JP4266426B2 - Air conditioner with ice storage tank - Google Patents

Air conditioner with ice storage tank Download PDF

Info

Publication number
JP4266426B2
JP4266426B2 JP05076099A JP5076099A JP4266426B2 JP 4266426 B2 JP4266426 B2 JP 4266426B2 JP 05076099 A JP05076099 A JP 05076099A JP 5076099 A JP5076099 A JP 5076099A JP 4266426 B2 JP4266426 B2 JP 4266426B2
Authority
JP
Japan
Prior art keywords
refrigerant
ice
liquid
tank
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05076099A
Other languages
Japanese (ja)
Other versions
JP2000249374A (en
Inventor
美暁 黒澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP05076099A priority Critical patent/JP4266426B2/en
Publication of JP2000249374A publication Critical patent/JP2000249374A/en
Application granted granted Critical
Publication of JP4266426B2 publication Critical patent/JP4266426B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、氷蓄熱槽を備えた空気調和装置に係り、この氷蓄熱槽に蓄えられた冷熱を放熱して放冷冷房運転をする氷蓄熱槽を備えた空気調和装置に関する。
【0002】
【従来の技術】
一般に、図2に示すように、圧縮機1、熱源側熱交換器2、四方弁3及び電動膨張弁4を備えた熱源側ユニット5と、氷蓄熱槽6内に冷媒管が水没状態で配設されてこの冷媒管外周に氷を生成する氷蓄熱ユニット8と、利用側熱交換器9とを組み合わせて氷蓄熱運転、放冷冷房運転及び通常冷房運転をする空気調和装置10が知られている。
【0003】
氷蓄熱運転は、圧縮機1からのガス冷媒が熱源側熱交換器2で凝縮して液冷媒となり、その後に膨張弁4を通り、氷蓄熱槽6内の冷媒管に流入して、この氷蓄熱槽6内で蒸発し、製氷した後ガス冷媒が圧縮機1へ戻される。
【0004】
放冷冷房運転は、熱源側ユニット5の圧縮機1を停止させ、氷蓄熱ユニット8に設置されて冷媒を圧送する液ポンプ又はガスポンプなどの循環ポンプ14(図2では液冷媒を圧送する液ポンプ)を稼働させることによりなされる。つまり、循環ポンプ14の稼働により、氷蓄熱ユニット8における氷蓄熱槽6の冷媒管7内で、氷に蓄熱された冷熱が冷媒に放熱され、このようにして冷熱を吸収して凝縮した液冷媒が利用側熱交換器9へ圧送され、この利用側熱交換器9において液冷媒が蒸発することにより放冷冷房運転が行われる。
【0005】
通常冷房運転は、圧縮機1から熱源側熱交換器2へ導かれて液冷媒となった冷媒を、氷蓄熱槽6の冷媒管7内へ流すことなく、利用側熱交換器9へ供給して液冷媒を蒸発し、この蒸発潜熱により冷房が行われる。
【0006】
【発明が解決しようとする課題】
ところで、前述の放冷冷房運転では、特に循環ポンプ14が液ポンプの場合に、冷媒が完全に凝縮されないで一部冷媒ガスがあるときに、この循環ポンプ14にキャビテーションが発生するおそれがある。そこで、この液ポンプを用いず、氷蓄熱槽6の冷媒管内の凝縮した液冷媒を複数(例えば2個)のサージタンク内に貯溜させ、これらのサージタンク内へ高圧ガス冷媒を交互に供給することにより、前記サージタンク内で凝縮した前記液冷媒を利用側熱交換器9へ圧送して、放冷冷房運転を実施するものが考えられる。
【0007】
しかし、この場合には、高圧ガス冷媒を複数のサージタンク内へ交互に供給させるタイミングがずれると、サージタンク内の液冷媒を利用側熱交換器9へ、滞ることなく連続的に圧送することができず、氷の冷熱を利用した放冷冷房運転を良好に実施できない恐れがある。
【0008】
本発明はこのような事情に鑑みてなされたもので、氷蓄熱槽内の氷の冷熱を利用した冷房運転を良好に行える氷蓄熱槽を備えた空気調和装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
請求項1記載の発明は、圧縮機及び熱源側熱交換器を備えた熱源側ユニットと、氷蓄熱槽内に生成する氷を用い蓄熱する機器並びに液冷媒を貯える複数のサージタンク及び小型圧縮機等を備えた氷蓄熱ユニットと、利用側熱交換器とを組み合わせて、少なくとも蓄熱運転または冷房運転をするようにした空気調和装置において、熱源側ユニットの圧縮機よりも容量の小さな小型圧縮機と、切替弁と、サージタンクと、利用側熱交換器と、氷蓄熱槽と、を冷媒管で接続して氷蓄熱利用の冷凍サイクルを構成し、小型圧縮機の吸込側に液面センサを設けると共に、この液面センサで小型圧縮機の吸込側に接続されたサージタンクの液状態を検知し、液冷媒の多いサージタンクを小型圧縮機の吐出側、液冷媒の少ないサージタンクを小型圧縮機の吸込側に接続されるように氷蓄熱利用の冷凍サイクル中の流れを切り替える切替弁を備え、この切替弁はいずれか1つのサージタンクが満液になったことをセンサが検知した際切り替えられることを特徴とする。
【0011】
請求項1に記載の発明には、次の作用がある。
【0012】
小型圧縮機の吸込側に液検知センサを設けておき、このセンサで冷媒液を検知すれば、複数のサージタンクの中のどれかのタンク内の液冷媒がほぼ満液になったと判断される。複数のサージタンクの中の1つが満液になれば、別のサージタンクに液冷媒が少なくなったと推定され、切替弁を切替えて液冷媒の多いサージタンクから利用側熱交換器へ液冷媒を圧送することにより、サージタンク内の液冷媒を連続的に且つ確実に利用側熱交換器へ圧送できる。従って、氷蓄熱槽内の氷の冷熱を利用した冷房運転ができる。
【0013】
また、タンク内の液冷媒の液面を直接する検知する液面センサをそれぞれのサージタンクに設置しないで1つのセンサを共通に使用することにより、コストの低減が図れる。
【0014】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。
【0015】
図1は、本発明に係る氷蓄熱槽6を備えた空気調和装置10の一実施の形態を示す構成図である。
【0016】
この図1に示す空気調和装置10は、熱源側ユニット5、氷蓄熱ユニット8及び利用側ユニット11で構成される。熱源側ユニット5は氷蓄熱ユニット8介して利用側ユニット11に冷媒管で接続される。
【0017】
熱源側ユニット5は、圧縮機1、四方弁3、熱源側熱交換器2及び電動膨張弁12が順次冷媒管で接続されている。また、利用側ユニット11は、冷媒管37に利用側熱交換器9及び電動膨張弁13が配設されて構成され、この電動膨張弁13は、蒸発温度または凝縮温度が一定になるように開度が調整される。
【0018】
氷蓄熱ユニット8は、冷媒管7を内蔵した氷蓄熱槽6を備えると共に、冷媒管15に第1開閉弁16が、冷媒管17に第2開閉弁18がそれぞれ配設される。更に、冷媒管15には、第1開閉弁16の取付位置よりも利用側ユニット11側に、冷媒管19を介して冷媒管7の一端が接続され、この冷媒管19に電動膨張弁20が配設される。また、冷媒管7の他端は、第3開閉弁22を備えた冷媒管22を介して、冷媒管17の利用側ユニット11側に接続される。
【0019】
氷蓄熱槽6には水が充満され、冷媒管7がこの氷蓄熱槽6内に水没状態で配設される。この氷蓄熱槽6内の冷媒管7内には、氷蓄熱運転時に熱源側熱交換器2から液冷媒が流入して蒸発し、これにより、氷蓄熱槽6内の冷媒管7の外周に氷が生成される。
【0020】
電動膨張弁20と冷媒管7との間から冷媒管23を介して2個のサージタンク24A及び24Bが並列に接続される。これらのサージタンク24A、24Bが冷媒管25を介して、冷媒管15に取り付けた第1開閉弁16の利用側ユニット側に接続される。これにより、サージタンク24A及び24Bは、氷蓄熱槽6内の冷媒管7と利用側熱交換器9との間に配設されて、氷蓄熱槽6内の氷に蓄熱された冷熱により凝縮された液冷媒が貯溜されるようになる。
【0021】
冷媒管23には、サージタンク24A、24Bの流入側に流入側逆止弁26A、26Bが、また、冷媒管25には、サージタンク24A、24Bの流出側に流出側逆止弁27A、27Bがそれぞれ接続されている。これらの流入側逆止弁26A、26Bは、氷蓄熱槽6内の冷媒管7からサージタンク24A、24B方向へ流れる冷媒の流れを許容し、流出側逆止弁27A、27Bは、サージタンク24A、24Bから利用側熱交換器9側方向へ流れる冷媒の流れを許容する。
【0022】
冷媒管28、29、30、31は、それぞれの一端が切替弁33の各ポートに接続されると共に、冷媒管28の他端が小型圧縮機34の吐出口に接続され、冷媒管29の他端が後述する液検知タンク35の入口に接続される。冷媒管30、31の他端は、サージタンク24A、24Bにそれぞれ接続される。また、冷媒管32は、液検知タンク35の出口と接続され、他端が小型圧縮機34の吸込口に接続される。
【0023】
サージタンク24A及び24Bは、冷媒管28、29、30、31、32を介して、切替弁33、小型圧縮機34及び液検知タンク35に接続される。切替弁33の切り替え操作により、冷媒管28及び冷媒管30の連通並びに冷媒管29及び冷媒管31の連通(A側流路)と、冷媒管28及び冷媒管31の連通並びに冷媒管29及び冷媒管30の連通(B側流路)とが選択的に切り替えられる。また、小型圧縮機34は、熱源側ユニット5における圧縮機1よりも小さな容量(1/10〜1/20)の圧縮機であり、空気調和装置10の放冷冷房運転時にのみ稼働される。この小型圧縮機34から吐出される冷媒は、熱源側ユニット5の圧縮機1から吐出される冷媒と同一組成である。
【0024】
切替弁33の操作により、小型圧縮機34からの高圧ガス冷媒がサージタンク24Aまたは24B内に圧送され、貯溜された液冷媒が利用側熱交換器9へ圧送されるように構成される。
【0025】
小型圧縮機34の吸込口には冷媒管29と冷媒管32とを介してサージタンク24Aまたは24B内のどちらか一方が冷媒液で満たされたことを検知できる液検知タンク35が配設されている。この液検知タンク35には例えばフロートセンサ等のセンサ36が内蔵され、サージタンク24内の冷媒液が満たされると、この冷媒液が液検知タンク35に流入して液位が上がりタンク35が満たされて検知できるようになっている。
【0026】
制御装置38は、この検知された情報を取り込み、サージタンク24A、24B内のどちらか一方が冷媒液で満たされたことを受けて切替弁33の切り替えを行うものである。
【0027】
すなわち、切替弁33がA側流路とされているときには、サージタンク24A内に小型圧縮機34からの高圧ガス冷媒が流れ込み、サージタンク24Aに貯溜されたサージタンク24Aの液面レべルを押し下げる。サージタンク24Aに貯溜された液冷媒は利用側熱交換器9へ圧送され、ここで蒸発して冷房が行われる。利用側熱交換器9で蒸発した冷媒ガスは、氷蓄熱槽6に戻り冷媒管7内で凝縮してサージタンク24Bに液冷媒として再び貯溜される。サージタンク24Bでは冷媒ガスが小型圧縮機34に吸い込まれているので、冷媒液が溜りサージタンク24B内がほぼ満液になると、冷媒液が流出し液検知タンク35に流入する。液検知タンク35では内蔵されたセンサ36が動作し、サージタンク24Bが満液になったことが検知される。一般にはサージタンク24Aの冷媒液量とサージタンク24Bの冷媒液量との総和はほとんど変わらないので、一方のサージタンクが満液になると、他方のサージタンクには冷媒液が存在しないかまたはほとんど存在しない状態と判断され、制御装置38は液検知タンク35のセンサ36の動作に応じて、切替弁33で冷媒の流れを切り替える。これにより、小型圧縮機34からの冷媒ガスの流れが切り替わり今度は満液になった方のサージタンク(サージタンク24Aまたは24B)の液冷媒が利用側熱交換器9へ供給される。
【0028】
次に、空気調和装置10の氷蓄熱運転、放冷冷房運転、通常冷房運転を説明する。
【0029】
[A]氷蓄熱運転
空気調和装置10の氷蓄熱運転は、例えば、夜間10時から翌朝8時までの深夜電力の時間帯に、熱源側熱交換器2で凝縮された液冷媒を氷蓄熱槽6の冷媒管7内で蒸発させて、氷蓄熱槽6内に氷を作る運転である。
【0030】
この場合には、電動膨張弁13が閉弁され、第1開閉弁16、第2開閉弁18、第3開閉弁22及び電動膨張弁20が開弁操作される。
