JPH0823421B2 - Heat storage heat pump - Google Patents

Heat storage heat pump

Info

Publication number
JPH0823421B2
JPH0823421B2 JP63193394A JP19339488A JPH0823421B2 JP H0823421 B2 JPH0823421 B2 JP H0823421B2 JP 63193394 A JP63193394 A JP 63193394A JP 19339488 A JP19339488 A JP 19339488A JP H0823421 B2 JPH0823421 B2 JP H0823421B2
Authority
JP
Japan
Prior art keywords
water
water tank
pipe
brine
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63193394A
Other languages
Japanese (ja)
Other versions
JPH0244134A (en
Inventor
清光 宅
博仁 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanki Engineering Co Ltd
Original Assignee
Sanki Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanki Engineering Co Ltd filed Critical Sanki Engineering Co Ltd
Priority to JP63193394A priority Critical patent/JPH0823421B2/en
Publication of JPH0244134A publication Critical patent/JPH0244134A/en
Publication of JPH0823421B2 publication Critical patent/JPH0823421B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Other Air-Conditioning Systems (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、1台で夏冬兼用することのできる蓄熱式ヒ
ートポンプに関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a heat storage heat pump that can be used both in summer and winter in one unit.

〔従来の技術〕[Conventional technology]

従来、ビルディングにおける蓄熱手段としては、例え
ば、3000m2以下の小型ビルディングでは、第4図に示す
ように、空気熱源ヒートポンプHPを屋上Vに設置し、屋
上V、または地下室Sに配設した複数の水槽Wに内設し
た蓄熱コイルWcへ配管pにより接続して水槽Wの水wに
蓄熱する構成としている。前記ヒートポンプHPと蓄熱コ
イルWcとの間はブラインを循環させて、夏は氷蓄熱、冬
は温水蓄熱を行っている。そして該水wを二次ポンプで
ビルディング内所要の室等に送り空調をしている。
Conventionally, as a heat storage means in a building, for example, in a small building of 3000 m 2 or less, as shown in FIG. 4, an air heat source heat pump HP is installed on a rooftop V, and a plurality of rooftops V or a plurality of basements S are installed. The heat storage coil Wc provided in the water tank W is connected by a pipe p to store heat in the water w of the water tank W. Brine is circulated between the heat pump HP and the heat storage coil Wc to store ice heat in summer and hot water heat in winter. Then, the water w is sent to a required room in the building by a secondary pump for air conditioning.

なお、前記ヒートポンプHPは、ガス体冷媒を高圧高温
にする圧縮機Aと、ファンFにより吸引排出される外気
aにより熱交換される空気熱交換器Cと、ブラインを加
熱冷却させる熱交換器Bととからなり、該熱交換器B内
には、前記配管pに接続するコイルBcが設けられてい
る。
The heat pump HP includes a compressor A that heats a gas refrigerant to a high pressure and a high temperature, an air heat exchanger C that exchanges heat with the outside air a sucked and discharged by a fan F, and a heat exchanger B that heats and cools brine. And a coil Bc connected to the pipe p is provided in the heat exchanger B.

また、近年、10,000m2以上の大規模ビルディングにお
いては、第5図及び第6図に示すように、ターボ圧縮機
によるヒーティング方式ヒートポンプも出現している。
Further, in recent years, in large-scale buildings of 10,000 m 2 or more, heating type heat pumps using a turbo compressor have also appeared, as shown in FIGS. 5 and 6.

第5図は、暖房運転フローを示す概略構成図で、図に
おいて、61は、ヒーティングタワー、62は、該タワー61
の底部にブラインbの濃度調節用水を補給する水補給
弁、63はヒートポンプユニットで、冷媒rの蒸発器64
と、冷却水コンデンサ65と、温水コンデンサ66と、主圧
縮機67及びブースタ圧縮機68とからなる。そして前記タ
ワー61底部からの降流管69が、蒸発器64のコイル64cを
経てブラインポンプ70に至り、該ポンプ70からはタワー
61上部内へ昇流管71が導かれており、前記降流管69に並
列して、ブライン収集管72,ブラインタンク73並びにブ
ライン注入ポンプ74を有するブライン注入管75が設けら
れている。
FIG. 5 is a schematic configuration diagram showing a heating operation flow. In the figure, 61 is a heating tower and 62 is the tower 61.
A water replenishing valve for replenishing the water for adjusting the concentration of the brine b to the bottom of the, a heat pump unit 63, an evaporator 64 for the refrigerant r
A cooling water condenser 65, a hot water condenser 66, a main compressor 67 and a booster compressor 68. Then, the downflow pipe 69 from the bottom of the tower 61 reaches the brine pump 70 via the coil 64c of the evaporator 64, and from the pump 70, the tower
An ascending pipe 71 is introduced into the upper part of the 61, and a brine collecting pipe 72, a brine tank 73, and a brine injection pipe 75 having a brine injection pump 74 are provided in parallel with the descending pipe 69.

また、76は送水ポンプで、水槽(この場合は温水用)
77から温水whを吸入する吸入管78と、温水コンデンサ66
のコイル66cを経由して前記水槽77へ戻す吐出管79とに
接続されている。
Further, 76 is a water supply pump, which is a water tank (for hot water in this case)
Intake pipe 78 for inhaling hot water wh from 77 and hot water condenser 66
It is connected to the discharge pipe 79 which returns to the water tank 77 via the coil 66c.

