱交換して蒸発し、気
化してガス状冷媒の経路34a(〜34d)→33a→
42を経て三方弁42で分岐し、一方はガス状冷媒の経
路、16→33b→4→36→6→37を経て圧縮機1
に吸入されサイクルを形成し、他の一方は経路16→4
2を経て蓄熱用熱交換器12内に流入し、蓄熱槽から送
られて来る水温5℃前後の冷水と熱交換して凝縮し、液
化して経路41→15→43を経てレシーバ5に戻る。
By operating the apparatus in this manner, the refrigerant leaving the compressor 1 follows the gaseous refrigerant path 1→38.
→ 4 → 35 → 2, and after condensing in the heat source side heat exchanger 2, it passes through the liquid refrigerant path 2 → 30 → 7, and then passes through the control valve 7.
It is depressurized and further flows into the receiver 5 via the path 31a→31b→5. In addition, liquid refrigerant condensed in the heat storage heat exchanger 12 also flows into the receiver 5, as will be described later. The liquid refrigerant in the receiver 5 flows through the path 32→8a (~8a) due to its own weight.
d), flows into the user-side heat exchanger 3a (~3d), where it exchanges heat with indoor air at a temperature of around 25°C, evaporates, and gaseous refrigerant path 34a (~34d) → 33a →
42 and branches at a three-way valve 42, one is the gaseous refrigerant path, and the other is the compressor 1 via 16 → 33b → 4 → 36 → 6 → 37.
is inhaled to form a cycle, and the other one is route 16 → 4
2, flows into the heat storage heat exchanger 12, exchanges heat with cold water at a temperature of around 5°C sent from the heat storage tank, condenses, liquefies, and returns to the receiver 5 via routes 41→15→43. .

【0020】冷媒の経路、5→32→8a(〜8d)→
3a(〜3d)→34a(〜34d)→33a→16→
42→12→41→15→43→5の循環は前述の(b
)項で説明した自然循環作用で行われ、一方経路、16
→33b→4→36→6→37→1→37→38→4→
35→2→30→7→31a→31b→5の流動は、圧
縮機の作用によって行われる。
[0020] Refrigerant route, 5→32→8a (~8d)→
3a (~3d) → 34a (~34d) → 33a → 16 →
The cycle of 42 → 12 → 41 → 15 → 43 → 5 is the above-mentioned (b
) is carried out by the natural circulation action explained in section 16.
→33b→4→36→6→37→1→37→38→4→
The flow from 35→2→30→7→31a→31b→5 is performed by the action of the compressor.

【0021】この運転では、利用側熱交換器3a(〜3
d)には蓄熱用熱交換器12で凝縮した冷媒と、圧縮機
1で圧縮され熱源側熱交換器2で凝縮した冷媒の両方が
供給され、それらを蒸発させることによって、両方の冷
媒の蒸発潜熱をそこで利用することができる。このよう
にして、圧縮機1を運転することによる冷凍作用と蓄熱
槽11の冷却作用を併せて利用側熱交換器3a〜3dか
ら取出すことができる。尚、圧縮機1に能力可変のもの
を用いて能力制御することによって蓄熱槽による冷房作
用の不足分を圧縮機の運転で補う形での運転形態として
もさしつかえない。
In this operation, the user side heat exchanger 3a (~3
d) is supplied with both the refrigerant condensed in the heat storage heat exchanger 12 and the refrigerant compressed in the compressor 1 and condensed in the heat source side heat exchanger 2, and by evaporating them, both refrigerants are evaporated. Latent heat can be utilized there. In this way, both the refrigeration action by operating the compressor 1 and the cooling action of the heat storage tank 11 can be taken out from the user-side heat exchangers 3a to 3d. It is also possible to use a variable-capacity compressor 1 for the compressor 1 to control the capacity, thereby compensating for the lack of cooling action by the heat storage tank by operating the compressor.