【0031】
この状態で、熱源側ユニット5の圧縮機1が稼働されると、この圧縮機1から吐出されたガス冷媒は、熱源側熱交換器2にて凝縮され、電動膨張弁12及び20を経て減圧され、氷蓄熱槽6の冷媒管内へ流入する。この冷媒管7内に流入した冷媒は蒸発して、冷媒管7の外周に氷を付着した状態で形成する。その後、氷蓄熱槽6の冷媒管7内のガス冷媒は冷媒管21及び冷媒管17を経て四方弁3へ至り、圧縮機1に戻される。
【0032】
[B]放冷冷房運転
空気調和装置10の放冷冷房運転は、例えば、気温が上昇する昼間の時間帯に、氷蓄熱槽6の冷媒管7内で氷の冷熱により液化されてサージタンク24A、24B内に貯溜された液冷媒を、利用側熱交換器9へ供給するようにして行われる。
【0033】
この場合には、第1開閉弁16、第2開閉弁18及び電動膨張弁20が閉弁され、電動膨張弁13及び第3開閉弁22が開弁操作される。また、熱源側ユニット5の圧縮機1は、停止状態にある。
【0034】
この状態で、小型圧縮機34が稼働され、液検知タンク35の液検知信号に基づき、制御装置38が切替弁33をA側流路とB側流路とに交互に切り替える。例えば、液検知タンク35のセンサ36が冷媒液を検知したときに、制御装置38は、切替弁33をB側流路からA側流路として、小型圧縮機34から吐出された高圧ガス冷媒を、冷媒管28及び冷媒管30を経てサージタンク24A内へ導く。これにより、このサージタンク24A内の貯溜液冷媒が流出側逆止弁27A、冷媒管25、冷媒管15を経て利用側熱交換器9内へ供給する。サージタンク24A内に貯溜された液冷媒は、氷蓄熱槽6の冷媒管7内を通り、氷蓄熱槽6内の氷に蓄熱された冷熱により凝縮された液冷媒であるため、利用側熱交換器9内で蒸発することにより、氷の冷熱の放熱(放冷)と冷媒の蒸発潜熱とにより室内を冷房することができる。
【0035】
利用側熱交換器9にて蒸発したガス冷媒は、第3開閉弁22及び冷媒管21を経て氷蓄熱槽6の冷媒管7内へ流入し、前述の如く、氷蓄熱槽6内の氷により凝縮して液冷媒となって、流入側逆止弁26Bを経てサージタンク24B内へ流入する。
【0036】
この時、サージタンク24A内が高圧であるため、氷蓄熱槽6の冷媒管7内の液冷媒は、サージタンク24A内へ流れることなくサージタンク24B内へ流れる。同様に、サージタンク24B内がサージタンク24Aに比べて低圧であるため、サージタンク24B内の貯溜冷媒が流出側逆止弁27Bを経て利用側熱交換器9側へ流出することもない。
【0037】
次に、液検知タンク35のセンサ36が冷媒液を検知した時に、制御装置38は、切替弁33をB側流路として、小型圧縮機34から吐出された高圧ガス冷媒を、冷媒管28及び冷媒管31を経てサージタンク24B内へ導く。すると、サージタンク24Bに貯溜された液冷媒が、流出側逆止弁27B、冷媒管25、冷媒管15及び電動膨張弁13を経て利用側熱交換器9へ流入し蒸発して、前述と同様に、放冷及び蒸発潜熱により室内を冷房する。この利用側熱交換器9からのガス冷媒は、冷媒管39及び第3開閉弁22を経て氷蓄熱槽6の冷媒管7内で氷の冷熱により凝縮されて液冷媒となり、冷媒管23及び流入側逆止弁26Aを経てサージタンク24A内へ流入する。
【0038】
制御装置38は、液検知タンク35のセンサ36が冷媒液を検知したときに切替弁33を切り替え、例えば、A側流路とし、次に液検知タンク35の液検知センサ36が冷媒液を検知したときに切替弁33をB側流路とする。初めに運転停止時の切替弁33の位置から運転を行い、液検知タンク35のセンサ36が冷媒液を検知したときに切替弁33を切り替える。前述の動作を繰り返し、放冷冷房運転を継続させる。
【0039】
[C]通常冷房運転
空気調和装置10の通常冷房運転は、氷蓄熱槽6内の氷に蓄熱された冷熱を利用しないで実施される冷房運転であり、電動膨張弁20及び第3開閉弁22が閉弁され、第1開閉弁16、第2開閉弁18並びに電動膨張弁12及び13が開弁操作される。
【0040】
この状態で、圧縮機1が稼働されると、この圧縮機1から吐出されたガス冷媒は、熱源側熱交換器2にて凝縮され、電動膨張弁12、冷媒管37及び電動膨張弁13を経て利用側熱交換器9へ流入し、この利用側熱交換器9にて蒸発して、蒸発潜熱により室内を冷房した後、冷媒管17及び四方弁3を経て圧縮機1へ戻される。
【0041】
前記実施の形態の空気調和装置10は、前述のように構成されたことから、次のような効果を奏する。
【0042】
▲1▼液検知タンク35のセンサ36を用いて、サージタンク24A、24Bから流出する冷媒液を検知することにより、サージタンク24A、24B内のどちらかに液冷媒が満たされたことを判定できる。液検知タンク35に冷媒液が流入したときに、一方のサージタンク(サージタンク24A又は24B)に液冷媒が満たされた、または満たされた直後であると判断して、他方のサージタンク(サージタンク24B又は24A)から利用側熱交換器9へ直ちに液冷媒を圧送する。この結果、サージタンク24A、24B内の液冷媒を滞ることなく連続的に、かつ確実に利用側熱交換器9へ圧送でき、従って、氷蓄熱槽6内の氷の冷熱を利用した放冷冷房運転を良好に実施できる。
【0043】
▲2▼冷媒液を検知するセンサ36をそれぞれのサージタンクに1個ずつ設置することなく、センサ1個を共通に使用してサージタンク24Aまたは24B内の液冷媒の満液状態を検知するすることから、切替制御系が簡単になり、性能の安定した放冷冷房運転が可能になる。
【0044】
以上、一実施の形態に基づいて本発明を説明したが、本発明はこれに限定されるものではない。
【0045】
例えば、前記実施の形態では、流入側逆止弁26A、26B、流出側逆止弁27A、27Bを流入側開閉弁39A、39B、流出側開閉弁40A、40Bにそれぞれ置き替えてもよい。この場合、これら流入側開閉弁39A、39B、流出側開閉弁40A及び40Bは、氷蓄熱運転及び通常冷房運転時には全て閉弁される。更に、放冷冷房運転時には、流入側開閉弁39A及び流出側開閉弁40Bが連動して開閉し、流入側開閉弁39B及び流出側開閉弁40Aが連動して、流入側開閉弁39A及び流出側開閉弁40Bとは逆に開閉操作する。更に、サージタンク24A、24Bは3個以上あってもよい。
【0046】
また、冷媒液を検知する液検知タンク35を小型圧縮機34のアキュームレータとして兼用しても良く、あるいはアキュームレータに冷媒液を検知するセンサ36を取り付けても良い。
【0047】
【発明の効果】
以上のように、氷蓄熱槽内の冷媒管と利用側熱交換器との間に、冷媒を貯溜する複数のサージタンクが並列状態で配設され、氷蓄熱槽内の冷媒管内で凝縮された液冷媒がサージタンク内に貯留されて、これらのサージタンク内へ交互に供給される高圧ガス冷媒により利用側熱交換器へ圧送するように構成され、高圧ガス冷媒のサージタンク内への交互の供給が、サージタンク内から流出する冷媒液を検知することに基づき切替弁の切替により切り替えられることから、一方のサージタンク内の液冷媒が満液になった時、直ちに、満液のサージタンクから利用側熱交換器へ液冷媒を圧送することができるので、氷蓄熱槽内の氷の冷熱を利用した冷房運転を良好に実施できる。
【0048】
また、一方のサージタンク内が液冷媒で満液になった時に、切替弁が切り替わるので、サージタンク内の液冷媒が十分満たされる前に切り替えられることなく切替の間隔時間を十分長くとることができ安定した放冷冷房運転が行えるものである。
【図面の簡単な説明】
【図1】本発明に係る氷蓄熱槽を備えた空気調和装置の一実施の形態を示す構成図である。
【図2】従来の氷蓄熱槽を備えた空気調和装置を示す構成図である。
【符号の説明】
1 圧縮機
2 熱源側熱交換器
5 熱源側ユニット
6 氷蓄熱槽
8 氷蓄熱ユニット
9 利用側熱交換器
10 空気調和装置
24A、24B サージタンク
33 切替弁
34 小型圧縮機
38 制御装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an air conditioner including an ice heat storage tank, and more particularly to an air conditioner including an ice heat storage tank that dissipates cold heat stored in the ice heat storage tank and performs a cooling and cooling operation.
[0002]
[Prior art]
In general, as shown in FIG. 2, a refrigerant pipe is disposed in a submerged state in a heat source side unit 5 including a compressor 1, a heat source side heat exchanger 2, a four-way valve 3 and an electric expansion valve 4, and an ice heat storage tank 6. There is known an air conditioner 10 that is provided with an ice heat storage unit 8 that generates ice on the outer periphery of the refrigerant pipe and a use side heat exchanger 9 to perform an ice heat storage operation, a cooling and cooling operation, and a normal cooling operation. Yes.
[0003]
In the ice heat storage operation, the gas refrigerant from the compressor 1 is condensed in the heat source side heat exchanger 2 to become a liquid refrigerant, and then passes through the expansion valve 4 and flows into the refrigerant pipe in the ice heat storage tank 6. After evaporating in the heat storage tank 6 and making ice, the gas refrigerant is returned to the compressor 1.
[0004]
In the cooling and cooling operation, the compressor 1 of the heat source side unit 5 is stopped, and the circulating pump 14 such as a liquid pump or a gas pump that is installed in the ice heat storage unit 8 and pumps the refrigerant (in FIG. 2, a liquid pump that pumps the liquid refrigerant). ). That is, by the operation of the circulation pump 14, the cold heat stored in the ice is radiated to the refrigerant in the refrigerant pipe 7 of the ice heat storage tank 6 in the ice heat storage unit 8, and thus the liquid refrigerant condensed by absorbing the cold heat. Is pumped to the use-side heat exchanger 9, and the liquid refrigerant evaporates in the use-side heat exchanger 9, so that the cooling and cooling operation is performed.
[0005]
In the normal cooling operation, the refrigerant that is led from the compressor 1 to the heat source side heat exchanger 2 and becomes liquid refrigerant is supplied to the use side heat exchanger 9 without flowing into the refrigerant pipe 7 of the ice heat storage tank 6. Then, the liquid refrigerant is evaporated, and cooling is performed by the latent heat of evaporation.