叙上の構成において冬期の暖房運転時には、ヒートポ
ンプユニット63により冷却され、例えば外気aよりも低
温の−11℃に保たれたブラインbをヒーティングタワー
(夏期はクーリングタワーとなる)61内に散布し、外気
(湿球温度−1.5℃)aに接触させて−7℃まで加熱す
る。このブラインbは、ヒートポンプユニット63の蒸発
器64のコイル64cに流入し、更に低温の冷媒rに熱を与
え−16℃で蒸発させるが、ブラインbは−11℃まで蒸発
器64で冷却され再びヒーティングタワー61へ戻る。この
ブラインbの循環路は、太い実線で示したものである。
In the above configuration, during the heating operation in the winter season, the brine b cooled by the heat pump unit 63 and kept at, for example, −11 ° C. lower than the outside air a is sprayed into the heating tower (which becomes the cooling tower in the summer) 61. , Contact with outside air (wet bulb temperature -1.5 ° C) a and heat to -7 ° C. The brine b flows into the coil 64c of the evaporator 64 of the heat pump unit 63 and heats the low-temperature refrigerant r to evaporate at -16 ° C, but the brine b is cooled to -11 ° C by the evaporator 64 and is again cooled. Return to heating tower 61. The circulation path of this brine b is shown by a thick solid line.

一方、蒸発した冷媒rは、2台の圧縮機67,68によっ
て高温高圧に圧縮され、温水コンデンサ66まで運ばれて
コイル66c内の温水whに熱を与えて53℃で凝縮し蒸発器6
4へ戻るが、温水whは45℃に温度上昇して水槽77へ帰り
貯溜される。この温水whの循環路は、太い破線で示した
ものである。
On the other hand, the evaporated refrigerant r is compressed into high temperature and high pressure by the two compressors 67 and 68, is carried to the hot water condenser 66, gives heat to the hot water wh in the coil 66c, condenses it at 53 ° C, and then the evaporator 6
Returning to 4, the temperature of the hot water wh rises to 45 ℃ and returns to the water tank 77 for storage. The circulation path of this warm water wh is shown by a thick broken line.

また、夏期の冷房運転時には、第6図の冷房運転フロ
ーの概略構成図に示すように、ヒーティングタワー61は
クーリングタワー61′に、ブラインポンプ70は冷却水ポ
ンプ70′にそれぞれなり、ブラインbはブラインタンク
73に集められる一方、水補給弁62から供給される水、す
なわち冷却水wrと交替する。そして、クーリングタワー
61′からの降流管69′は、冷却水コンデンサ65内のコイ
ル65cを経由して冷却水ポンプ70′の吸入口へ導かれ、
また、送水ポンプ(この場合は冷水用)76′からの吐出
管79′は、蒸発器64内のコイル64cを経て水槽(この場
合は冷水用)77′へ導かれ、これらによって一般のター
ボ冷凍機と同じ組合せシステムとなり、冷却水wrは、太
い一点鎖線で示す循環路に沿って流れ、一方、水槽77′
内の冷水wcは、細い破線で示す経路に従って循環する
が、これらの熱の授受に関する作用の説明は省略する。
Further, during the cooling operation in the summer, as shown in the schematic configuration diagram of the cooling operation flow in FIG. 6, the heating tower 61 becomes the cooling tower 61 ′, the brine pump 70 becomes the cooling water pump 70 ′, and the brine b becomes Brine tank
While being collected in 73, it replaces the water supplied from the water supply valve 62, that is, the cooling water wr. And the cooling tower
The downflow pipe 69 ′ from 61 ′ is guided to the suction port of the cooling water pump 70 ′ via the coil 65c in the cooling water condenser 65,
Further, a discharge pipe 79 'from a water pump (for cold water in this case) 76' is led to a water tank (for cold water in this case) 77 'via a coil 64c in the evaporator 64, by which a general turbo refrigeration is carried out. In the same combination system as the machine, the cooling water wr flows along the circulation path shown by the thick dashed line, while the water tank 77 '
The cold water wc in the inside circulates along the path indicated by the thin broken line, but the description of the action relating to the transfer of heat is omitted.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

しかしながら、このような従来のヒートポンプにあっ
ては前者の場合、大型ビルに適用するには多数台を設置
しなければならないばかりか、暖房に際してデフロスト
時には、一時的に暖房が不能になり、補助的にボイラを
設ける必要がある。
However, in the case of such a conventional heat pump, in the former case, in order to apply it to a large building, it is necessary to install a large number of units, and at the time of defrosting during heating, the heating is temporarily disabled and the auxiliary heat pump is used. It is necessary to install a boiler in.

また、後者のヒーティングタワー方式のものにあって
は、一番重要な要素である氷蓄熱ができないという致命
的な欠点がある。
In addition, the latter heating tower system has a fatal drawback that it cannot store the most important element, ice heat storage.

なお、近年ビルディングの冷暖房には蓄熱が叫ばれて
おり、特に、夏期の冷房時には氷蓄熱のようなコンパク
トでしかも高効率な装置が要望されている。しかも、年
間冷暖房用として1台で夏冬兼用できる装置の開発を急
務としているのが現状である。
In recent years, heat storage has been sought for cooling and heating of buildings, and in particular, during cooling in the summer, a compact and highly efficient device such as ice heat storage has been demanded. Moreover, there is an urgent need to develop a device that can be used both for summer and winter for annual heating and cooling.