【0022】(d)冷房運転(非蓄熱)図5は蓄熱槽を
使用せず、従来のこの種の装置と同様に圧縮機1を運転
して、利用側熱交換器3a〜3dから冷熱を取出す運転
の作動形態を示す説明図である。本運転形態では、冷媒
回路のうち、四方弁4を経路33bと36、35と38
をそれぞれ連通させた冷房サイクル側に切換え、調節弁
7を全開、調節弁15を全閉、弁13を全閉、ポンプ1
4を停止状態とし、三方弁16を経路33aと33bを
連通させる様切換する。また水系統はポンプ17を停止
状態とし循環させない。
(d) Cooling operation (non-thermal storage) In FIG. 5, a heat storage tank is not used, and the compressor 1 is operated in the same manner as in conventional devices of this type to extract cold heat from the heat exchangers 3a to 3d on the user side. FIG. 3 is an explanatory diagram showing an operating form of a take-out operation. In this mode of operation, in the refrigerant circuit, the four-way valve 4 is connected to the paths 33b and 36, 35 and 38.
Switch to the cooling cycle side with which they are connected, control valve 7 is fully open, control valve 15 is fully closed, valve 13 is fully closed, pump 1
4 is in a stopped state, and the three-way valve 16 is switched to communicate the paths 33a and 33b. In addition, in the water system, the pump 17 is stopped and no circulation is performed.

【0023】このようにして装置を運転することによっ
て、圧縮機1を出た冷媒はガス状冷媒の経路を、1→3
8→4→35→2の順に流れ熱源側熱交換器2で凝縮し
たのち液状冷媒の経路を、2→30→7→31a→31
b→5の順に流れレシーバ5に貯り、さらに経路32を
経て、各利用側熱交換器3a〜3dに接続された調節弁
8a〜8dで減圧されたのち、利用側熱交換器3a〜3
dで室内空気と熱交換して蒸発しガス状冷媒の経路、3
4a〜34d→33a→16→33b→4→36→6→
37→1を経て圧縮機に戻りサイクルを形成する。この
運転では、利用側熱交換器3a〜3dでの冷媒の蒸発分
は全て圧縮機1に吸引され、熱源側熱交換器2で凝縮し
、蓄熱用熱交換器12では凝縮しない。このようにして
、従来この種の装置と同様に圧縮機1を運転して利用側
熱交換器3a〜3dから冷熱を取り出すことができる。 また、本運転形態は暖房時の熱源側熱交換器のデフロス
ト運転としても使用できる。
By operating the apparatus in this manner, the refrigerant leaving the compressor 1 changes the path of the gaseous refrigerant from 1 to 3.
After flowing in the order of 8 → 4 → 35 → 2 and condensing in the heat source side heat exchanger 2, the path of the liquid refrigerant is changed to 2 → 30 → 7 → 31a → 31
The flow accumulates in the receiver 5 in the order of b → 5, further passes through the path 32, is depressurized by the control valves 8a to 8d connected to each of the user side heat exchangers 3a to 3d, and is then transferred to the user side heat exchangers 3a to 3.
Path of gaseous refrigerant that evaporates by exchanging heat with indoor air at d, 3
4a~34d→33a→16→33b→4→36→6→
It returns to the compressor via 37→1 to form a cycle. In this operation, all of the evaporated refrigerant in the utilization side heat exchangers 3a to 3d is sucked into the compressor 1, condensed in the heat source side heat exchanger 2, and not condensed in the heat storage heat exchanger 12. In this manner, the compressor 1 can be operated to extract cold heat from the user-side heat exchangers 3a to 3d, as in conventional devices of this type. Furthermore, this mode of operation can also be used as a defrost operation of the heat source side heat exchanger during heating.