[0006]
[Problems to be solved by the invention]
By the way, in the above-described cooling and cooling operation, particularly when the circulation pump 14 is a liquid pump, cavitation may occur in the circulation pump 14 when the refrigerant is not completely condensed and some refrigerant gas is present. Therefore, without using this liquid pump, the condensed liquid refrigerant in the refrigerant pipe of the ice heat storage tank 6 is stored in a plurality of (for example, two) surge tanks, and high-pressure gas refrigerant is alternately supplied into these surge tanks. Thus, it is conceivable that the liquid refrigerant condensed in the surge tank is pumped to the use-side heat exchanger 9 to perform a cooling and cooling operation.
[0007]
However, in this case, when the timing for alternately supplying the high-pressure gas refrigerant into the plurality of surge tanks shifts, the liquid refrigerant in the surge tank is continuously pumped to the use-side heat exchanger 9 without stagnation. There is a risk that the cooling and cooling operation using the cold heat of ice cannot be carried out satisfactorily.
[0008]
This invention is made | formed in view of such a situation, and it aims at providing the air conditioning apparatus provided with the ice thermal storage tank which can perform the air_conditioning | cooling driving | operation which utilized the cold of the ice in an ice thermal storage tank favorably.
[0009]
[Means for Solving the Problems]
The invention according to claim 1 is a heat source side unit including a compressor and a heat source side heat exchanger, a device for storing heat using ice generated in an ice heat storage tank, a plurality of surge tanks for storing liquid refrigerant, and a small compressor In an air conditioner that combines at least a heat storage operation or a cooling operation with a combination of an ice heat storage unit equipped with a use side heat exchanger, a small compressor having a smaller capacity than the compressor of the heat source side unit, The refrigeration cycle using ice storage is configured by connecting the switching valve, surge tank, use side heat exchanger, and ice heat storage tank with refrigerant pipes, and a liquid level sensor is provided on the suction side of the small compressor At the same time, this liquid level sensor detects the liquid state of the surge tank connected to the suction side of the small compressor, the surge tank with a large amount of liquid refrigerant is connected to the discharge side of the small compressor, and the surge tank with less liquid refrigerant is a small compressor Sucking A switching valve that switches the flow in the refrigeration cycle using ice heat storage is connected to the side, and this switching valve is switched when the sensor detects that one of the surge tanks is full. Features.
[0011]
The invention described in claim 1 has the following action.
[0012]
If a liquid detection sensor is provided on the suction side of the small compressor and the refrigerant liquid is detected by this sensor, it is determined that the liquid refrigerant in one of the plurality of surge tanks is almost full. . If one of the surge tanks becomes full, it is estimated that the liquid refrigerant has decreased in another surge tank, and the switching valve is switched to transfer the liquid refrigerant from the surge tank with a large amount of liquid refrigerant to the heat exchanger on the user side. By pumping, the liquid refrigerant in the surge tank can be continuously and reliably pumped to the use side heat exchanger. Therefore, the cooling operation using the cold heat of the ice in the ice heat storage tank can be performed.
[0013]
Further, by using one sensor in common without installing a liquid level sensor for directly detecting the liquid level of the liquid refrigerant in the tank in each surge tank, the cost can be reduced.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0015]
FIG. 1 is a configuration diagram showing an embodiment of an air conditioner 10 including an ice heat storage tank 6 according to the present invention.
[0016]
The air conditioner 10 shown in FIG. 1 includes a heat source side unit 5, an ice heat storage unit 8, and a use side unit 11. The heat source side unit 5 is connected to the usage side unit 11 via the ice heat storage unit 8 by a refrigerant pipe.
[0017]
In the heat source side unit 5, the compressor 1, the four-way valve 3, the heat source side heat exchanger 2, and the electric expansion valve 12 are sequentially connected by a refrigerant pipe. Further, the use side unit 11 is configured by arranging the use side heat exchanger 9 and the electric expansion valve 13 in the refrigerant pipe 37, and the electric expansion valve 13 is opened so that the evaporation temperature or the condensation temperature is constant. The degree is adjusted.
[0018]
The ice heat storage unit 8 includes an ice heat storage tank 6 in which the refrigerant pipe 7 is built, a first opening / closing valve 16 is provided in the refrigerant pipe 15, and a second opening / closing valve 18 is provided in the refrigerant pipe 17. Furthermore, one end of the refrigerant pipe 7 is connected to the refrigerant pipe 15 via the refrigerant pipe 19 closer to the use side unit 11 side than the mounting position of the first on-off valve 16, and the electric expansion valve 20 is connected to the refrigerant pipe 19. Arranged. The other end of the refrigerant pipe 7 is connected to the use side unit 11 side of the refrigerant pipe 17 through the refrigerant pipe 22 provided with the third on-off valve 22.