本発明は、叙上の事情に鑑みてなされたもので、構成
も簡単で、冷房と暖房との運転状態変換を、タワー系統
循環路内のブラインと冷却水との相互入替えによって行
い、しかも変換操作も極めて簡易に実施でき、さらに省
エネルギー効果に富み、効率にすぐれた蓄熱式ヒートポ
ンプを得ることを目的としている。
The present invention has been made in view of the above circumstances, has a simple configuration, and performs operation state conversion between cooling and heating by mutually exchanging brine and cooling water in a tower system circulation path, and further converting The purpose of the present invention is to obtain a heat storage type heat pump that is extremely easy to operate, has a high energy saving effect, and is highly efficient.

〔課題を解決するための手段〕[Means for solving the problem]

本発明に係る蓄熱式ヒートポンプは、屋上の冷却加熱
塔からのタワー系統循環路と、水槽内コイルからの水槽
系統循環路とに、複数の三方弁と、これらにそれぞれ接
続する連結管とでなる転換系統路を組み合わせ、前記三
方弁の通路変更を行うことによりヒートポンプユニット
の凝縮器と蒸発器とにそれぞれ連通する前記2つの循環
路との組み合せを夏期,冬期にそれぞれ対応して交替
し、ブラインと水とを入れ替えて使用する構成としたも
のである。
The heat storage type heat pump according to the present invention comprises a tower system circulation path from a roof heating and cooling tower, a water tank system circulation path from an in-tank coil, a plurality of three-way valves, and connecting pipes respectively connected to these three-way valves. By combining the conversion system paths and changing the path of the three-way valve, the combination of the two circulation paths communicating with the condenser and the evaporator of the heat pump unit is changed according to summer and winter, respectively, and the brine The water and water are used interchangeably.

なお、冬期の場合、水槽系統循環路に空調用の水槽内
水を直接、使用するように配管し、往流三方弁及び還流
三方弁を設ける構成もある。
In the winter, there is also a configuration in which water in the water tank for air conditioning is directly used in the water tank system circulation path, and a forward three-way valve and a return three-way valve are provided.

〔作用〕[Action]

叙上の構成により、夏期冷房に際しては、冷却加熱塔
(冷却用)からのタワー系統循環路は水を充填して凝縮
器に接続し、水槽系統循環路には、ブラインを充填して
蒸発器に接続し、それぞれに熱交換を行って水槽内コイ
ルにより水槽内水を冷却する。
Due to the above configuration, during summer cooling, the tower system circulation path from the cooling and heating tower (for cooling) is filled with water and connected to the condenser, and the water tank system circulation path is filled with brine and the evaporator is installed. And heat exchange with each other to cool the water in the water tank by the coil in the water tank.

また、冬期暖房に際しては、転換系統路の三方弁全部
を切り替えて、冷却加熱塔(加熱用)からのタワー系統
循環路には蒸発器を含ませてブラインを充填し、一方、
水槽系統循環路には凝縮器を含ませて水を充填し、それ
ぞれに熱交換を行って水槽内コイルにより、水槽内水を
加熱する。
During winter heating, all three-way valves in the conversion system path are switched, and the tower system circulation path from the cooling and heating tower (for heating) is equipped with an evaporator to be filled with brine, while
The water tank system circulation path is filled with water by including a condenser, and heat exchange is performed on each of them to heat the water in the water tank by the coil in the water tank.

なお、冬期、他の手段として上記水槽系統循環路から
往流,還流三方弁の切替えにより、水槽内コイルを除外
し、水槽内水へ連通させた場合には、水槽内水を凝縮器
に導いて加熱するとともに、そのまま水槽内水を空調器
へ送って暖房を行う。
In winter, as another means, if the water tank coil is removed by switching the outflow and return three-way valves from the water tank system circulation path to communicate with the water tank water, the water tank water is guided to the condenser. It heats the water in the aquarium and heats it by sending the water in the water tank to the air conditioner.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図及び第2図に基づい
て説明する。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2.

まず、構成を述べる。 First, the configuration will be described.

本実施例の概略構成を夏期使用の状態で示す第1図に
おいて、1は、建造物の屋上に設置され、ファン1fで吸
入排出される外気aによって、内設された散布器17から
の水wを冷却する冷却加熱塔(この場合、クーリングタ
ワー1Cとして作用する)、2はヒートポンプユニット
で、圧縮機3と凝縮器4及び蒸発器5とが組み合ってな
る。6は、地下室に複数個配設され、上下で連通した水
槽である。
In FIG. 1 showing the schematic configuration of the present embodiment in a state of being used in summer, 1 is water installed from the spreader 17 installed on the rooftop of the building by the outside air a sucked and discharged by the fan 1f. A cooling and heating tower (which acts as a cooling tower 1C in this case) for cooling w is a heat pump unit 2 which is composed of a compressor 3, a condenser 4 and an evaporator 5 in combination. Reference numeral 6 denotes a water tank which is provided in plural in the basement and communicates with each other in the vertical direction.