【0024】(e)暖房蓄熱運転 図6は蓄熱槽に温水を蓄える暖房蓄熱運転の作動形態を
示す説明図である。本運転形態では、冷媒回路のうら四
方弁4を経路33bと38、35と36をそれぞれ連通
させた暖房サイクル側に切換え、調節弁7を圧縮機1に
液バックを生じさせない様に冷媒流量の自動調節を行う
調節状態とし、調節弁15を全開とし、弁13を全閉と
し、ポンプ14を停止状態とし、三方弁16を経路42
と33bを連通させる様切換する。また水系統では、ポ
ンプ17を運転し切換弁20を経路50と50aを連通
させる様切換え、切換弁21を経路53と53bを連通
させる様切換する。
(e) Heating heat storage operation FIG. 6 is an explanatory diagram showing the operating form of the heating heat storage operation in which hot water is stored in the heat storage tank. In this mode of operation, the four-way valve 4 at the back of the refrigerant circuit is switched to the heating cycle side in which paths 33b and 38, and 35 and 36 are connected, respectively, and the control valve 7 is adjusted to control the refrigerant flow rate so as not to cause liquid back in the compressor 1. The control valve 15 is fully opened, the valve 13 is fully closed, the pump 14 is stopped, and the three-way valve 16 is connected to the path 42.
and 33b are switched to communicate with each other. In the water system, the pump 17 is operated, the switching valve 20 is switched to communicate the routes 50 and 50a, and the switching valve 21 is switched to communicate the routes 53 and 53b.

【0025】このようにして装置を運転することによっ
て、圧縮機1を出た冷媒はガス状冷媒の経路、1→38
→4→33b→16→42→12の順に流れ、蓄熱用熱
交換器12内で蓄熱槽から送られる水(温水)と熱交換
して凝縮したのち、液状冷媒の経路、12→41→15
→43→5の順に流れレシーバ5に貯り、さらに経路3
1b→31aを経て調節弁7で減圧されたのち、経路3
0を経て熱源側熱交換器2内で外気と熱交換して蒸発し
、ガス状冷媒の経路、35→4→36→6→37→1の
順に流動し、圧縮機1に戻り、サイクルを形成する。 一方蓄熱槽11内の水は、11→50a→20→50→
17→51→12の順に流れ、前記蓄熱用熱交換器12
に至り、冷媒と熱交換して加熱されたのち、12→52
→19→53→21→53b→11の順に流れ、加熱さ
れて蓄熱槽11に戻る。このようにして暖房蓄熱運転を
行うことができる。
By operating the apparatus in this manner, the refrigerant leaving the compressor 1 follows the gaseous refrigerant path 1→38.
→4→33b→16→42→12 flows in the order of 12→41→15 after exchanging heat with water (hot water) sent from the heat storage tank in the heat storage heat exchanger 12 and condensing.
→ 43 → 5 flow is stored in receiver 5, and then route 3
1b → 31a, the pressure is reduced by the control valve 7, and then the route 3
0, evaporates by exchanging heat with outside air in the heat source side heat exchanger 2, flows in the order of the gaseous refrigerant path 35 → 4 → 36 → 6 → 37 → 1, returns to the compressor 1, and completes the cycle. Form. On the other hand, the water in the heat storage tank 11 is 11→50a→20→50→
Flows in the order of 17 → 51 → 12, and the heat exchanger 12 for heat storage
After being heated by exchanging heat with the refrigerant, the temperature changes from 12 to 52.
It flows in the order of →19 →53 →21 →53b →11, is heated, and returns to the heat storage tank 11. In this way, heating heat storage operation can be performed.

【0026】(f)暖房運転(熱源機・蓄熱併用)図7
は圧縮機1を運転することによる暖房作用と蓄熱槽11
の加熱作用を併せて、利用側熱交換器3a〜3dから取
出すことができる運転の作動形態を示す説明図である。 本運転形態では、冷媒回路のうち、四方弁4は経路33
bと38、35と36を連通させた様切換え、調節弁7
を圧縮機1に液バックを生じさせない様に冷媒流量の自
動調節を行う調節状態とし、三方弁16は経路42と3
3aと33bの全てに連通する様切換え、調節弁15は
全閉とし、弁13を全開としポンプ14を運転状態とす
る。また、水系統ではポンプ17を運転し切換弁20を
経路50と50aを連通させる様切換え、切換弁21を
経路53と53bを連通させる様切換する。
(f) Heating operation (combined use of heat source device and heat storage) Fig. 7
is the heating effect caused by operating the compressor 1 and the heat storage tank 11
FIG. 3 is an explanatory diagram illustrating an operation mode in which heat can be taken out from the user-side heat exchangers 3a to 3d together with the heating action of FIG. In this operating mode, the four-way valve 4 is connected to the path 33 in the refrigerant circuit.
Switching so that b and 38, 35 and 36 are in communication, control valve 7
is set to an adjustment state in which the refrigerant flow rate is automatically adjusted so as not to cause liquid back in the compressor 1, and the three-way valve 16 is connected to the paths 42 and 3.
3a and 33b, the control valve 15 is fully closed, the valve 13 is fully opened, and the pump 14 is in operation. In addition, in the water system, the pump 17 is operated, the switching valve 20 is switched to communicate the routes 50 and 50a, and the switching valve 21 is switched to communicate the routes 53 and 53b.