[0019]
The ice heat storage tank 6 is filled with water, and the refrigerant pipe 7 is disposed in the ice heat storage tank 6 in a submerged state. In the refrigerant pipe 7 in the ice heat storage tank 6, liquid refrigerant flows from the heat source side heat exchanger 2 and evaporates during the ice heat storage operation, whereby the ice is formed on the outer periphery of the refrigerant pipe 7 in the ice heat storage tank 6. Is generated.
[0020]
Two surge tanks 24A and 24B are connected in parallel from between the electric expansion valve 20 and the refrigerant pipe 7 via the refrigerant pipe 23. These surge tanks 24 </ b> A and 24 </ b> B are connected to the use side unit side of the first on-off valve 16 attached to the refrigerant pipe 15 via the refrigerant pipe 25. Thus, the surge tanks 24A and 24B are disposed between the refrigerant pipe 7 in the ice heat storage tank 6 and the use side heat exchanger 9, and are condensed by the cold heat stored in the ice in the ice heat storage tank 6. The liquid refrigerant is stored.
[0021]
The refrigerant pipe 23 has inflow check valves 26A and 26B on the inflow side of the surge tanks 24A and 24B, and the refrigerant pipe 25 has outflow side check valves 27A and 27B on the outflow side of the surge tanks 24A and 24B. Are connected to each other. These inflow side check valves 26A, 26B allow the flow of refrigerant flowing from the refrigerant pipe 7 in the ice heat storage tank 6 toward the surge tanks 24A, 24B, and the outflow side check valves 27A, 27B are surge tanks 24A. , 24B, the flow of the refrigerant flowing in the direction of the use side heat exchanger 9 is allowed.
[0022]
One end of each of the refrigerant tubes 28, 29, 30, and 31 is connected to each port of the switching valve 33, and the other end of the refrigerant tube 28 is connected to the discharge port of the small compressor 34. The end is connected to an inlet of a liquid detection tank 35 described later. The other ends of the refrigerant tubes 30 and 31 are connected to the surge tanks 24A and 24B, respectively. The refrigerant pipe 32 is connected to the outlet of the liquid detection tank 35, and the other end is connected to the suction port of the small compressor 34.
[0023]
The surge tanks 24A and 24B are connected to the switching valve 33, the small compressor 34, and the liquid detection tank 35 through the refrigerant pipes 28, 29, 30, 31, and 32. By switching operation of the switching valve 33, the refrigerant pipe 28 and the refrigerant pipe 30 are communicated, the refrigerant pipe 29 and the refrigerant pipe 31 are communicated (A-side flow path), the refrigerant pipe 28 and the refrigerant pipe 31 are communicated, and the refrigerant pipe 29 and the refrigerant. The communication (B-side flow path) of the pipe 30 is selectively switched. The small compressor 34 is a compressor having a smaller capacity (1/10 to 1/20) than the compressor 1 in the heat source side unit 5, and is operated only when the air-conditioning apparatus 10 is allowed to cool and cool. The refrigerant discharged from the small compressor 34 has the same composition as the refrigerant discharged from the compressor 1 of the heat source side unit 5.
[0024]
By the operation of the switching valve 33, the high-pressure gas refrigerant from the small compressor 34 is pumped into the surge tank 24A or 24B, and the stored liquid refrigerant is pumped to the use side heat exchanger 9.
[0025]
A liquid detection tank 35 capable of detecting that one of the surge tanks 24A and 24B is filled with the refrigerant liquid is disposed at the suction port of the small compressor 34 via the refrigerant pipe 29 and the refrigerant pipe 32. Yes. The liquid detection tank 35 includes a sensor 36 such as a float sensor. When the refrigerant liquid in the surge tank 24 is filled, the refrigerant liquid flows into the liquid detection tank 35 and the liquid level rises to fill the tank 35. Has been detected.
[0026]
The control device 38 takes in the detected information, and switches the switching valve 33 when one of the surge tanks 24A and 24B is filled with the refrigerant liquid.
[0027]
That is, when the switching valve 33 is the A-side flow path, the high-pressure gas refrigerant from the small compressor 34 flows into the surge tank 24A, and the liquid level of the surge tank 24A stored in the surge tank 24A is reduced. Press down. The liquid refrigerant stored in the surge tank 24A is pumped to the use side heat exchanger 9, where it evaporates and cools. The refrigerant gas evaporated in the use side heat exchanger 9 returns to the ice heat storage tank 6 and is condensed in the refrigerant pipe 7 and stored again as a liquid refrigerant in the surge tank 24B. Since the refrigerant gas is sucked into the small compressor 34 in the surge tank 24B, when the refrigerant liquid accumulates and the surge tank 24B is almost full, the refrigerant liquid flows out and flows into the liquid detection tank 35. In the liquid detection tank 35, a built-in sensor 36 operates to detect that the surge tank 24B is full. In general, the sum of the refrigerant liquid amount in the surge tank 24A and the refrigerant liquid amount in the surge tank 24B hardly changes. Therefore, when one of the surge tanks is full, there is almost no refrigerant liquid in the other surge tank. The controller 38 determines that it does not exist, and switches the refrigerant flow with the switching valve 33 in accordance with the operation of the sensor 36 of the liquid detection tank 35. As a result, the flow of the refrigerant gas from the small compressor 34 is switched, and the liquid refrigerant in the surge tank (surge tank 24A or 24B) that is now full is supplied to the use-side heat exchanger 9.