そして、タワー系統循環路10は、クーリングタワー1C
の底部に接続された降流管11−第1三方弁31−吸水管12
−送水ポンプ13−導入管14−凝縮器内コイル4c−導出管
15−第2三方弁32−昇流管16−散布器17とから形成され
る一方、水槽系統循環路20は、複数の水槽6の各水槽内
コイル6cから立ち上った往流枝管21sを合流させる往流
管21−第3三方弁33−吸液管22−ブラインポンプ23−導
入管24−蒸発器内コイル5c−導出管25−第4三方弁34−
還流管26−還流枝管26s−水槽内コイル6cの回路により
形成されている。
The tower system circuit 10 is the cooling tower 1C.
Downstream pipe 11-first three-way valve 31-water absorption pipe 12 connected to the bottom of the
− Water pump 13 − Inlet pipe 14 − Condenser coil 4c − Outlet pipe
On the other hand, the water tank system circulation path 20 is formed by the 15-second three-way valve 32-the upflow pipe 16-the sprinkler 17 and joins the outflow branch pipes 21s rising from the respective water tank coils 6c of the plurality of water tanks 6. Outflow pipe 21-Third three-way valve 33-Liquid suction pipe 22-Brine pump 23-Inlet pipe 24-Evaporator coil 5c-Outlet pipe 25-Fourth three-way valve 34-
It is formed by a circuit of the reflux pipe 26-the reflux branch pipe 26s-the coil 6c in the water tank.

また、転換系統路30は、前記第1三方弁31から分岐し
て吸液管22に接続される第1連結管35,第2三方弁32か
ら分岐して還流管26に接続される第2連結管36,第3三
方弁33から分岐して吸水管12に接続される第3連結管37
及び第4三方弁34から分岐して昇流管16に接続される第
4連結管38とからなる。
Further, the conversion system passage 30 is a second connecting pipe 35 branched from the first three-way valve 31 and connected to the liquid suction pipe 22, and a second connecting pipe 35 branched from the second three-way valve 32 and connected to the return pipe 26. Connection pipe 36, third connection pipe 37 branched from the third three-way valve 33 and connected to the water absorption pipe 12
And a fourth connecting pipe 38 branched from the fourth three-way valve 34 and connected to the ascending pipe 16.

なお、空調系統循環路40は、水槽6の側壁6Sの下部に
接続されたM主管41に並列された第5三方弁45,二次ポ
ンプ43,第6三方弁46を経由した後、各室の空調機AHUに
は分岐管49aにより導かれるM経路と、前記側璧6Sの上
部に取り付けられたN主管42に並設された第7三方弁4
7,第8三方弁48を経由した後、前記空調機AHUに分岐管4
9bにより導かれるN経路と、各三方弁45,46,47,48から
それぞれ他の主管41又は42へ接続される連絡管45r,46r,
47r,48rとから構成されている。
The air conditioning system circulation path 40 passes through the fifth three-way valve 45, the secondary pump 43, and the sixth three-way valve 46, which are arranged in parallel with the M main pipe 41 connected to the lower portion of the side wall 6S of the water tank 6, and then each chamber. In the air conditioner AHU of No. 7, the 7th three-way valve 4 installed in parallel with the M path guided by the branch pipe 49a and the N main pipe 42 attached to the upper part of the side wall 6S.
7, After passing through the 8th three-way valve 48, branch pipe 4 to the air conditioner AHU
N path guided by 9b and connecting pipes 45r, 46r, which are connected from each three-way valve 45, 46, 47, 48 to another main pipe 41 or 42, respectively.
It is composed of 47r and 48r.

なお、図示省略したが、地下室に設置されたブライン
タンクからブライン補給ポンプを介して導出管25(又は
導入管24)に接続する塞止弁付き注入管と、該導出管25
からブラインタンクへの塞止弁付き収集管とが設けられ
ており、また、導出管15(又は導入管14)には、屋上の
高架水槽から水補給弁付き給水管が導かれ、かつ、排水
弁も設けてある。
Although not shown in the drawings, an injection pipe with a blocking valve connected to the outlet pipe 25 (or the inlet pipe 24) from a brine tank installed in the basement via a brine supply pump, and the outlet pipe 25.
A collection pipe with a blocking valve from the roof tank to the brine tank is provided, and a water supply pipe with a water supply valve is introduced from the elevated water tank on the roof to the outlet pipe 15 (or the introduction pipe 14) and drainage is performed. A valve is also provided.

従って、冷房用と暖房用との切替えに対しては、第1
〜第4三方弁31〜34の切替え操作だけでなく、ブライン
bと水wとの入替えを行う。
Therefore, for switching between cooling and heating, the first
~ In addition to the switching operation of the fourth three-way valves 31 to 34, the brine b and the water w are exchanged.

すなわち、ブラインbは前記ブラインタンクに1度収
納し、他の配管系から水wを完全に抜いた後、前記三方
弁31〜34の切替えを行ってからブライン補給ポンプを用
いて該配管系へ充填する。そして、ブラインbを抜いた
配管系へは前記高架水槽から水wを補給する。
That is, the brine b is stored once in the brine tank, the water w is completely drained from the other piping system, and then the three-way valves 31 to 34 are switched to the brine system using the brine replenishing pump. Fill. Then, water w is replenished from the elevated water tank to the piping system from which the brine b has been removed.