【0027】このようにして装置を運転することによっ
て、圧縮機1を出た冷媒は、ガス状冷媒の経路、1→3
8→4→33b→16の順に流れ、三方弁16で経路4
2から流入する蓄熱用熱交換器12内で蒸発したガス状
冷媒と合流したのち、ガス状冷媒の経路、16→33a
→34a〜34dを経て、利用側熱交換器3a〜3dに
流入し、気温20℃前後の室内空気と熱交換して凝縮し
、液化して液状冷媒の経路8a〜8d→31→5を経て
、レシーバ5に貯る。なおレシーバ5には圧縮機1とポ
ンプ14の吸引作用によって、液冷媒を経路32から吸
い上げる作用が働くため、利用側熱交換器3a〜3dが
レシーバより高さが下であっても冷媒の流動が保たれる
ことは、従来のこの種の装置で公知である。レシーバ5
に貯った液冷媒は、経路31bを出て分岐し、一方は経
路40aを経てポンプ14に吸引され、他の一方は経路
31aを経て調節弁7に至り、減圧されたのち、経路3
0を経て、熱源側熱交換器2に至り、ここで外気と熱交
換して蒸発し、ガス状冷媒の経路、35→4→36→6
→37を経て、圧縮機1に吸入されサイクルを形成する
。一方、ポンプ14に吸引された冷媒は昇温されたのち
、弁13から経路40c→41を経て、蓄熱用熱交換器
12に至り、ここで蓄熱槽から送られて来る水温40〜
50℃の温水で加熱されて、蒸発し、ガス状冷媒経路4
2を経て三方弁16で経路33bから来る冷媒と合流し
、前述の経路、33a→34a(〜34d)→8a(〜
8d)→3a(〜3d)→32→5→31b→40a→
14の順にサイクルを形成する。
By operating the apparatus in this manner, the refrigerant leaving the compressor 1 is routed along the gaseous refrigerant path 1→3.
Flows in the order of 8 → 4 → 33b → 16, and passes through route 4 through the three-way valve 16.
After joining with the gaseous refrigerant evaporated in the heat storage heat exchanger 12 flowing from 2, the gaseous refrigerant passes through the path 16→33a.
→ 34a to 34d, flows into the user side heat exchangers 3a to 3d, exchanges heat with indoor air at a temperature of around 20°C, condenses, liquefies, and passes through liquid refrigerant paths 8a to 8d → 31 → 5. , stored in receiver 5. Note that the receiver 5 has the effect of sucking up the liquid refrigerant from the path 32 due to the suction action of the compressor 1 and the pump 14, so even if the user-side heat exchangers 3a to 3d are lower than the receiver, the refrigerant does not flow. It is known in conventional devices of this type that the Receiver 5
The liquid refrigerant that has accumulated in
0, it reaches the heat source side heat exchanger 2, where it exchanges heat with the outside air and evaporates, and the gaseous refrigerant passes through the path 35→4→36→6.
→37, and is sucked into the compressor 1 to form a cycle. On the other hand, the temperature of the refrigerant sucked into the pump 14 is raised, and then from the valve 13 through the path 40c→41, it reaches the heat storage heat exchanger 12, where the temperature of the water sent from the heat storage tank is 40~
Heated with 50°C hot water, evaporated and gaseous refrigerant path 4
2, joins with the refrigerant coming from path 33b at three-way valve 16, and flows through the aforementioned path 33a → 34a (~34d) → 8a (~
8d) → 3a (~3d) → 32 → 5 → 31b → 40a →
A cycle is formed in the order of 14.