[0028]
Next, the ice heat storage operation, the cooling and cooling operation, and the normal cooling operation of the air conditioner 10 will be described.
[0029]
[A] Ice heat storage operation The ice heat storage operation of the air conditioner 10 is performed, for example, by using the ice heat storage tank for the liquid refrigerant condensed in the heat source side heat exchanger 2 during the late-night power period from 10:00 to 8:00 the next morning. 6 is an operation of evaporating in the refrigerant pipe 7 and making ice in the ice heat storage tank 6.
[0030]
In this case, the electric expansion valve 13 is closed, and the first on-off valve 16, the second on-off valve 18, the third on-off valve 22, and the electric expansion valve 20 are opened.
[0031]
In this state, when the compressor 1 of the heat source side unit 5 is operated, the gas refrigerant discharged from the compressor 1 is condensed in the heat source side heat exchanger 2 and depressurized via the electric expansion valves 12 and 20. And flows into the refrigerant pipe of the ice heat storage tank 6. The refrigerant that has flowed into the refrigerant pipe 7 evaporates and is formed with ice attached to the outer periphery of the refrigerant pipe 7. Thereafter, the gas refrigerant in the refrigerant pipe 7 of the ice heat storage tank 6 reaches the four-way valve 3 through the refrigerant pipe 21 and the refrigerant pipe 17 and is returned to the compressor 1.
[0032]
[B] Cooling and cooling operation The cooling and cooling operation of the air conditioner 10 is performed by, for example, a surge tank 24A that is liquefied by the cold heat of ice in the refrigerant pipe 7 of the ice storage tank 6 during the daytime when the temperature rises. The liquid refrigerant stored in 24B is supplied to the use side heat exchanger 9.
[0033]
In this case, the first on-off valve 16, the second on-off valve 18 and the electric expansion valve 20 are closed, and the electric expansion valve 13 and the third on-off valve 22 are opened. Further, the compressor 1 of the heat source side unit 5 is in a stopped state.
[0034]
In this state, the small compressor 34 is operated, and the control device 38 switches the switching valve 33 alternately between the A side flow path and the B side flow path based on the liquid detection signal of the liquid detection tank 35. For example, when the sensor 36 of the liquid detection tank 35 detects the refrigerant liquid, the control device 38 changes the switching valve 33 from the B side flow path to the A side flow path, and the high pressure gas refrigerant discharged from the small compressor 34. Then, it is guided into the surge tank 24A through the refrigerant pipe 28 and the refrigerant pipe 30. Thereby, the stored liquid refrigerant in the surge tank 24A is supplied into the use side heat exchanger 9 through the outflow side check valve 27A, the refrigerant pipe 25, and the refrigerant pipe 15. Since the liquid refrigerant stored in the surge tank 24A is a liquid refrigerant that passes through the refrigerant pipe 7 of the ice heat storage tank 6 and is condensed by the cold heat stored in the ice in the ice heat storage tank 6, use side heat exchange. By evaporating in the vessel 9, the room can be cooled by the heat radiation (cooling) of the cold ice and the latent heat of vaporization of the refrigerant.
[0035]
The gas refrigerant evaporated in the use side heat exchanger 9 flows into the refrigerant pipe 7 of the ice heat storage tank 6 through the third on-off valve 22 and the refrigerant pipe 21, and as described above, the ice refrigerant in the ice heat storage tank 6 It condenses into liquid refrigerant and flows into the surge tank 24B through the inflow side check valve 26B.
[0036]
At this time, since the inside of the surge tank 24A is at a high pressure, the liquid refrigerant in the refrigerant pipe 7 of the ice heat storage tank 6 flows into the surge tank 24B without flowing into the surge tank 24A. Similarly, since the pressure in the surge tank 24B is lower than that in the surge tank 24A, the stored refrigerant in the surge tank 24B does not flow out to the use side heat exchanger 9 through the outflow check valve 27B.
[0037]
Next, when the sensor 36 of the liquid detection tank 35 detects the refrigerant liquid, the control device 38 uses the switching valve 33 as the B-side flow path to convert the high-pressure gas refrigerant discharged from the small compressor 34 into the refrigerant pipe 28 and It is guided into the surge tank 24B through the refrigerant pipe 31. Then, the liquid refrigerant stored in the surge tank 24B flows into the use-side heat exchanger 9 through the outflow side check valve 27B, the refrigerant pipe 25, the refrigerant pipe 15 and the electric expansion valve 13 and evaporates. In addition, the room is cooled by cooling and latent heat of evaporation. The gas refrigerant from the use side heat exchanger 9 is condensed by the cold heat of ice in the refrigerant pipe 7 of the ice heat storage tank 6 through the refrigerant pipe 39 and the third on-off valve 22, and becomes a liquid refrigerant. It flows into the surge tank 24A through the side check valve 26A.
[0038]
The control device 38 switches the switching valve 33 when the sensor 36 of the liquid detection tank 35 detects the refrigerant liquid, for example, the A side flow path, and then the liquid detection sensor 36 of the liquid detection tank 35 detects the refrigerant liquid. In this case, the switching valve 33 is set as the B side flow path. First, the operation is performed from the position of the switching valve 33 when the operation is stopped, and the switching valve 33 is switched when the sensor 36 of the liquid detection tank 35 detects the refrigerant liquid. The above operation is repeated to continue the cooling and cooling operation.