次に、作用について述べる。 Next, the operation will be described.

夏期冷房の場合、第1図に見られるように、各三方弁
31,32,33,34をすべて直通状態に設定して使用する。
In the case of summer air conditioning, as shown in Fig. 1, each three-way valve
Set all 31,32,33,34 to the direct connection state before use.

まず、タワー系統循環路10においては、送水ポンプ13
から送り出された32℃の水wは、ヒートポンプ2の凝縮
器内コイル4cにより、凝縮器4内の冷媒rから熱を奪い
37℃に温度上昇し導出管15,第2三方弁32を通り昇流管1
6から散布器17に到達してクーリングタワー1C内へ放散
される。そこで、32℃の外気aにより放散された水wは
熱を奪われて冷却し、前記タワー1Cの底部に溜り、次い
で降流管11を流下して第1三方弁31,吸水管12を通り送
水ポンプ13に戻る太い実線で示した水wによる冷却サイ
クルを行う。
First, in the tower system circuit 10, the water pump 13
The 32 ° C. water w sent from the heat pump 2 takes heat from the refrigerant r in the condenser 4 by the coil 4c in the condenser of the heat pump 2.
The temperature rises to 37 ℃ and the ascending pipe 1 through the outlet pipe 15 and the second three-way valve 32
It reaches the spreader 17 from 6 and is diffused into the cooling tower 1C. Therefore, the water w dissipated by the outside air a at 32 ° C. is deprived of heat, cools, accumulates at the bottom of the tower 1C, and then flows down the downcomer pipe 11 to pass through the first three-way valve 31 and the water absorption pipe 12. Returning to the water pump 13, a cooling cycle is performed using the water w shown by the thick solid line.

一方、水槽系統循環路20においては、ブラインポンプ
23から送り出された−4℃のブラインbは、蒸発器内コ
イル5cにより蒸発器5内の冷媒rに熱を奪われて−8℃
に冷却し、導出管25,第4三方弁34,還流管26を通って還
流枝管26sからそれぞれの水槽内コイル6cに入り、水槽
6内の水w6から熱を奪いこれを冷却して−8℃にする
が、自らは−4℃に昇温して往流枝管21s,往流管21,第
3三方弁33,吸液管22を通り再びブラインポンプ23へ戻
る二重線で示したブラインbによる冷却サイクルを行
う。
On the other hand, in the water tank system circuit 20, the brine pump
The brine -4 ° C brine b sent from 23 is deprived of heat by the refrigerant r in the evaporator 5 by the coil 5c in the evaporator, and is -8 ° C.
It was cooled to, discharge pipe 25, the fourth three-way valve 34, enters from the reflux branch pipe 26s through the return pipe 26 to the respective water tank coil 6c, removes heat from the water w 6 in the water tank 6 which is cooled The temperature is raised to -8 ° C, but the temperature rises to -4 ° C, and it goes through the outflow branch pipe 21s, the outflow pipe 21, the third three-way valve 33, and the liquid suction pipe 22 to the brine pump 23 again by a double line. The cooling cycle with the indicated brine b is performed.

この冷却サイクルで水槽内水w6を冷やすだけでなく、
水槽内コイル6cの周囲に氷を作成し、これを生長させ
る。このことによって小さな蓄熱水槽で大容量の冷熱を
蓄熱できる。
This cooling cycle not only cools the water w 6 in the water tank,
Create ice around the coil 6c in the aquarium and grow it. This makes it possible to store a large amount of cold heat in a small heat storage water tank.

さらに、夜間このブラインヒートポンプを運転するこ
とによって安価な夜間料金を利用することができる。
Further, by operating this brine heat pump at night, a cheap night charge can be used.

なお、この水槽内水w6は、空調系統循環路40のM経路
によって所要の室の空調機AHUへ送られ、N経路を通っ
て水槽6へ戻る循環経路により、ビルディング内の冷房
を実施する。
The water in the water tank w 6 is sent to the air conditioner AHU in the required room by the M path of the air conditioning system circulation path 40, and the circulation path that returns to the water tank 6 through the N path is used to cool the building. .

また、冬期暖房に際しては、転換系経路30の各三方弁
31〜34を、第2図に示すように、夏期冷房の直通状態か
ら90度逆時計方向へ回動して折曲通路状態に設定する。
そこで、タワー系統循環路10′は、ブラインポンプ23−
導入管24−蒸発器内コイル5c−導出管25−第4三方弁34
−第4連結管38−昇流管16−散布器17−ヒーティングタ
ワー1H−降流管11−第1三方弁31−第1連結管35−吸液
管22−ブラインポンプ23の二重線で示した経路に形成さ
れ、該ブラインポンプ23から送り出された0℃のブライ
ンbは、蒸発器内コイル5cにより蒸発器5内の冷媒rに
熱を奪われて−11℃に冷却し、前記経路に沿って散布器
17に導かれヒーティングタワー1H内に散布される。この
とき、0℃の外気aから熱を奪って−7℃に昇温したブ
ラインbは、降流管11を経て再びブラインポンプ23へ戻
る二重線で示したブラインbによる加熱サイクルを行
う。
In addition, for winter heating, each three-way valve of the conversion route 30
As shown in FIG. 2, the parts 31 to 34 are turned 90 degrees counterclockwise from the direct state of summer cooling to establish a bent passage state.
Therefore, the tower system circuit 10 'is provided with a brine pump 23-
Inlet pipe 24-evaporator coil 5c-outlet pipe 25-fourth three-way valve 34
-Fourth connection pipe 38-Upflow pipe 16-Sprayer 17-Heating tower 1H-Downcomer pipe 11-First three-way valve 31-First connection pipe 35-Liquid suction pipe 22-Double line of brine pump 23 The 0 ° C. brine b formed in the path indicated by and is sent from the brine pump 23 is deprived of heat by the refrigerant r in the evaporator 5 by the in-evaporator coil 5c and cooled to −11 ° C. Spreader along the path
It is guided by 17 and scattered in the heating tower 1H. At this time, the brine b, which has taken heat from the outside air a of 0 ° C. and has been heated to −7 ° C., returns to the brine pump 23 through the downcomer 11 and again undergoes a heating cycle by the brine b indicated by the double line.

一方、水槽系統循環路20′は、送水ポンプ13−導入管
14−凝縮器内コイル4c−導出管15−第2三方弁32−第2
連結管36−還流管26−還流枝管26s−水槽内コイル6c−
往流枝管21s−往流管21−第3三方弁33−第3連結管37
−吸水管12−送水ポンプ13の太い実線で示した経路に形
成され、該送水ポンプ13から送り出された40℃の水w
は、凝縮器内コイル4cにより凝縮器4内の冷媒rから熱
を奪って45℃に昇温し、水槽内コイル6cに導かれて水槽
6内の水w6に熱を与えて45℃に昇温させる反面、自らは
40℃となって送水ポンプ13へ戻る太い実線で示した水w
による加熱サイクルを行う。そして、45℃に加熱された
水槽内水w6は、空調系統循環路40の各三方弁45,46,47,4
8を90度時計方向へ回動して各連絡管45r〜48rにそれぞ
れ連通させた後、水槽6の側壁6Sの上部から実線で示す
往路に従い二次ポンプ43により空調機AHUへ送られ、同
じく実線で示す復路に沿い側壁6Sの下部に戻る循環経路
によって、ビルディング内の暖房を実施する。
On the other hand, the water tank circulation circuit 20 'is the water supply pump 13-introduction pipe.
14-coil 4c in condenser-outlet pipe 15-second three-way valve 32-second
Connection pipe 36-Recirculation pipe 26-Recirculation branch pipe 26s-Water tank coil 6c-
Outflow branch pipe 21s-Outflow pipe 21-Third three-way valve 33-Third connecting pipe 37
-Water absorption pipe 12-Water w at 40 ° C. which is formed in the path indicated by the thick solid line of the water supply pump 13 and is sent out from the water supply pump 13.
Is heated by the coil 4c in the condenser to heat the refrigerant r in the condenser 4 to 45 ° C., and is guided to the coil 6c in the water tank to heat the water w 6 in the water tank 6 to 45 ° C. While raising the temperature,
Return to water pump 13 at 40 ° C Water w shown by thick solid line
Heating cycle. Then, the water in the water tank w 6 heated to 45 ° C. is the three-way valves 45, 46, 47, 4 of the air conditioning system circulation path 40.
After rotating 8 through 90 degrees clockwise to communicate with each of the connecting pipes 45r to 48r, the secondary pump 43 sends the air from the upper part of the side wall 6S of the water tank 6 to the air conditioner AHU by the secondary pump 43 in the same way. The interior of the building is heated by the circulation route that returns to the bottom of the side wall 6S along the return route indicated by the solid line.

次に、他の実施例を第3図に基づいて述べる。 Next, another embodiment will be described with reference to FIG.

本実施例は、その水槽系統循環路20″を、冬期の暖房
運転に際する蓄熱回路としては、水槽内コイル6cを経路
から除外し、水槽内水w6をヒートポンプユニット2の凝
縮器内コイル4cに直接導くように、水槽内水直接加温系
統路50を付設したものであって、その他の構成は、前述
の水槽系統循環路20′と同様である。
In this embodiment, the water tank system circulation path 20 ″ is used as a heat storage circuit for the heating operation in the winter, the water tank coil 6c is excluded from the path, and the water tank water w 6 is fed into the condenser coil of the heat pump unit 2. The water tank internal water direct heating system path 50 is additionally provided so as to be directly guided to the water tank 4c, and other configurations are similar to those of the water tank system circulation path 20 'described above.

前記加温系統路50は、送水ポンプ13の吸入口手前にお
いて、往流管21に設けた往流三方弁51と、水槽6の一方
の側壁6S下部とを連絡する往水管52を設け、また、第2
連結管36と還流枝管26sとの間において還流管26に設け
た還流三方弁53と、水槽6の他方の側壁6S′上部とを連
絡する還水管54を設けた構成としてある。
The warming system path 50 is provided with an outflow pipe 52 which connects the outflow three-way valve 51 provided in the outflow pipe 21 and a lower part of one side wall 6S of the water tank 6 in front of the intake port of the water pump 13. , Second
Between the connecting pipe 36 and the reflux branch pipe 26s, a reflux three-way valve 53 provided on the reflux pipe 26 and a return water pipe 54 that connects the upper part of the other side wall 6S 'of the water tank 6 are provided.

したがって、水槽内水w6は、往流三方弁51と還流三方
弁53とを折曲通路状態に設定し水槽系統循環路20″によ
り凝縮器内コイル4cから直接受熱して昇温するととも
に、空調系統循環路40により空調器AHUに送られた暖房
を行うため、熱効率がさらに向上する。
Therefore, the water in the water tank w 6 is heated by the direct heat from the coil 4c in the condenser by the water tank system circulation path 20 ″ by setting the outward three-way valve 51 and the return three-way valve 53 in a bent passage state, and Since the heating sent to the air conditioner AHU is performed by the air conditioning system circulation path 40, the thermal efficiency is further improved.

なお、本実施例を夏期に使用する場合等には、往流三
方弁51と還流三方弁53とを逆時計方向に90度回動して直
線通路状態に設定することにより前記加温系統路50を除
外して運転すればよい。
When the present embodiment is used in the summer, etc., the forward flow three-way valve 51 and the return flow three-way valve 53 are rotated 90 degrees counterclockwise to set the straight passage state to set the heating system path. You should drive excluding 50.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明によれば、夏冬兼用の冷却
加熱塔,ヒートポンプユニット及び水槽とを、転換系統
路を組み合わしたタワー系統循環路と水槽系統循環路と
で接続して1つのシステムとした蓄熱式ヒートポンプを
構成したため、転換系統路における複数の三方弁の切替
えだけにより、ブラインと水との流路交替が極めて円滑
簡易に行えるので、1台の機械で冷房用にも暖房用にも
効率よく使用することができ、従来、大型ビルでは不可
能としていた年間蓄熱運転を可能にし得たばかりか、部
品点数も少く費用も安上りで済むという効果がある。
As described above, according to the present invention, a cooling / heating tower, a heat pump unit, and a water tank for both summer and winter are connected by a tower system circulation path and a water tank system circulation path, which are combined with conversion system paths, to form one system. Since the heat storage heat pump is configured as described above, it is possible to switch the flow path between brine and water very smoothly and simply by switching a plurality of three-way valves in the conversion system path, so that one machine can be used for both cooling and heating. It is possible to use it efficiently, and it is possible not only to enable the annual heat storage operation, which was not possible in a large building, but also to reduce the number of parts and the cost.

また、本発明では冷却及び加熱兼用の一体型の冷却加
熱塔を用いており、小さな熱交換器のスペースで済むと
いう効果がある。
Further, in the present invention, since an integrated cooling / heating tower for both cooling and heating is used, there is an effect that a small space for a heat exchanger is sufficient.

なお、冬期暖房用として水槽系統循環路に、水槽内水
直接加温系統路を付設した場合には、空調用の水槽内水
を凝縮器により直接加温することとなるので暖房効率を
さらに向上することができるという効果が得られる。
If a water tank system circulation path is attached to the water tank system circulation path for heating in the winter, the water in the water tank for air conditioning will be heated directly by the condenser, further improving heating efficiency. The effect of being able to do is obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明の一実施例の夏期使用の状態で示す概
略構成図、第2図は、同じく冬期使用の状態を示す概略
構成図、第3図は、他の実施例の冬期使用の状態を示す
概略構成図、第4図は、従来の小型ビルディングにおけ
る空気熱源ヒートポンプの概略構成図、第5図は、従来
のヒーティングタワー方式ヒートポンプの暖房運転状態
を示す概略構成図、第6図は、同じく冷房運転状態を示
す概略構成図である。 1……冷却加熱塔 2……ヒートポンプユニット 4……凝縮器 5……蒸発器 6c……水槽内コイル 10,10′……タワー系統循環路 11……降流管 12……吸水管 15……導出管 16……昇流管 20,20′20″……水槽系統循環路 22……吸液管 25……導出管 26……還流管 30……転換系統路 31……第1三方弁 32……第2三方弁 33……第3三方弁 34……第4三方弁 35……第1連結管 36……第2連結管 37……第3連結管 38……第4連結管 50……水槽内水直接加温系統路 51……往流三方弁 52……往水管 53……還流三方弁 54……還水管 w……水 w6……水槽内水 b……ブライン
FIG. 1 is a schematic configuration diagram showing a summer use state according to an embodiment of the present invention, FIG. 2 is a schematic configuration diagram showing a winter use state similarly, and FIG. 3 is a winter use state according to another embodiment. FIG. 4 is a schematic configuration diagram of an air heat source heat pump in a conventional small building, FIG. 5 is a schematic configuration diagram illustrating a heating operation state of a conventional heating tower heat pump, and FIG. The figure is also a schematic configuration diagram showing a cooling operation state. 1 …… Cooling / heating tower 2 …… Heat pump unit 4 …… Condenser 5 …… Evaporator 6c …… Coils in water tank 10,10 ′ …… Tower system circulation path 11 …… Downcomer pipe 12 …… Water absorption pipe 15… … Outlet pipe 16 …… Upcomer pipe 20,20′20 ″ …… Water tank system circuit 22 …… Suction pipe 25 …… Outlet pipe 26 …… Reflux pipe 30 …… Conversion system line 31 …… First three-way valve 32 …… Second three-way valve 33 …… Third three-way valve 34 …… Fourth three-way valve 35 …… First connection pipe 36 …… Second connection pipe 37 …… Third connection pipe 38 …… Fourth connection pipe 50 …… Water in the water tank Direct heating system path 51 …… Outflow three-way valve 52 …… Outgoing pipe 53 …… Return three-way valve 54 …… Return water pipe w …… Water w 6 …… Water in the water tank b …… Brine

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】冷却及び加熱機能を有した冷却加熱塔から
のタワー系統循環路と、水槽内コイルからの水槽系統循
環路とをヒートポンプユニットに組み合わせてなる蓄熱
式ヒートポンプにおいて、両循環路のそれぞれの配管途
中に、他方の循環路の配管に接続する連結管を有する三
方弁複数を設けてなる転換系統路を組み付け、前記ヒー
トポンプユニットの凝縮器と蒸発器とにそれぞれ連通す
る前記両循環路との組合せを、夏期冷房,冬期暖房に対
応して三方弁の切替えによりブラインと水とを入れ替え
て使用する構成としたことを特徴とする蓄熱式ヒートポ
ンプ。
1. A heat storage heat pump in which a tower system circulation path from a cooling and heating tower having a cooling and heating function and a water tank system circulation path from a coil in a water tank are combined in a heat pump unit. In the middle of the piping of, the assembling of the conversion system path provided with a plurality of three-way valves having a connecting pipe connected to the piping of the other circulation path, and the two circulation paths communicating with the condenser and the evaporator of the heat pump unit, respectively. The heat storage heat pump characterized in that the combination of the above is configured to switch between the brine and water by switching the three-way valve for summer cooling and heating in winter.
【請求項2】前記水槽系統循環路に、水槽内水を通水す
る水槽内水直接加温系統路を、水槽内コイルに対し切替
え可能に並列して設けたことを特徴とする請求項1記載
の蓄熱式ヒートポンプ。
2. The water tank system circulation path is provided with a water tank internal water direct heating system path for allowing water in the water tank to pass therethrough in parallel with the coil in the water tank in a switchable manner. The heat storage heat pump described.
JP63193394A 1988-08-04 1988-08-04 Heat storage heat pump Expired - Lifetime JPH0823421B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63193394A JPH0823421B2 (en) 1988-08-04 1988-08-04 Heat storage heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63193394A JPH0823421B2 (en) 1988-08-04 1988-08-04 Heat storage heat pump

Publications (2)

Publication Number Publication Date
JPH0244134A JPH0244134A (en) 1990-02-14
JPH0823421B2 true JPH0823421B2 (en) 1996-03-06

Family

ID=16307215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63193394A Expired - Lifetime JPH0823421B2 (en) 1988-08-04 1988-08-04 Heat storage heat pump

Country Status (1)

Country Link
JP (1) JPH0823421B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5067469A (en) * 1989-09-11 1991-11-26 Ford Motor Company Fuel vapor recovery system and method
JP3024160B2 (en) * 1990-03-22 2000-03-21 日産自動車株式会社 Failure diagnosis device for evaporative fuel treatment equipment
JP2013152031A (en) * 2012-01-24 2013-08-08 Nakano Refrigerators Co Ltd Refrigerating apparatus
KR101999270B1 (en) * 2017-09-04 2019-07-11 신라이앤티(주) Vacuum freeze drying device and method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60185134U (en) * 1984-05-16 1985-12-07 東京電力株式会社 heat exchange equipment

Also Published As

Publication number Publication date
JPH0244134A (en) 1990-02-14

Similar Documents

Publication Publication Date Title
EP1563229B1 (en) Air conditioning system and methods
US4380156A (en) Multiple source heat pump
US4856578A (en) Multi-function self-contained heat pump system
EP0134015B1 (en) Space cooling and heating and hot water supplying apparatus
CN102384586B (en) Parallel-connection type mutually-helped defrosting water heater of air source heat pump
CN102788447A (en) Heat pump air conditioning system and water dispenser
CN103423815A (en) Solution-assistant energy-storage domestic air conditioner
CN103148553A (en) Ice storage type water heating cooling and heating central air conditioner
JP2684814B2 (en) Air conditioner
JPH0823421B2 (en) Heat storage heat pump
JPS6367633B2 (en)
KR100345579B1 (en) The combined Compact Refrigerative / Regenerative Heat-Pump System
JP2713034B2 (en) Air conditioner and air conditioning method using moisture absorbing liquid
KR20030082822A (en) The Combined Cooling and Heating Ice Regenerative System
JPS6256426B2 (en)
CN205227904U (en) Collect air source heat pump and fresh air processing just need not defrosting in an organic whole device
CN217876223U (en) Solution dehumidification evaporation water cooler and solution dehumidification air conditioner
CN220287814U (en) Outdoor unit and air source heat pump system
CN216384419U (en) Four-pipe air-cooled cold and hot water unit
JP3043080B2 (en) Air conditioning system
JPH0471142B2 (en)
JP4266426B2 (en) Air conditioner with ice storage tank
CN105509201A (en) Device integrating air source refrigerator and fresh air unit and being capable of enhancing heat dissipation
JPS5829396Y2 (en) Air conditioning equipment
JP2603708B2 (en) Air conditioning system

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090306

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090306

Year of fee payment: 13