【0028】この運転では、利用側熱交換器3a(〜3
d)には、蓄熱用熱交換器12で気化した冷媒と圧縮機
1で圧縮された冷媒の両方で供給され、それらを凝縮さ
せることによって、両方の冷媒の凝縮潜熱をそこで利用
することができる。このようにして、圧縮機1を運転す
ることによる暖房作用と蓄熱槽11の加熱作用とを合わ
せて、利用側熱交換器3a〜3dから取り出すことがで
きる。
In this operation, the utilization side heat exchanger 3a (~3
d) is supplied with both the refrigerant vaporized in the heat storage heat exchanger 12 and the refrigerant compressed in the compressor 1, and by condensing them, the latent heat of condensation of both refrigerants can be utilized there. . In this way, the heating effect caused by operating the compressor 1 and the heating effect of the heat storage tank 11 can be combined and taken out from the user-side heat exchangers 3a to 3d.

【0029】(g)暖房運転(非蓄熱)図8は蓄熱槽を
使用せず、従来のこの種の装置と同様に、圧縮機1を運
転して利用側熱交換器3a〜3dから温熱を取り出す運
転の作動形態を示す説明図である。本運転形態では、冷
媒回路のうち、四方弁4は経路33bと38、35と3
6をそれぞれ連通させた冷房サイクル側に切換え、調節
弁7を圧縮機1に液バックを生じさせない様に冷媒流量
の自動調節を行う調節状態とし、調節弁15は全閉とし
、弁13を全閉とし、ポンプ14を停止状態とし、三方
弁16を経路33aと33bを連通させる様切換する。 また水系統はポンプ17を停止状態とし循環させない。
(g) Heating operation (non-thermal storage) In FIG. 8, a heat storage tank is not used, and the compressor 1 is operated to extract warm heat from the heat exchangers 3a to 3d on the user side, as in conventional devices of this type. FIG. 3 is an explanatory diagram showing an operating form of a take-out operation. In this operation mode, in the refrigerant circuit, the four-way valve 4 is connected to paths 33b and 38, 35 and 3.
6 to the cooling cycle side with which they are connected, the control valve 7 is set to the control state that automatically adjusts the refrigerant flow rate so as not to cause liquid back in the compressor 1, the control valve 15 is fully closed, and the valve 13 is fully closed. The pump 14 is closed, the pump 14 is stopped, and the three-way valve 16 is switched to communicate the paths 33a and 33b. In addition, in the water system, the pump 17 is stopped and no circulation is performed.

【0030】このようにして装置を運転することによっ
て、圧縮機1を出た冷媒は、ガス状冷媒の経路を、1→
38→4→33b→33a→34a(〜34d)の順に
流れ、利用側熱交換器3a〜3dに至り、20℃前後の
室内空気と熱交換して凝縮する。凝縮した冷媒は調節弁
8a(〜8d)を経て、液状冷媒の経路を、8a(〜8
d)→32→5→31b→31a→7の順に流れ、調節
弁7で減圧されたのち、経路30を経て熱源側熱交換器
2に至り、ここで外気と熱交換して蒸発し、ガス状冷媒
の経路、35→4→36→6→37を経て、圧縮機1に
吸引されサイクルを形成する。
By operating the apparatus in this manner, the refrigerant leaving the compressor 1 follows the path of the gaseous refrigerant from 1 to
It flows in the order of 38 → 4 → 33b → 33a → 34a (~34d), reaches the user side heat exchangers 3a~3d, exchanges heat with indoor air at around 20°C, and condenses. The condensed refrigerant passes through the control valve 8a (~8d), and then the liquid refrigerant path is changed to 8a (~8d).
d) → 32 → 5 → 31b → 31a → 7, and after being depressurized by the control valve 7, it reaches the heat source side heat exchanger 2 via the path 30, where it exchanges heat with the outside air and evaporates, and the gas The refrigerant passes through the path 35→4→36→6→37 and is sucked into the compressor 1 to form a cycle.