[0039]
[C] Normal Cooling Operation The normal cooling operation of the air conditioner 10 is a cooling operation that is performed without using the cold energy stored in the ice in the ice heat storage tank 6, and the electric expansion valve 20 and the third on-off valve 22. Is closed, and the first on-off valve 16, the second on-off valve 18, and the electric expansion valves 12 and 13 are opened.
[0040]
When the compressor 1 is operated in this state, the gas refrigerant discharged from the compressor 1 is condensed in the heat source side heat exchanger 2, and the electric expansion valve 12, the refrigerant pipe 37, and the electric expansion valve 13 are connected. Then, it flows into the use side heat exchanger 9, evaporates in the use side heat exchanger 9, cools the room by latent heat of evaporation, and then returns to the compressor 1 through the refrigerant pipe 17 and the four-way valve 3.
[0041]
Since the air conditioning apparatus 10 of the above embodiment is configured as described above, the following effects can be obtained.
[0042]
(1) By detecting the refrigerant liquid flowing out of the surge tanks 24A, 24B using the sensor 36 of the liquid detection tank 35, it can be determined that either of the surge tanks 24A, 24B is filled with the liquid refrigerant. . When the refrigerant liquid flows into the liquid detection tank 35, it is determined that one of the surge tanks (surge tank 24A or 24B) is filled with liquid refrigerant or immediately after being filled, and the other surge tank (surge The liquid refrigerant is immediately pumped from the tank 24B or 24A) to the use side heat exchanger 9. As a result, the liquid refrigerant in the surge tanks 24A, 24B can be continuously and reliably pumped to the use-side heat exchanger 9 without stagnation, and therefore, the cooling by using the cold heat of the ice in the ice heat storage tank 6 is allowed. Driving can be performed well.
[0043]
(2) Detecting the full state of the liquid refrigerant in the surge tank 24A or 24B by using one sensor in common without installing one sensor 36 for each refrigerant tank in each surge tank. As a result, the switching control system becomes simple, and the cooling and cooling operation with stable performance becomes possible.
[0044]
As mentioned above, although this invention was demonstrated based on one Embodiment, this invention is not limited to this.
[0045]
For example, in the embodiment, the inflow side check valves 26A and 26B and the outflow side check valves 27A and 27B may be replaced with the inflow side on / off valves 39A and 39B and the outflow side on / off valves 40A and 40B, respectively. In this case, the inflow side on / off valves 39A and 39B and the outflow side on / off valves 40A and 40B are all closed during the ice heat storage operation and the normal cooling operation. Furthermore, during the cooling and cooling operation, the inflow side on / off valve 39A and the outflow side on / off valve 40B are opened / closed in conjunction with each other, and the inflow side on / off valve 39B and the outflow side on / off valve 40A are operated in conjunction with each other. The opening / closing operation is performed opposite to the opening / closing valve 40B. Furthermore, there may be three or more surge tanks 24A, 24B.
[0046]
Further, the liquid detection tank 35 for detecting the refrigerant liquid may be used as an accumulator of the small compressor 34, or a sensor 36 for detecting the refrigerant liquid may be attached to the accumulator.
[0047]
【The invention's effect】
As described above, a plurality of surge tanks for storing refrigerant are arranged in parallel between the refrigerant pipe in the ice heat storage tank and the use side heat exchanger, and condensed in the refrigerant pipe in the ice heat storage tank. The liquid refrigerant is stored in the surge tank and is configured to be pumped to the use side heat exchanger by the high-pressure gas refrigerant that is alternately supplied into the surge tank, and the high-pressure gas refrigerant is alternately supplied to the surge tank. Since the supply is switched by switching the switching valve based on detecting the refrigerant liquid flowing out of the surge tank, when the liquid refrigerant in one surge tank becomes full, immediately the full surge tank Since the liquid refrigerant can be pumped to the use side heat exchanger, the cooling operation using the cold heat of the ice in the ice heat storage tank can be carried out satisfactorily.
[0048]
In addition, when one of the surge tanks is filled with liquid refrigerant, the switching valve is switched, so that the switching interval time can be sufficiently long without being switched before the liquid refrigerant in the surge tank is sufficiently filled. And stable cooling and cooling operation can be performed.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing an embodiment of an air conditioner including an ice heat storage tank according to the present invention.
FIG. 2 is a block diagram showing an air conditioner equipped with a conventional ice heat storage tank.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Compressor 2 Heat source side heat exchanger 5 Heat source side unit 6 Ice heat storage tank 8 Ice heat storage unit 9 Use side heat exchanger 10 Air conditioning apparatus 24A, 24B Surge tank 33 Switching valve 34 Small compressor 38 Control apparatus