【0031】この運転では、利用側熱交換器3a〜3d
での冷媒の凝縮分は全て圧縮機1から吐出されたもので
、蓄熱用熱交換器で発生したものではない。このように
して、従来この種の装置と同様に圧縮機1を運転して、
利用側熱交換器3a〜3dから温熱を取り出すことがで
きる。以上の様に図1の実施例によれば各切換弁の切換
によって図2〜図8の各種運転形態に対応することがで
き、蓄熱利用上の適応力の高い装置を本発明では提供で
きる。
In this operation, the user side heat exchangers 3a to 3d
All of the refrigerant condensed at is discharged from the compressor 1, and is not generated in the heat storage heat exchanger. In this way, the compressor 1 is operated in the same manner as conventional devices of this type,
Heat can be taken out from the utilization side heat exchangers 3a to 3d. As described above, according to the embodiment shown in FIG. 1, the various operating modes shown in FIGS. 2 to 8 can be accommodated by switching the respective switching valves, and the present invention can provide a device with high adaptability in terms of heat storage utilization.

【0032】[0032]

【発明の効果】本発明は圧縮機と熱源側熱交換器と利用
側熱交換器とを冷媒経路で順次接続して冷媒回路を構成
した空調装置に、蓄熱槽と蓄熱槽の蓄熱を利用側熱交換
器に伝達する蓄熱用熱交換器を設け、蓄熱用熱交換器と
蓄熱槽を結ぶ流体の循環経路を設けることによって、蓄
熱を利用側熱交換器から取出す蓄熱利用の冷暖房が可能
になり、それによって料金の割安な深夜電力を使用して
夜間蓄熱を行い、日中にそれを利用して冷暖房を行える
ため、■  運転経費が安くなる。■夏季日中に電力を
使用しなくとも済み、電力供給に余裕が生まれる。とい
った効果が生まれる。
Effects of the Invention The present invention provides an air conditioner in which a compressor, a heat source side heat exchanger, and a user side heat exchanger are sequentially connected through a refrigerant path to form a refrigerant circuit, and a heat storage tank and a heat storage tank are connected to the user side. By providing a heat storage heat exchanger that transfers heat to the heat exchanger and providing a fluid circulation path that connects the heat storage heat exchanger and the heat storage tank, it becomes possible to perform heating and cooling using heat storage by extracting the stored heat from the heat exchanger on the user side. As a result, it is possible to store heat at night using cheaper late-night electricity and use it for heating and cooling during the day, reducing operating costs. ■There is no need to use electricity during the summer daytime, creating a margin in the electricity supply. Such effects are produced.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の1例を示す蓄熱空調装置のフロー構成
図である。
FIG. 1 is a flow diagram of a heat storage air conditioner showing one example of the present invention.

【図2】図1の冷房蓄熱運転の説明図である。FIG. 2 is an explanatory diagram of the cooling heat storage operation in FIG. 1;

【図3】図1の冷房放熱運転の説明図である。FIG. 3 is an explanatory diagram of the cooling heat dissipation operation in FIG. 1;

【図4】図1の熱源・蓄熱併用の冷房放熱運転の説明図
である。
FIG. 4 is an explanatory diagram of the cooling heat dissipation operation using both a heat source and heat storage in FIG. 1;

【図5】図1の非蓄熱冷房運転の説明図である。FIG. 5 is an explanatory diagram of the non-thermal storage cooling operation in FIG. 1;

【図6】図1の暖房蓄熱運転の説明図である。FIG. 6 is an explanatory diagram of the heating heat storage operation in FIG. 1;

【図7】図1の熱源・蓄熱併用の暖房運転の説明図であ
る。
FIG. 7 is an explanatory diagram of a heating operation using both a heat source and heat storage in FIG. 1;

【図8】図1の非蓄熱暖房運転の説明図である。FIG. 8 is an explanatory diagram of the non-thermal storage heating operation in FIG. 1;

【図9】従来の空調装置のフロー構成図である。FIG. 9 is a flow diagram of a conventional air conditioner.

【符号の説明】[Explanation of symbols]

1  圧縮機 2  熱源側熱交換器 3a〜3d  利用側熱交換器 4  冷暖房サイクル切換弁(四方弁)5  レシーバ 6  アキュームレーター 7  調節弁 8a〜8d  調節弁 9  ケーシング 10  建物 11  蓄熱槽 12  蓄熱用熱交換器 13  電動弁 14  ポンプ 15  調節弁 16  三方弁 17  ポンプ 18  モータ 19  動力回収水車 20,21  三方弁 30〜42  冷媒経路 50〜53  蓄熱流体(水)経路 1 Compressor 2 Heat source side heat exchanger 3a to 3d User side heat exchanger 4 Heating and cooling cycle switching valve (four-way valve) 5 Receiver 6 Accumulator 7 Control valve 8a-8d Control valve 9 Casing 10 Building 11 Heat storage tank 12 Heat exchanger for heat storage 13 Electric valve 14 Pump 15 Control valve 16 Three-way valve 17 Pump 18 Motor 19 Power recovery water turbine 20, 21 Three-way valve 30-42 Refrigerant path 50-53 Heat storage fluid (water) path

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  圧縮機と熱源側熱交換器と利用側熱交
換器とを冷媒経路で順次接続して冷媒回路を構成した空
調装置において、該装置に付帯する蓄熱槽と蓄熱用熱交
換器とを設け、該蓄熱用熱交換器は、蓄熱槽よりも上層
階又は屋上に設置され、蓄熱槽とを結ぶ循環経路が設け
られており、該蓄熱槽の熱移送流体と前記冷媒回路の冷
媒とを熱交換させるように構成したことを特徴とする蓄
熱空調装置。
Claim 1: In an air conditioner in which a refrigerant circuit is configured by sequentially connecting a compressor, a heat source side heat exchanger, and a user side heat exchanger through a refrigerant path, a heat storage tank and a heat storage heat exchanger attached to the device are provided. The heat exchanger for heat storage is installed on a higher floor or on the roof than the heat storage tank, and is provided with a circulation path connecting the heat storage tank, and the heat transfer fluid of the heat storage tank and the refrigerant of the refrigerant circuit are provided. A heat storage air conditioner characterized by being configured to exchange heat between.
【請求項2】  前記熱源側熱交換器と利用側熱交換器
とを結ぶ冷媒経路に液管又はレシーバを設け、該液管又
はレシーバに分岐部を設けて蓄熱用熱交換器の液冷媒出
入口を接続するとともに、利用側熱交換器と冷暖房サイ
クル切換用の切換弁とを結ぶ冷媒経路に分岐部を設けて
蓄熱用熱交換器のガス状冷媒出入口を接続したことを特
徴とする請求項1記載の蓄熱空調装置。
2. A liquid pipe or a receiver is provided in the refrigerant path connecting the heat source side heat exchanger and the utilization side heat exchanger, and a branch part is provided in the liquid pipe or receiver to form a liquid refrigerant inlet/outlet of the heat storage heat exchanger. Claim 1 characterized in that a branch part is provided in the refrigerant path connecting the user-side heat exchanger and the switching valve for switching the cooling/heating cycle to connect the gaseous refrigerant inlet/outlet of the heat storage heat exchanger. The heat storage air conditioner described.
【請求項3】  前記液管又はレシーバに設けた分岐部
と蓄熱用熱交換器の液冷媒出入口とは、調節弁とポンプ
とを並列に接続した経路を介して接続し、利用側熱交換
器と冷暖房サイクル切換用の切換弁とを結ぶ冷媒経路に
設けた分岐部は、三方切換弁であることを特徴とする請
求項2記載の蓄熱空調装置。
3. The branch part provided in the liquid pipe or the receiver and the liquid refrigerant inlet/outlet of the heat storage heat exchanger are connected through a path in which a control valve and a pump are connected in parallel, and 3. The heat storage air conditioner according to claim 2, wherein the branch section provided in the refrigerant path connecting the refrigerant path and the switching valve for switching between heating and cooling cycles is a three-way switching valve.
【請求項4】  請求項1記載の蓄熱空調装置の運転に
おいて、利用側熱交換器から蓄熱槽内の冷熱を取り出す
冷房運転時には、前記蓄熱用熱交換器内で冷媒を凝縮さ
せるとともに、凝縮した冷媒を利用側熱交換器に導き蒸
発させ、また、利用側熱交換器から蓄熱槽内の温熱を取
り出す暖房運転時には、前記蓄熱用熱交換器内で冷媒を
蒸発させるとともに、蒸発した冷媒を利用側熱交換器に
導き凝縮させる様に運転することを特徴とする蓄熱空調
装置の運転方法。
4. In the operation of the thermal storage air conditioner according to claim 1, during the cooling operation in which cold heat in the thermal storage tank is extracted from the user-side heat exchanger, the refrigerant is condensed in the heat storage heat exchanger, and the condensed During a heating operation in which the refrigerant is guided to the user-side heat exchanger and evaporated, and warm heat in the heat storage tank is extracted from the user-side heat exchanger, the refrigerant is evaporated in the heat storage heat exchanger and the evaporated refrigerant is utilized. A method of operating a heat storage air conditioner, characterized by operating the heat storage air conditioner in such a manner that the heat is introduced into a side heat exchanger and condensed.
JP2268791A 1991-01-24 1991-01-24 Heat accumulative air conditioner and its operating method Pending JPH04240326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2268791A JPH04240326A (en) 1991-01-24 1991-01-24 Heat accumulative air conditioner and its operating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2268791A JPH04240326A (en) 1991-01-24 1991-01-24 Heat accumulative air conditioner and its operating method

Publications (1)

Publication Number Publication Date
JPH04240326A true JPH04240326A (en) 1992-08-27

Family

ID=12089787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2268791A Pending JPH04240326A (en) 1991-01-24 1991-01-24 Heat accumulative air conditioner and its operating method

Country Status (1)

Country Link
JP (1) JPH04240326A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011038764A (en) * 1999-11-18 2011-02-24 Mayekawa Mfg Co Ltd Snow melting or cooling system using underground heat/air heat

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011038764A (en) * 1999-11-18 2011-02-24 Mayekawa Mfg Co Ltd Snow melting or cooling system using underground heat/air heat

Similar Documents

Publication Publication Date Title
CN102422093B (en) Air conditioner
US6883342B2 (en) Multiform gas heat pump type air conditioning system
US4569207A (en) Heat pump heating and cooling system
EP0134015B1 (en) Space cooling and heating and hot water supplying apparatus
JPH06300381A (en) Heat storage type air conditioning apparatus and defrosting method
JP2000179970A (en) Air conditioning system
JP4298990B2 (en) Refrigeration equipment using carbon dioxide as refrigerant
JPWO2011108068A1 (en) Air conditioning and hot water supply system
CN109282401A (en) Separate heat pipe air-conditioning and its control method
CN102401503A (en) Air conditioning system
JP5335131B2 (en) Air conditioning and hot water supply system
JP2004211998A (en) Air conditioning system
JPH04240326A (en) Heat accumulative air conditioner and its operating method
JP3078746B2 (en) Air conditioner
JPH03294754A (en) Air conditioner
JP3814877B2 (en) Thermal storage air conditioner
KR20030082822A (en) The Combined Cooling and Heating Ice Regenerative System
JP3284582B2 (en) Heat storage type air conditioner and cool storage device for air conditioner
JP2771952B2 (en) Individually distributed air conditioner
JPS6367633B2 (en)
CN215337172U (en) Air conditioner
CN211177122U (en) Air conditioner indoor unit and air conditioner
JPH04257661A (en) Two stage compression refrigerating cycle device
JPH0823421B2 (en) Heat storage heat pump
JPH06213478A (en) Air-conditioning machine