Claims (1)

圧縮機及び熱源側熱交換器を備えた熱源側ユニットと、氷蓄熱槽内に生成する氷を用い蓄熱する機器並びに液冷媒を貯える複数のサージタンク及び小型圧縮機等を備えた氷蓄熱ユニットと、利用側熱交換器とを組み合わせて、少なくとも蓄熱運転または冷房運転をするようにした空気調和装置において、熱源側ユニットの圧縮機よりも容量の小さな小型圧縮機と、切替弁と、サージタンクと、利用側熱交換器と、氷蓄熱槽と、を冷媒管で接続して氷蓄熱利用の冷凍サイクルを構成し、小型圧縮機の吸込側に液面センサを設けると共に、この液面センサで小型圧縮機の吸込側に接続されたサージタンクの液状態を検知し、液冷媒の多いサージタンクを小型圧縮機の吐出側、液冷媒の少ないサージタンクを小型圧縮機の吸込側に接続されるように氷蓄熱利用の冷凍サイクル中の流れを切り替える切替弁を備え、この切替弁はいずれか1つのサージタンクが満液になったことをセンサが検知した際切り替えられることを特徴とする氷蓄熱槽を備えた空気調和装置。 A heat source side unit including a compressor and a heat source side heat exchanger, an apparatus for storing heat using ice generated in an ice heat storage tank, an ice heat storage unit including a plurality of surge tanks and small compressors for storing liquid refrigerant, and the like In the air conditioner that combines at least the heat storage operation or the cooling operation with the use side heat exchanger, a small compressor having a smaller capacity than the compressor of the heat source side unit, a switching valve, a surge tank, The use side heat exchanger and the ice storage tank are connected by a refrigerant pipe to form a refrigeration cycle using ice storage, and a liquid level sensor is provided on the suction side of the small compressor. Detects the liquid state of the surge tank connected to the suction side of the compressor, so that a surge tank with a large amount of liquid refrigerant is connected to the discharge side of the small compressor and a surge tank with a small amount of liquid refrigerant is connected to the suction side of the small compressor In A switching valve for switching the flow in the refrigerating cycle of the heat storage utilization, the switching valve is provided with the ice thermal storage tank, characterized by being switched when the sensor detects that either one of the surge tank became flooded Air conditioner.
JP05076099A 1999-02-26 1999-02-26 Air conditioner with ice storage tank Expired - Fee Related JP4266426B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05076099A JP4266426B2 (en) 1999-02-26 1999-02-26 Air conditioner with ice storage tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05076099A JP4266426B2 (en) 1999-02-26 1999-02-26 Air conditioner with ice storage tank

Publications (2)

Publication Number Publication Date
JP2000249374A JP2000249374A (en) 2000-09-12
JP4266426B2 true JP4266426B2 (en) 2009-05-20

Family

ID=12867801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05076099A Expired - Fee Related JP4266426B2 (en) 1999-02-26 1999-02-26 Air conditioner with ice storage tank

Country Status (1)

Country Link
JP (1) JP4266426B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112815489A (en) * 2021-01-19 2021-05-18 珠海格力电器股份有限公司 Control method and device of air-cooled water chilling unit and air-cooled water chilling unit

Also Published As

Publication number Publication date
JP2000249374A (en) 2000-09-12

Similar Documents

Publication Publication Date Title
JP3662557B2 (en) Heat pump system
CN103062968B (en) Cooling system and cooling means
KR101305871B1 (en) Heat pump system
EP1450110B1 (en) Hot water supply system with storing tank
KR200390333Y1 (en) Heat pump type air conditioning and heating system
JP3887227B2 (en) Refrigerant storage device
JP2009243761A (en) Refrigeration air conditioner
JP2022034162A (en) Battery temperature control system
CN216384419U (en) Four-pipe air-cooled cold and hot water unit
JP4266426B2 (en) Air conditioner with ice storage tank
KR100877055B1 (en) Hybrid heat pump type heat and cooling system with feeding steam water
JP2002022300A (en) Refrigeration apparatus
EP1616136B1 (en) Refrigeration system and a method for operating such system
JP3802238B2 (en) Air conditioner with ice storage tank
CN220287814U (en) Outdoor unit and air source heat pump system
CN219624311U (en) Dehumidification mechanism and refrigerator
KR102422008B1 (en) Hybrid multi-air conditioning system and the control method thereof
CN210014499U (en) Air conditioning system
JP3802237B2 (en) Air conditioner with ice storage tank
CN219346786U (en) Hot water unit for inhibiting frosting
KR101488903B1 (en) Heat storaging apparatus and Control process of the same
JP2005326131A (en) Liquid refrigerant pressurization device
JPH0823421B2 (en) Heat storage heat pump
JP3806520B2 (en) Air conditioner with ice storage tank
JP3503583B2 (en) Refrigeration equipment

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090217

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees