JP3806520B2 - Air conditioner with ice storage tank - Google Patents

Air conditioner with ice storage tank Download PDF

Info

Publication number
JP3806520B2
JP3806520B2 JP21620698A JP21620698A JP3806520B2 JP 3806520 B2 JP3806520 B2 JP 3806520B2 JP 21620698 A JP21620698 A JP 21620698A JP 21620698 A JP21620698 A JP 21620698A JP 3806520 B2 JP3806520 B2 JP 3806520B2
Authority
JP
Japan
Prior art keywords
ice
refrigerant
heat storage
tank
liquid level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21620698A
Other languages
Japanese (ja)
Other versions
JP2000046432A (en
Inventor
美暁 黒澤
博和 井崎
修 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP21620698A priority Critical patent/JP3806520B2/en
Publication of JP2000046432A publication Critical patent/JP2000046432A/en
Application granted granted Critical
Publication of JP3806520B2 publication Critical patent/JP3806520B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/16Receivers
    • F25B2400/161Receivers arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/24Storage receiver heat

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、氷蓄熱槽を備えた空気調和装置に係り、氷蓄熱ユニットに蓄熱された冷熱を放熱して放冷冷房運転を実施する氷蓄熱槽を備えた空気調和装置に関する。
【0002】
【従来の技術】
一般に、図6に示すように、圧縮機1、熱源側熱交換器2、四方弁3及び電動膨張弁4を備えた熱源側ユニット5と、氷蓄熱槽6内にコイル7が水没状態で配設されてコイル7外周に氷が形成可能な氷蓄熱ユニット8と、利用側熱交換器9を備えた利用側ユニット10とを有し、製氷運転、放冷冷房運転、通常冷房運転を実施可能とする空気調和装置11が知られている。
【0003】
製氷運転は、圧縮機1からのガス冷媒が熱源側熱交換器2を経て液冷媒となり、その後に電動膨張弁4を通り、氷蓄熱槽6内のコイル7に流入して蒸発し、この氷蓄熱槽6内で製氷動作が実施された後、ガス冷媒が圧縮機1へ戻されて実施される。
【0004】
放冷冷房運転は、熱源側ユニット5の圧縮機1を停止させ、氷蓄熱ユニット8に設置されて冷媒を圧送する液ポンプ又はガスポンプなどの循環ポンプ12(図6では液冷媒を圧送する液ポンプ)を稼働させることによりなされている。つまり、循環ポンプ12の稼働により、氷蓄熱ユニット8における氷蓄熱槽6のコイル7内で、氷に蓄熱された冷熱を吸収して過冷却状態となった液冷媒が利用側熱交換器9へ圧送され、この利用側熱交換器9において液冷媒が蒸発して、この蒸発潜熱と氷の冷熱の放熱とにより放冷冷房運転が実施される。
【0005】
通常冷房運転は、圧縮機1から熱源側熱交換器2へ導かれて液冷媒となった冷媒を、氷蓄熱槽6のコイル7内へ流すことなく、利用側熱交換器9へ供給して液冷媒を蒸発し、この蒸発潜熱により実施される。
【0006】
【発明が解決しようとする課題】
ところで、上述の放冷冷房運転では、特に循環ポンプ12が液ポンプの場合に、この循環ポンプ12にキャビテーションが発生するおそれがある。そこで、この液ポンプを用いず、氷蓄熱槽6のコイル7内の過冷却状態の液冷媒を複数(例えば2個)のタンク内に貯溜させ、これらのタンク内へ高圧ガス冷媒を交互に供給することにより、上記タンク内の上記液冷媒を利用側熱交換器9へ圧送して、放冷冷房運転を実施可能とするものが考えられる。
【0007】
しかし、この場合には、高圧ガス冷媒を複数のタンク内へ交互に供給させるタイミングがずれると、タンク内の液冷媒を利用側熱交換器9へ、滞ることなく連続的に圧送することができず、氷の冷熱を利用した放冷冷房運転を良好に実施できない恐れがある。
【0008】
本発明の課題は、上述の事情を考慮してなされたものであり、氷蓄熱槽内の氷の冷熱を利用した冷房運転を良好に実施できる氷蓄熱槽を備えた空気調和装置を提供することにある。
【0009】
【課題を解決するための手段】
請求項1記載の発明は、圧縮機及び熱源側熱交換器を備えた熱源側ユニットと、氷蓄熱槽内にコイルが水没状態で配設されてこのコイル外周に氷が形成可能な氷蓄熱ユニットと、利用側熱交換器を備えた利用側ユニットとを有し、製氷運転、冷房運転を実施可能とする氷蓄熱槽を備えた空気調和装置において、上記氷蓄熱槽内の上記コイルと上記利用側熱交換器との間に、冷媒を貯溜可能な複数のタンクが並列状態で配設され、上記コイル内の液冷媒が上記タンク内に貯溜されて、これらのタンク内へ交互に供給される高圧ガス冷媒により上記利用側熱交換器へ圧送可能に構成され、上記高圧ガス冷媒の上記タンク内への交互の供給が、上記複数のタンク内にそれぞれの設置された液面センサからの信号に基づき実施されることを特徴とするものである。
【0010】
請求項2記載の発明は、請求項1に記載の発明において、上記液面センサは、上限液面を検知する上限センサ部と、下限液面を検知する下限センサ部とを備え、これら上限センサ部又は下限センサ部のいずれか一方のみからの信号に基づき、高圧ガス冷媒のタンク内への交互の供給がなされる際に、熱源側ユニットから氷蓄熱ユニットへの冷媒の補充、排出が実施可能に構成されたことを特徴とするものである。
【0011】
請求項3記載の発明は、請求項1又は2に記載の発明において、上記複数のタンクへ交互に供給される高圧ガス冷媒は、熱源側ユニットの圧縮機よりも容量の小さな小容量圧縮機から供給される高圧ガス冷媒であることを特徴とするものである。
【0012】
請求項1又は3に記載の発明には、次の作用がある。
【0013】
タンク内の液面センサからの信号に基づき、高圧ガス冷媒がタンク内へ交互に供給されて、タンク内に貯溜された液冷媒が利用側熱交換器へ圧送可能に構成されたことから、タンク内の液冷媒を連続的に且つ確実に利用側熱交換器へ圧送でき、したがって、氷蓄熱槽内の氷の冷熱を利用した冷房運転を良好に実施できる。
【0014】
請求項2に記載の発明には、次の作用がある。
【0015】
高圧ガス冷媒のタンク内への交互の供給が、液面センサの上限センサ部又は下限センサ部のいずれか一方のみからの信号に基づき実施される場合に、熱源側ユニットから氷蓄熱ユニットへの冷媒の補充、排出が実施可能に構成されたことから、氷蓄熱ユニット内における冷媒量を常に適切化でき、氷蓄熱槽内の氷の冷熱を利用した冷房運転を効率良く実施できる。
【0016】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。
【0017】
図1は、本発明に係る氷蓄熱槽を備えた空気調和装置の一実施の形態を示す管路図である。
【0018】
図1は、本発明に係る氷蓄熱槽を備えた空気調和装置の一実施の形態を示す管路図である。
【0019】
この図1に示す空気調和装置20は、熱源側ユニット21、氷蓄熱ユニット22及び利用側ユニット23を有して構成される。熱源側ユニット21の冷媒配管24が、氷蓄熱ユニット22の冷媒配管25、26を介して利用側ユニット23の冷媒配管27に接続される。
【0020】
熱源側ユニット21は、冷媒配管24に圧縮機28、四方弁29、熱源側熱交換器30及び電動膨張弁31が順次接続されて構成される。また、利用側ユニット23は、冷媒配管27に利用側熱交換器32及び電動膨張弁33が配設されて構成され、この電動膨張弁33は、空調負荷に応じて開度が調整される。
【0021】
氷蓄熱ユニット22は、コイル34を収容した氷蓄熱槽35を備えると共に、冷媒配管25に第1開閉弁36が、冷媒配管26に第2開閉弁37がそれぞれ配設される。更に、冷媒配管25には、第1開閉弁36の配設位置よりも利用側ユニット23側に、接続配管38を介してコイル34の一端が接続され、この接続配管38に電動膨張弁39が配設される。また、コイル34の他端は、第3開閉弁40を備えた接続配管41を介して、冷媒配管26における第2開閉弁37配設位置の利用側ユニット23側に接続される。
【0022】
氷蓄熱槽35には水が充満され、コイル34はこの氷蓄熱槽35内に水没状態で配設される。このコイル34内には、空気調和装置20の製氷運転時に熱源側熱交換器30から液冷媒が流入して蒸発し、これにより、コイル34の外周に氷が付着して形成される。
【0023】
上記接続配管38には、電動膨張弁39とコイル34との間に、二股に分岐する分岐配管42を介して2個のサージタンク43A及び43Bが並列状態で接続される。これらのサージタンク43A、43Bが合流配管44を介して、冷媒配管25における第1開閉弁36配設位置と接続配管38接続位置との間に接続される。これにより、サージタンク43A及び43Bは、氷蓄熱槽35内のコイル34と利用側熱交換器32との間に配設されて、氷蓄熱槽35内の氷に蓄熱された冷熱により凝縮されて過冷却状態となった液冷媒が貯溜可能に設けられる。
【0024】
分岐配管42には、サージタンク43A、43Bの流入側に流入側逆止弁45A、45Bが、また、合流配管44には、サージタンク43A、43Bの流出側に流出側逆止弁46A、46Bがそれぞれ配設されている。これらの流入側逆止弁45A、45Bは、氷蓄熱槽35のコイル34からサージタンク43A、43Bへのみ流れる冷媒の流れを許容し、流出側逆止弁46A、46Bは、サージタンク43A、43Bから利用側熱交換器32側へのみ流れる冷媒の流れを許容する。
【0025】
サージタンク43A及び43Bは、第1配管51、第2配管52、第3配管53及び第4配管54を介して、四方弁55及び小容量圧縮機56に接続される。第1配管51、第2配管52、第3配管53及び第4配管54は、それぞれの一端が四方弁55の各ポートに接続されると共に、第1配管51、第2配管52の他端が小容量圧縮機56の吐出口と吸込口にそれぞれ接続される。また、第3配管53、第4配管54の他端がサージタンク43A、43Bにそれぞれ接続される。
【0026】
四方弁55の切り換え操作により、第1配管51及び第3配管53の連通並びに第2配管52及び第4配管54の連通(A側切換)と、第1配管51及び第4配管54の連通並びに第2配管52及び第3配管53の連通(B側切換)とが選択的に切り換えられる。また、小容量圧縮機56は、熱源側ユニット21における圧縮機28よりも小さな容量(1/10〜1/20)の圧縮機であり、空気調和装置20の放冷冷房運転時にのみ稼働される。この小容量圧縮機56から吐出される冷媒は、熱源側ユニット21の圧縮機28から吐出される冷媒と同一組成である。
【0027】
上記四方弁55のA側切換又はB側切換への操作により、小容量圧縮機56からの高圧ガス冷媒がサージタンク43A又は43B内へ交互に供給可能に構成される。これにより、サージタンク43A、43B内に貯溜された過冷却状態の液冷媒が利用側熱交換器32へ圧送可能に構成される。
【0028】
上記サージタンク43A、43Bのそれぞれの内部に、液冷媒の液面を検出する液面センサ57A、57Bが配置される。これらの液面センサ57A及び57Bは、図2に示すように、サージタンク43A、43Bの長手方向に延びるパイプ58にフロート59が摺動自在に挿通され、パイプ58の上端部に上限センサ部60が、パイプ58の下端部に下限センサ部61がそれぞれ設置されて構成される。
【0029】
上限センサ部60は、パイプ58上端部に固着されたアッパストッパ62とリミットスイッチ63が取り付けられて設けられる。上限センサ部60は、フロート59に貼着された磁石64がリミットスイッチ63に近接して、このリミットスイッチ63をON作動させることにより、サージタンク43A、43B内の液冷媒の上限液面を検出する。
【0030】
また、下限センサ部61は、パイプ58下端部に固着されたロアストッパ65とリミットスイッチ66が取り付けられて設けられる。下限センサ部61は、フロート59に貼着された磁石67がリミットスイッチ66に近接して、このリミットスイッチ66をON作動させることにより、サージタンク43A、43B内の液冷媒の下限液面を検出する。
【0031】
図1に示す制御装置68は、放冷冷房運転時に、液面センサ57A及び57Bからの検出信号を受信して、四方弁55の切り換え位置を制御する。
【0032】
つまり、図3に示すように、液面センサ57Aのリミットスイッチ66がサージタンク43A内の上限液面を検出し、ほぼ同時に、液面センサ57Bの下限センサ部61がサージタンク43B内の下限液面を検出したときに、制御装置68は、四方弁55をA側切換とし、小容量圧縮機56からの高圧ガス冷媒をサージタンク43A内へ供給して、このサージタンク43A内の液冷媒を利用側熱交換器32へ圧送可能とする。逆に、液面センサ57Aの下限センサ部61がサージタンク43A内の下限液面を検出し、ほぼ同時に、液面センサ57Bの上限センサ部60がサージタンク43B内の上限液面を検出したときに、制御装置68は、四方弁55をB側切換とし、小容量圧縮機56からの高圧ガス冷媒をサージタンク43B内へ供給して、このサージタンク43B内の液冷媒を利用側熱交換器32へ圧送可能とする。
【0033】
また、制御装置68は、放冷冷房運転時に氷蓄熱ユニット22の液冷媒が過剰気味の場合には、図4に示すように、液面センサ57Aの上限センサ部60がサージタンク43A内の上限液面を検出したときに四方弁55をA側切換として、小容量圧縮機56からの高圧ガス冷媒をサージタンク43A内へ供給し、このサージタンク43A内の液冷媒を利用側熱交換器32へ圧送可能とする。逆に、制御装置68は、液面センサ57Bの上限センサ部60がサージタンク43B内の上限液面を検出したときに、四方弁55をB側切換として、小容量圧縮機56からの高圧ガス冷媒をサージタンク43B内へ供給し、このサージタンク43B内の液冷媒を利用側熱交換器32へ圧送可能とする。
【0034】
更に、制御装置68は、放冷冷房運転時に氷蓄熱ユニット22の液冷媒が不足気味の場合には、図5に示すように、液面センサ57Bの下限センサ部61がサージタンク43B内の下限液面を検出したときに四方弁55をA側切換として、小容量圧縮機56からの高圧ガス冷媒をサージタンク43A内へ供給し、このサージタンク43A内の液冷媒を利用側熱交換器32へ圧送可能とする。逆に、液面センサ57Aの下限センサ部61がサージタンク43A内の下限液面を検出したときに四方弁55をB側切換として、小容量圧縮機56からの高圧ガス冷媒をサージタンク43B内へ供給し、このサージタンク43B内の液冷媒を利用側熱交換器32へ圧送可能とする。
【0035】
制御装置68は、放冷冷房運転時に氷蓄熱ユニット22の液冷媒が過剰気味の場合で、更に、サージタンク43Aから利用側熱交換器32への液冷媒圧送時間とサージタンク43Bから利用側熱交換器32への液冷媒圧送時間とが所定時間以下に短くなったとき、何らかの指令信号の入力によって、又は自動的に、第1開閉弁36を閉弁状態としつつ第2開閉弁37を開弁操作し、四方弁29を冷房位置とした状態で圧縮機28を稼働させる。これにより、氷蓄熱ユニット22内の余剰の液冷媒が熱源側ユニット21側へ排出されるよう構成される。
【0036】
更に、制御装置68は、放冷冷房運転時に氷蓄熱ユニット22の液冷媒が不足気味の場合で、サージタンク43Aから利用側熱交換器32への液冷媒圧送時間とサージタンク43Bから利用側熱交換器32への液冷媒圧送時間とが所定時間以下に短くなったとき、何らかの指令信号の入力により、又は自動的に、第2開閉弁37を閉弁状態としつつ第一開閉弁36を開弁操作して、熱源側ユニット21内の液冷媒を氷蓄熱ユニット22内へ補充するよう構成される。
【0037】
次に、空気調和装置20の製氷運転、放冷冷房運転、通常冷房運転を説明する。
【0038】
[A]製氷運転
空気調和装置20の製氷運転は、例えば、夜間10時から翌朝8時までの電力料金の安い時間帯に、熱源側熱交換器30からの液冷媒を氷蓄熱槽35のコイル34内へ供給し、氷蓄熱槽35内に氷を作る運転である。
【0039】
この場合には、電動膨張弁33が閉弁され、第1開閉弁36、第2開閉弁37、第3開閉弁40及び電動膨張弁39が開弁操作される。
【0040】
この状態で、熱源側ユニット21の圧縮機28が稼働されると、この圧縮機28から吐出されたガス冷媒は、熱源側熱交換器30にて凝縮され、電動膨張弁31及び39を経て減圧され、氷蓄熱槽35のコイル34内へ流入する。このコイル34内に流入した冷媒は蒸発して、コイル34の外周に氷を付着した状態で形成する。その後、コイル34内のガス冷媒は接続配管41及び冷媒配管26を経て四方弁29へ至り、圧縮機28に戻される。
【0041】
[B]放冷冷房運転
空気調和装置20の放冷冷房運転は、例えば、昼間気温が上昇する時間帯に、氷蓄熱槽35のコイル34内で氷の冷熱により過冷却状態とされてサージタンク43A、43B内に貯溜された液冷媒を、このサージタンク43A、43Bから利用側熱交換器32へ圧送することにより実施される。
【0042】
この場合には、第1開閉弁36、第2開閉弁37及び電動膨張弁39が閉弁され、電動膨張弁33及び第3開閉弁40が開弁操作される。また、熱源側ユニット21の圧縮機28は、製氷運転終了後の停止状態にある。
【0043】
この状態で、小容量圧縮機56が稼働され、液面センサ57A及び57Bからの信号により、四方弁55のA側切換と、B側切換とが交互に実施される。例えば、液面センサ57Aの上限センサ部60にてサージタンク43A内の上限液面が検出され、液面センサ57Bの下限センサ部61にてサージタンク43B内の下限液面が検出された時には、四方弁55がA側切換となって、小容量圧縮機56から吐出された高圧ガス冷媒が、第1配管51及び第3配管53を経てサージタンク43A内へ流入する。これにより、このサージタンク43A内の貯溜液冷媒が流出側逆止弁46A、合流配管44、冷媒配管25及び27を経て利用側熱交換器32内へ流入する。サージタンク43A内に貯溜した液冷媒は、氷蓄熱槽35のコイル34内を通り、氷蓄熱槽35内の氷に蓄熱された冷熱により過冷却状態とされた液冷媒であるため、利用側熱交換器32内で蒸発することにより、上記氷の冷熱の放熱(放冷)と蒸発潜熱とにより室内を効率的に冷却する。
【0044】
利用側熱交換器32にて蒸発したガス冷媒は、接続配管41及び第3開閉弁40を経て氷蓄熱槽35のコイル34内へ流入し、上述の如く、氷蓄熱槽35内の氷により過冷却状態の液冷媒となって、流入側逆止弁45Bを経てサージタンク43B内へ流入する。
【0045】
この時、サージタンク43A内が高圧であるため、氷蓄熱槽35のコイル34内の液冷媒は、サージタンク43A内へ流れることなくサージタンク43B内へ流れる。同様に、サージタンク43B内がサージタンク43Aに比べて低圧であるため、サージタンク43B内の貯溜冷媒が流出側逆止弁46Bを経て利用側熱交換器32側へ流出することもない。
【0046】
液面センサ57Aの上限センサ部60にてサージタンク43A内の下限液面が検出され、液面センサ57Bの下限センサ部61にてサージタンク43B内の上限液面が検出されたとき、四方弁55がB側切換となって、小容量圧縮機56から吐出された高圧ガス冷媒が、第1配管51及び第4配管54を経てサージタンク43B内へ流入する。すると、サージタンク43B内に貯溜された過冷却状態の液冷媒が、流出側逆止弁46B、合流配管44、冷媒配管25、27及び電動膨張弁33を経て利用側熱交換器32へ流入し蒸発して、前述と同様に、放冷及び蒸発潜熱により室内を効率的に冷房する。この利用側熱交換器32からのガス冷媒は、接続配管41及び第3開閉弁40を経て氷蓄熱槽35のコイル34内で氷の冷熱により過冷却状態となり、分岐配管42及び流入側逆止弁45Aを経てサージタンク43A内へ流入する。
【0047】
液面センサ57Aの上限センサ部60にてサージタンク43A内の上限液面が検出され、液面センサ57Bの下限センサ部61にてサージタンク43B内の下限液面が検出されたときに、四方弁55がA側切換となって、上述の動作を繰り返し、放冷冷房運転を継続させる。
【0048】
[C]通常冷房運転
空気調和装置20の通常冷房運転は、氷蓄熱槽35内の氷に蓄熱された冷熱を利用しないで実施される冷房運転であり、電動膨張弁39及び第3開閉弁40が閉弁され、第1開閉弁36、第2開閉弁37並びに電動膨張弁31及び33が開弁操作される。
【0049】
この状態で、圧縮機28が稼働されると、この圧縮機28から吐出されたガス冷媒は、熱源側熱交換器30にて凝縮され、電動膨張弁31、冷媒配管25及び電動膨張弁33を経て利用側熱交換器32へ流入し、この利用側熱交換器32にて蒸発して、蒸発潜熱により室内を冷房した後、冷媒配管26及び四方弁29を経て圧縮機28へ戻される。
【0050】
上記実施の形態の空気調和装置20は、上述のように構成されたことから、次の効果▲1▼〜▲3▼を奏する。
【0051】
▲1▼サージタンク43A内の液面センサ57Aとサージタンク43B内の液面センサ57Bからの信号に基づき四方弁55が切り換えられて、小容量圧縮機56からの高圧ガス冷媒がサージタンク43A、43B内へ交互に供給され、これにより、サージタンク43A、43B内に貯溜された過冷却状態の液冷媒が利用側熱交換器32へ圧送可能に構成されたことから、サージタンク43A、43B内からそれぞれ交互に供給される液冷媒を、滞らせることなく連続的に、且つ確実に利用側熱交換器32へ圧送できる。従って、氷蓄熱槽35内の氷の冷熱を利用した放冷冷房運転を良好に実施できる。
【0052】
▲2▼小容量圧縮機56からの高圧ガス冷媒のサージタンク43A、43B内への交互の供給が、液面センサ57Aと57Bの上限センサ部60又は下限センサ部61のいずれか一方のみからの信号により実施される場合、例えば、液面センサ57A及び57Bの上限センサ部60からの信号のみにより高圧ガス冷媒のサージタンク43A、43B内への交互の供給が実施される、氷蓄熱ユニット22内の液冷媒が過剰気味の場合に、第2開閉弁37を開操作し、かつ圧縮機28により冷房運転を実施することによって、氷蓄熱ユニット22内の余剰液冷媒を熱源側ユニット21へ排出する。また、液面センサ57A及び57Bの下限センサ部61からの信号のみにより高圧ガス冷媒のサージタンク43A、43B内への交互の供給が実施される、氷蓄熱ユニット22内の液冷媒が不足気味の場合には、第1開閉弁36を開操作して、熱源側ユニット21内の液冷媒を氷蓄熱ユニット22内へ補充する。これらのことから、氷蓄熱ユニット22内における液冷媒を常に適量化でき、氷蓄熱槽35内の氷の冷熱を利用した冷房運転を効率よく実施できる。更に、氷蓄熱ユニット22内の液冷媒が過剰の場合に、小容量圧縮機56の液圧縮を確実に防止できるので、安全性も向上させることができる。
【0053】
▲3▼氷蓄熱ユニット22内に液冷媒が適正量ある場合に、液面センサ57A又は57Bの上限センサ部60が上限液面を検知してからその下限センサ部61が下限液面を検知するまでの時間を計測することにより、液冷媒の循環流量を検出できる。これにより、放冷冷房運転の制御を最適化でき、更に、小容量圧縮機56を適切な運転能力の圧縮機に設定できる。
【0054】
以上、一実施の形態に基づいて本発明を説明したが、本発明はこれに限定されるものではない。
【0055】
例えば、流入側逆止弁45A、45B、流出側逆止弁46A、46Bを流入側開閉弁70A、70B、流出側開閉弁71A、71Bにそれぞれ置き換えてもよい。この場合、これら流入側開閉弁70A、70B、流出側開閉弁71A及び71Bは、製氷運転及び通常冷房運転時には全て閉弁される。更に、放冷冷房運転時にには、流入側開閉弁70A及び流出側開閉弁71Bが連動して開閉し、流入側開閉弁70B及び流出側開閉弁71Aが連動して、流入側開閉弁70A及び流出側開閉弁71Bとは逆に開閉操作する。
【0056】
また、サージタンク43A、43Bは3以上あってもよい。更に、氷蓄熱ユニット22内に液冷媒が過剰または不足気味の場合に、熱源側ユニット21への余剰液冷媒の排出、熱源側ユニット21内からの液冷媒の補充を制御装置68によらず手動により実行してもよい。
【0057】
【発明の効果】
以上のように、本発明に係る氷蓄熱槽を備えた空気調和装置によれば、氷蓄熱槽内のコイルと利用側熱交換器との間に、冷媒を貯溜可能な複数のタンクが並列状態で配設され、上記コイル内の過冷却状態の液冷媒が上記タンク内に貯溜されて、これらのタンク内へ交互に供給される高圧ガス冷媒により利用側熱交換器へ圧送可能に構成され、上記高圧ガス冷媒の上記タンク内への交互の供給が、上記複数のタンク内にそれぞれ設置された液面センサからの信号に基づき実施されることから、これらのタンク内の液冷媒を連続的にかつ確実に利用側熱交換器へ圧送でき、氷蓄熱槽内の氷の冷熱を利用した冷房運転を良好に実施できる。
【図面の簡単な説明】
【図1】本発明に係る氷蓄熱槽を備えた空気調和装置の一実施の形態を示す管路図である。
【図2】図1のサージタンク内における液面センサを示す側面図である。
【図3】液面センサからの信号と四方弁の切り換えタイミングとの関係を示すグラフである。
【図4】氷畜熱ユニット内に液冷媒が過剰気味な場合の、液面センサからの信号と四方弁の切り換えタイミングとの関係を示すグラフである。
【図5】氷畜熱ユニット内に液冷媒が不足気味な場合の、液面センサからの信号と四方弁の切り換えタイミングとの関係を示すグラフである。
【図6】従来の氷蓄熱槽を備えた空気調和装置を示す管路図である。
【符号の説明】
21 熱源側ユニット
22 氷蓄熱ユニット
23 利用側ユニット
28 圧縮機
29 四方弁
32 利用側熱交換器
34 コイル
35 氷蓄熱槽
43A、43B サージタンク
55 四方弁
56 小容量圧縮機
57A、57B 液面センサ
60 上限センサ部
61 下限センサ部
68 制御装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an air conditioner including an ice heat storage tank, and more particularly to an air conditioner including an ice heat storage tank that dissipates cold heat stored in an ice heat storage unit and performs a cooling and cooling operation.
[0002]
[Prior art]
In general, as shown in FIG. 6, a coil 7 is placed in a submerged state in a heat source unit 5 including a compressor 1, a heat source side heat exchanger 2, a four-way valve 3 and an electric expansion valve 4, and an ice heat storage tank 6. It has an ice heat storage unit 8 that can be formed on the outer periphery of the coil 7 and a use side unit 10 equipped with a use side heat exchanger 9, and can perform ice making operation, cooling cooling operation, and normal cooling operation. An air conditioner 11 is known.
[0003]
In the ice making operation, the gas refrigerant from the compressor 1 becomes a liquid refrigerant through the heat source side heat exchanger 2, and then passes through the electric expansion valve 4 to flow into the coil 7 in the ice heat storage tank 6 and evaporate. After the ice making operation is carried out in the heat storage tank 6, the gas refrigerant is returned to the compressor 1 and carried out.
[0004]
In the cooling and cooling operation, the compressor 1 of the heat source side unit 5 is stopped, and the circulating pump 12 such as a liquid pump or a gas pump that is installed in the ice heat storage unit 8 and pumps the refrigerant (in FIG. 6, a liquid pump that pumps the liquid refrigerant). ). In other words, the operation of the circulation pump 12 causes the liquid refrigerant that has become supercooled by absorbing the cold energy stored in the ice in the coil 7 of the ice heat storage tank 6 in the ice heat storage unit 8 to the use side heat exchanger 9. The liquid refrigerant is evaporated in the use side heat exchanger 9, and the cooling and cooling operation is performed by the latent heat of evaporation and the heat radiation of ice.
[0005]
In the normal cooling operation, the refrigerant that has been led from the compressor 1 to the heat source side heat exchanger 2 to become liquid refrigerant is supplied to the use side heat exchanger 9 without flowing into the coil 7 of the ice heat storage tank 6. The liquid refrigerant is evaporated, and this latent heat of vaporization is carried out.
[0006]
[Problems to be solved by the invention]
By the way, in the above-described cooling and cooling operation, cavitation may occur in the circulation pump 12 particularly when the circulation pump 12 is a liquid pump. Therefore, without using this liquid pump, the supercooled liquid refrigerant in the coil 7 of the ice heat storage tank 6 is stored in a plurality of (for example, two) tanks, and high-pressure gas refrigerant is alternately supplied into these tanks. By doing so, the liquid refrigerant in the tank can be pumped to the use-side heat exchanger 9 so that the cooling and cooling operation can be performed.
[0007]
However, in this case, if the timing for alternately supplying the high-pressure gas refrigerant into the plurality of tanks shifts, the liquid refrigerant in the tank can be continuously pumped to the utilization side heat exchanger 9 without stagnation. Therefore, there is a possibility that the cooling and cooling operation using the cold heat of ice cannot be carried out satisfactorily.
[0008]
The subject of this invention is made in view of the above-mentioned situation, and provides the air conditioning apparatus provided with the ice thermal storage tank which can implement the air_conditioning | cooling operation using the cold of the ice in an ice thermal storage tank favorably. It is in.
[0009]
[Means for Solving the Problems]
The invention according to claim 1 is a heat source side unit including a compressor and a heat source side heat exchanger, and an ice heat storage unit in which a coil is disposed in a submerged state in an ice heat storage tank so that ice can be formed on the outer periphery of the coil. And an air-conditioning apparatus having an ice heat storage tank capable of performing ice making operation and cooling operation, and the coil in the ice heat storage tank and the utilization A plurality of tanks capable of storing refrigerant are arranged in parallel with the side heat exchanger, and the liquid refrigerant in the coil is stored in the tank and alternately supplied into these tanks. The high-pressure gas refrigerant is configured to be capable of being pressure-fed to the use side heat exchanger, and the alternating supply of the high-pressure gas refrigerant into the tank is performed by a signal from a liquid level sensor installed in each of the plurality of tanks. Based on implementation Than it is.
[0010]
According to a second aspect of the present invention, in the first aspect of the invention, the liquid level sensor includes an upper limit sensor unit that detects an upper limit liquid level and a lower limit sensor unit that detects a lower limit liquid level. The refrigerant can be replenished and discharged from the heat source unit to the ice heat storage unit when alternating supply of high-pressure gas refrigerant into the tank is performed based on the signal from either the sensor unit or the lower limit sensor unit. It is characterized by having been comprised by this.
[0011]
The invention according to claim 3 is the invention according to claim 1 or 2, wherein the high pressure gas refrigerant supplied alternately to the plurality of tanks is from a small capacity compressor having a smaller capacity than the compressor of the heat source side unit. It is a high-pressure gas refrigerant to be supplied.
[0012]
The invention according to claim 1 or 3 has the following effects.
[0013]
Based on the signal from the liquid level sensor in the tank, the high-pressure gas refrigerant is alternately supplied into the tank, so that the liquid refrigerant stored in the tank can be pumped to the use side heat exchanger. The liquid refrigerant inside can be continuously and reliably pumped to the use-side heat exchanger, and therefore, the cooling operation using the cold heat of the ice in the ice heat storage tank can be carried out satisfactorily.
[0014]
The invention according to claim 2 has the following effects.
[0015]
When alternating supply of high-pressure gas refrigerant into the tank is performed based on a signal from only one of the upper limit sensor part and the lower limit sensor part of the liquid level sensor, the refrigerant from the heat source side unit to the ice heat storage unit Therefore, the amount of refrigerant in the ice heat storage unit can always be made appropriate, and the cooling operation using the cold heat of the ice in the ice heat storage tank can be performed efficiently.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0017]
FIG. 1 is a pipe line diagram showing an embodiment of an air conditioner equipped with an ice heat storage tank according to the present invention.
[0018]
FIG. 1 is a pipe line diagram showing an embodiment of an air conditioner equipped with an ice heat storage tank according to the present invention.
[0019]
The air conditioner 20 shown in FIG. 1 includes a heat source side unit 21, an ice heat storage unit 22, and a use side unit 23. The refrigerant pipe 24 of the heat source side unit 21 is connected to the refrigerant pipe 27 of the usage side unit 23 via the refrigerant pipes 25 and 26 of the ice heat storage unit 22.
[0020]
The heat source side unit 21 is configured by sequentially connecting a compressor 28, a four-way valve 29, a heat source side heat exchanger 30, and an electric expansion valve 31 to a refrigerant pipe 24. The use side unit 23 is configured by arranging a use side heat exchanger 32 and an electric expansion valve 33 in the refrigerant pipe 27, and the opening degree of the electric expansion valve 33 is adjusted according to the air conditioning load.
[0021]
The ice heat storage unit 22 includes an ice heat storage tank 35 in which a coil 34 is accommodated, and a first opening / closing valve 36 is disposed in the refrigerant pipe 25 and a second opening / closing valve 37 is disposed in the refrigerant pipe 26. Furthermore, one end of a coil 34 is connected to the refrigerant pipe 25 via a connection pipe 38 closer to the use side unit 23 side than the position where the first on-off valve 36 is disposed, and an electric expansion valve 39 is connected to the connection pipe 38. Arranged. In addition, the other end of the coil 34 is connected to the use side unit 23 side of the refrigerant pipe 26 at the position where the second on-off valve 37 is disposed via a connection pipe 41 provided with the third on-off valve 40.
[0022]
The ice heat storage tank 35 is filled with water, and the coil 34 is disposed in the ice heat storage tank 35 in a submerged state. In the coil 34, the liquid refrigerant flows from the heat source side heat exchanger 30 and evaporates during the ice making operation of the air conditioner 20, thereby forming ice attached to the outer periphery of the coil 34.
[0023]
Two surge tanks 43 </ b> A and 43 </ b> B are connected in parallel between the electric expansion valve 39 and the coil 34 to the connection pipe 38 through a bifurcated branch pipe 42. These surge tanks 43 </ b> A and 43 </ b> B are connected between the position where the first opening / closing valve 36 is disposed and the connection position of the connection pipe 38 in the refrigerant pipe 25 via the junction pipe 44. Thereby, the surge tanks 43A and 43B are disposed between the coil 34 in the ice heat storage tank 35 and the use side heat exchanger 32, and are condensed by the cold heat stored in the ice in the ice heat storage tank 35. The supercooled liquid refrigerant is provided so as to be stored.
[0024]
The branch pipe 42 has inflow side check valves 45A and 45B on the inflow side of the surge tanks 43A and 43B, and the junction pipe 44 has outflow side check valves 46A and 46B on the outflow side of the surge tanks 43A and 43B. Are arranged respectively. These inflow side check valves 45A and 45B allow the flow of refrigerant flowing only from the coil 34 of the ice heat storage tank 35 to the surge tanks 43A and 43B, and the outflow side check valves 46A and 46B are surge tanks 43A and 43B. The flow of the refrigerant that flows only to the use side heat exchanger 32 side is allowed.
[0025]
The surge tanks 43 </ b> A and 43 </ b> B are connected to the four-way valve 55 and the small capacity compressor 56 via the first pipe 51, the second pipe 52, the third pipe 53, and the fourth pipe 54. One end of each of the first pipe 51, the second pipe 52, the third pipe 53, and the fourth pipe 54 is connected to each port of the four-way valve 55, and the other ends of the first pipe 51 and the second pipe 52 are connected. The small capacity compressor 56 is connected to the discharge port and the suction port, respectively. The other ends of the third pipe 53 and the fourth pipe 54 are connected to the surge tanks 43A and 43B, respectively.
[0026]
By switching the four-way valve 55, communication between the first pipe 51 and the third pipe 53, communication between the second pipe 52 and the fourth pipe 54 (A-side switching), communication between the first pipe 51 and the fourth pipe 54, and Communication between the second pipe 52 and the third pipe 53 (B side switching) is selectively switched. The small capacity compressor 56 is a compressor having a capacity (1/10 to 1/20) smaller than that of the compressor 28 in the heat source side unit 21 and is operated only when the air-conditioning apparatus 20 is allowed to cool and cool. . The refrigerant discharged from the small capacity compressor 56 has the same composition as the refrigerant discharged from the compressor 28 of the heat source side unit 21.
[0027]
The high-pressure gas refrigerant from the small capacity compressor 56 can be alternately supplied into the surge tank 43A or 43B by the operation of the four-way valve 55 for switching to the A side or B side. As a result, the supercooled liquid refrigerant stored in the surge tanks 43 </ b> A and 43 </ b> B can be pumped to the use-side heat exchanger 32.
[0028]
Liquid level sensors 57A and 57B for detecting the liquid level of the liquid refrigerant are disposed in the surge tanks 43A and 43B, respectively. As shown in FIG. 2, these liquid level sensors 57 </ b> A and 57 </ b> B have a float 59 slidably inserted into a pipe 58 extending in the longitudinal direction of the surge tanks 43 </ b> A and 43 </ b> B, and an upper limit sensor 60. However, the lower limit sensor 61 is installed at the lower end of the pipe 58, respectively.
[0029]
The upper limit sensor unit 60 is provided with an upper stopper 62 and a limit switch 63 fixed to the upper end of the pipe 58. The upper limit sensor unit 60 detects the upper limit liquid level of the liquid refrigerant in the surge tanks 43A and 43B when the magnet 64 attached to the float 59 comes close to the limit switch 63 and activates the limit switch 63. To do.
[0030]
The lower limit sensor unit 61 is provided with a lower stopper 65 and a limit switch 66 fixed to the lower end of the pipe 58. The lower limit sensor unit 61 detects the lower limit liquid level of the liquid refrigerant in the surge tanks 43A and 43B by causing the magnet 67 attached to the float 59 to approach the limit switch 66 and turning on the limit switch 66. To do.
[0031]
The control device 68 shown in FIG. 1 controls the switching position of the four-way valve 55 by receiving detection signals from the liquid level sensors 57A and 57B during the cooling and cooling operation.
[0032]
That is, as shown in FIG. 3, the limit switch 66 of the liquid level sensor 57A detects the upper limit liquid level in the surge tank 43A, and the lower limit sensor unit 61 of the liquid level sensor 57B almost simultaneously detects the lower limit liquid in the surge tank 43B. When the surface is detected, the control device 68 switches the four-way valve 55 to the A side, supplies the high-pressure gas refrigerant from the small capacity compressor 56 into the surge tank 43A, and supplies the liquid refrigerant in the surge tank 43A. It is possible to pump to the use side heat exchanger 32. Conversely, when the lower limit sensor 61 of the liquid level sensor 57A detects the lower limit liquid level in the surge tank 43A, and almost simultaneously, the upper limit sensor 60 of the liquid level sensor 57B detects the upper limit liquid level in the surge tank 43B. Further, the control device 68 switches the four-way valve 55 to the B side, supplies the high-pressure gas refrigerant from the small capacity compressor 56 into the surge tank 43B, and uses the liquid refrigerant in the surge tank 43B on the use side heat exchanger. 32 can be pumped.
[0033]
In addition, when the liquid refrigerant in the ice heat storage unit 22 is excessive in the cooling and cooling operation, the control device 68 causes the upper limit sensor unit 60 of the liquid level sensor 57A to have an upper limit in the surge tank 43A as shown in FIG. When the liquid level is detected, the four-way valve 55 is switched to the A side, the high-pressure gas refrigerant from the small capacity compressor 56 is supplied into the surge tank 43A, and the liquid refrigerant in the surge tank 43A is used on the use side heat exchanger 32. It can be pumped to. Conversely, when the upper limit sensor 60 of the liquid level sensor 57B detects the upper limit liquid level in the surge tank 43B, the control device 68 switches the four-way valve 55 to the B side and switches the high pressure gas from the small capacity compressor 56. The refrigerant is supplied into the surge tank 43B, and the liquid refrigerant in the surge tank 43B can be pumped to the use-side heat exchanger 32.
[0034]
Further, when the liquid refrigerant in the ice heat storage unit 22 is short enough during the cooling and cooling operation, the control device 68 causes the lower limit sensor 61 of the liquid level sensor 57B to move to the lower limit in the surge tank 43B as shown in FIG. When the liquid level is detected, the four-way valve 55 is switched to the A side, the high-pressure gas refrigerant from the small capacity compressor 56 is supplied into the surge tank 43A, and the liquid refrigerant in the surge tank 43A is used on the use side heat exchanger 32. It can be pumped to. Conversely, when the lower limit sensor 61 of the liquid level sensor 57A detects the lower limit liquid level in the surge tank 43A, the four-way valve 55 is switched to the B side, and the high pressure gas refrigerant from the small capacity compressor 56 is transferred into the surge tank 43B. The liquid refrigerant in the surge tank 43B can be pumped to the use side heat exchanger 32.
[0035]
The control device 68 is for the case where the liquid refrigerant in the ice heat storage unit 22 is excessive during the cooling and cooling operation, and further, the liquid refrigerant pumping time from the surge tank 43A to the use side heat exchanger 32 and the use side heat from the surge tank 43B. When the liquid refrigerant pumping time to the exchanger 32 becomes shorter than a predetermined time, the second on-off valve 37 is opened while the first on-off valve 36 is closed by the input of some command signal or automatically. The valve is operated, and the compressor 28 is operated with the four-way valve 29 in the cooling position. Thereby, it is comprised so that the excess liquid refrigerant in the ice thermal storage unit 22 may be discharged | emitted to the heat-source side unit 21 side.
[0036]
Furthermore, the control device 68 is in the case where the liquid refrigerant of the ice heat storage unit 22 is short during the cooling and cooling operation, and the liquid refrigerant pressure-feeding time from the surge tank 43A to the use side heat exchanger 32 and the use side heat from the surge tank 43B. When the liquid refrigerant pumping time to the exchanger 32 is shortened to a predetermined time or less, the first on-off valve 36 is opened while the second on-off valve 37 is closed by input of some command signal or automatically. The liquid refrigerant in the heat source unit 21 is replenished into the ice heat storage unit 22 by operating the valve.
[0037]
Next, the ice making operation, the cooling and cooling operation, and the normal cooling operation of the air conditioner 20 will be described.
[0038]
[A] Ice making operation The ice making operation of the air conditioner 20 is performed by, for example, supplying the liquid refrigerant from the heat source side heat exchanger 30 to the coil of the ice heat storage tank 35 in the time zone where the electricity rate is low from 10:00 to 8:00 the next morning. In this operation, ice is supplied into the ice heat storage tank 35.
[0039]
In this case, the electric expansion valve 33 is closed, and the first on-off valve 36, the second on-off valve 37, the third on-off valve 40, and the electric expansion valve 39 are opened.
[0040]
In this state, when the compressor 28 of the heat source side unit 21 is operated, the gas refrigerant discharged from the compressor 28 is condensed in the heat source side heat exchanger 30 and decompressed through the electric expansion valves 31 and 39. And flows into the coil 34 of the ice heat storage tank 35. The refrigerant that has flowed into the coil 34 evaporates and is formed with ice attached to the outer periphery of the coil 34. Thereafter, the gas refrigerant in the coil 34 reaches the four-way valve 29 through the connection pipe 41 and the refrigerant pipe 26 and is returned to the compressor 28.
[0041]
[B] Cooling / cooling operation The cooling / cooling operation of the air conditioner 20 is performed, for example, in a surge tank that is overcooled by the cold of ice in the coil 34 of the ice heat storage tank 35 during a time period when the daytime air temperature rises. The liquid refrigerant stored in 43A and 43B is pumped from the surge tanks 43A and 43B to the use-side heat exchanger 32.
[0042]
In this case, the first on-off valve 36, the second on-off valve 37, and the electric expansion valve 39 are closed, and the electric expansion valve 33 and the third on-off valve 40 are opened. Further, the compressor 28 of the heat source side unit 21 is in a stopped state after the ice making operation is finished.
[0043]
In this state, the small capacity compressor 56 is operated, and the A-side switching and the B-side switching of the four-way valve 55 are alternately performed by signals from the liquid level sensors 57A and 57B. For example, when the upper limit liquid level in the surge tank 43A is detected by the upper limit sensor unit 60 of the liquid level sensor 57A and the lower limit liquid level in the surge tank 43B is detected by the lower limit sensor unit 61 of the liquid level sensor 57B, The four-way valve 55 is switched to the A side, and the high-pressure gas refrigerant discharged from the small capacity compressor 56 flows into the surge tank 43 </ b> A through the first pipe 51 and the third pipe 53. Thereby, the stored liquid refrigerant in the surge tank 43A flows into the use side heat exchanger 32 through the outflow side check valve 46A, the merging pipe 44, and the refrigerant pipes 25 and 27. Since the liquid refrigerant stored in the surge tank 43A passes through the coil 34 of the ice heat storage tank 35 and is in a supercooled state by the cold heat stored in the ice in the ice heat storage tank 35, the use side heat By evaporating in the exchanger 32, the room is efficiently cooled by the heat radiation (cooling) of the ice and the latent heat of evaporation.
[0044]
The gas refrigerant evaporated in the use side heat exchanger 32 flows into the coil 34 of the ice heat storage tank 35 through the connection pipe 41 and the third on-off valve 40, and as described above, the gas refrigerant passes through the ice in the ice heat storage tank 35. The liquid refrigerant is cooled and flows into the surge tank 43B through the inflow check valve 45B.
[0045]
At this time, since the inside of the surge tank 43A is at a high pressure, the liquid refrigerant in the coil 34 of the ice heat storage tank 35 flows into the surge tank 43B without flowing into the surge tank 43A. Similarly, since the pressure in the surge tank 43B is lower than that in the surge tank 43A, the stored refrigerant in the surge tank 43B does not flow out to the use side heat exchanger 32 through the outflow check valve 46B.
[0046]
When the upper limit sensor part 60 of the liquid level sensor 57A detects the lower limit liquid level in the surge tank 43A and the lower limit sensor part 61 of the liquid level sensor 57B detects the upper limit liquid level in the surge tank 43B, the four-way valve 55 becomes B side switching, and the high-pressure gas refrigerant discharged from the small capacity compressor 56 flows into the surge tank 43 </ b> B through the first pipe 51 and the fourth pipe 54. Then, the supercooled liquid refrigerant stored in the surge tank 43B flows into the use side heat exchanger 32 via the outflow side check valve 46B, the junction pipe 44, the refrigerant pipes 25 and 27, and the electric expansion valve 33. After evaporating, the room is efficiently cooled by cooling and latent heat of evaporation as described above. The gas refrigerant from the use side heat exchanger 32 is supercooled by the cold heat of ice in the coil 34 of the ice heat storage tank 35 through the connection pipe 41 and the third on-off valve 40, and the branch pipe 42 and the inflow side check. It flows into the surge tank 43A through the valve 45A.
[0047]
When the upper limit liquid level in the surge tank 43A is detected by the upper limit sensor unit 60 of the liquid level sensor 57A and the lower limit liquid level in the surge tank 43B is detected by the lower limit sensor unit 61 of the liquid level sensor 57B, The valve 55 is switched to the A side, the above operation is repeated, and the cooling and cooling operation is continued.
[0048]
[C] Normal Cooling Operation The normal cooling operation of the air conditioner 20 is a cooling operation that is performed without using the cold stored in the ice in the ice heat storage tank 35, and the electric expansion valve 39 and the third on-off valve 40. Is closed, and the first on-off valve 36, the second on-off valve 37, and the electric expansion valves 31 and 33 are opened.
[0049]
When the compressor 28 is operated in this state, the gas refrigerant discharged from the compressor 28 is condensed in the heat source side heat exchanger 30, and the electric expansion valve 31, the refrigerant pipe 25 and the electric expansion valve 33 are passed through. Then, it flows into the use side heat exchanger 32, evaporates in the use side heat exchanger 32, cools the room by latent heat of evaporation, and then returns to the compressor 28 through the refrigerant pipe 26 and the four-way valve 29.
[0050]
Since the air conditioning apparatus 20 of the above embodiment is configured as described above, the following effects (1) to (3) are achieved.
[0051]
(1) The four-way valve 55 is switched based on signals from the liquid level sensor 57A in the surge tank 43A and the liquid level sensor 57B in the surge tank 43B, and the high-pressure gas refrigerant from the small capacity compressor 56 is transferred to the surge tank 43A, As a result, the liquid refrigerant in the supercooled state stored in the surge tanks 43A and 43B can be pumped to the use side heat exchanger 32, so that the surge tanks 43A and 43B Thus, the liquid refrigerant supplied alternately from each other can be continuously and reliably pumped to the use side heat exchanger 32 without stagnation. Therefore, it is possible to satisfactorily perform the cooling and cooling operation using the cold heat of the ice in the ice heat storage tank 35.
[0052]
(2) The alternating supply of the high-pressure gas refrigerant from the small-capacity compressor 56 into the surge tanks 43A and 43B is only from either the upper limit sensor unit 60 or the lower limit sensor unit 61 of the liquid level sensors 57A and 57B. When implemented by a signal, for example, the supply of high-pressure gas refrigerant into the surge tanks 43A and 43B is performed only by a signal from the upper limit sensor 60 of the liquid level sensors 57A and 57B. When the liquid refrigerant is excessive, the second on-off valve 37 is opened, and the cooling operation is performed by the compressor 28, whereby the excess liquid refrigerant in the ice heat storage unit 22 is discharged to the heat source side unit 21. . Further, the high-pressure gas refrigerant is alternately supplied into the surge tanks 43A and 43B only by signals from the lower limit sensor 61 of the liquid level sensors 57A and 57B, and the liquid refrigerant in the ice heat storage unit 22 is insufficient. In this case, the first on-off valve 36 is opened to replenish the liquid refrigerant in the heat source side unit 21 into the ice heat storage unit 22. For these reasons, the amount of liquid refrigerant in the ice heat storage unit 22 can always be made appropriate, and the cooling operation using the cold heat of the ice in the ice heat storage tank 35 can be carried out efficiently. Furthermore, when the liquid refrigerant in the ice heat storage unit 22 is excessive, liquid compression of the small-capacity compressor 56 can be reliably prevented, so that safety can be improved.
[0053]
(3) When there is an appropriate amount of liquid refrigerant in the ice heat storage unit 22, the lower limit sensor unit 61 detects the lower limit liquid level after the upper limit sensor unit 60 of the liquid level sensor 57A or 57B detects the upper limit liquid level. The circulation flow rate of the liquid refrigerant can be detected by measuring the time until. Thereby, the control of the cooling and cooling operation can be optimized, and the small capacity compressor 56 can be set to a compressor having an appropriate operation capacity.
[0054]
As mentioned above, although this invention was demonstrated based on one Embodiment, this invention is not limited to this.
[0055]
For example, the inflow side check valves 45A and 45B and the outflow side check valves 46A and 46B may be replaced with inflow side on / off valves 70A and 70B and outflow side on / off valves 71A and 71B, respectively. In this case, the inflow side on / off valves 70A and 70B and the outflow side on / off valves 71A and 71B are all closed during the ice making operation and the normal cooling operation. Further, during the cooling and cooling operation, the inflow side on / off valve 70A and the outflow side on / off valve 71B are opened / closed in conjunction with each other, and the inflow side on / off valve 70B and the outflow side on / off valve 71A are operated in conjunction with each other. The opening / closing operation is performed opposite to the outflow side opening / closing valve 71B.
[0056]
Further, there may be three or more surge tanks 43A and 43B. Further, when the liquid refrigerant is excessive or insufficient in the ice heat storage unit 22, the discharge of the excess liquid refrigerant to the heat source side unit 21 and the replenishment of the liquid refrigerant from the heat source side unit 21 are performed manually without using the control device 68. May be executed.
[0057]
【The invention's effect】
As described above, according to the air conditioner including the ice heat storage tank according to the present invention, a plurality of tanks capable of storing refrigerant are arranged in parallel between the coil in the ice heat storage tank and the use side heat exchanger. The supercooled liquid refrigerant in the coil is stored in the tank, and is configured to be pressure-fed to the use-side heat exchanger by the high-pressure gas refrigerant that is alternately supplied into these tanks. Since the alternating supply of the high-pressure gas refrigerant into the tank is performed based on signals from liquid level sensors respectively installed in the plurality of tanks, the liquid refrigerant in these tanks is continuously supplied. Moreover, it can be reliably pumped to the use side heat exchanger, and the cooling operation using the cold heat of the ice in the ice heat storage tank can be carried out satisfactorily.
[Brief description of the drawings]
FIG. 1 is a pipe line diagram showing an embodiment of an air conditioner equipped with an ice heat storage tank according to the present invention.
2 is a side view showing a liquid level sensor in the surge tank of FIG. 1. FIG.
FIG. 3 is a graph showing the relationship between the signal from the liquid level sensor and the switching timing of the four-way valve.
FIG. 4 is a graph showing the relationship between the signal from the liquid level sensor and the switching timing of the four-way valve when the liquid refrigerant is excessive in the ice storage heat unit.
FIG. 5 is a graph showing the relationship between the signal from the liquid level sensor and the switching timing of the four-way valve when there is a shortage of liquid refrigerant in the ice storage heat unit.
FIG. 6 is a pipe line diagram showing an air conditioner equipped with a conventional ice heat storage tank.
[Explanation of symbols]
21 Heat source side unit 22 Ice heat storage unit 23 User side unit 28 Compressor 29 Four-way valve 32 User side heat exchanger 34 Coil 35 Ice heat storage tank 43A, 43B Surge tank 55 Four-way valve 56 Small capacity compressor 57A, 57B Liquid level sensor 60 Upper limit sensor unit 61 Lower limit sensor unit 68 Control device

Claims (3)

圧縮機及び熱源側熱交換器を備えた熱源側ユニットと、氷蓄熱槽内にコイルが水没状態で配設されてこのコイル外周に氷が形成可能な氷蓄熱ユニットと、利用側熱交換器を備えた利用側ユニットとを有し、製氷運転、冷房運転を実施可能とする氷蓄熱槽を備えた空気調和装置において、
上記氷蓄熱槽内の上記コイルと上記利用側熱交換器との間に、冷媒を貯溜可能な複数のタンクが並列状態で配設され、上記コイル内の液冷媒が上記タンク内に貯溜されて、これらのタンク内へ交互に供給される高圧ガス冷媒により上記利用側熱交換器へ圧送可能に構成され、
上記高圧ガス冷媒の上記タンク内への交互の供給が、上記複数のタンク内にそれぞれの設置された液面センサからの信号に基づき実施されることを特徴とする氷蓄熱槽を備えた空気調和装置。
A heat source side unit having a compressor and a heat source side heat exchanger, an ice heat storage unit in which a coil is placed in a submerged state in an ice heat storage tank and ice can be formed on the outer periphery of the coil, and a use side heat exchanger. In an air conditioner having an ice heat storage tank that can be used for ice making operation and cooling operation,
A plurality of tanks capable of storing refrigerant are arranged in parallel between the coil in the ice storage tank and the use side heat exchanger, and liquid refrigerant in the coil is stored in the tank. The high-pressure gas refrigerant supplied alternately into these tanks is configured to be capable of being pumped to the use side heat exchanger,
Air conditioning with an ice heat storage tank, wherein alternating supply of the high-pressure gas refrigerant into the tank is performed based on signals from liquid level sensors installed in the plurality of tanks. apparatus.
上記液面センサは、上限液面を検知する上限センサ部と、下限液面を検知する下限センサ部とを備え、これら上限センサ部又は下限センサ部のいずれか一方のみからの信号に基づき、高圧ガス冷媒のタンク内への交互の供給がなされる際に、熱源側ユニットから氷蓄熱ユニットへの冷媒の補充、排出が実施可能に構成されたことを特徴とする請求項1に記載の氷蓄熱槽を備えた空気調和装置。The liquid level sensor includes an upper limit sensor unit that detects an upper limit liquid level and a lower limit sensor unit that detects a lower limit liquid level. Based on a signal from only one of the upper limit sensor unit or the lower limit sensor unit, The ice heat storage according to claim 1, wherein the refrigerant can be replenished and discharged from the heat source side unit to the ice heat storage unit when the gas refrigerant is alternately supplied into the tank. An air conditioner equipped with a tank. 上記複数のタンクへ交互に供給される高圧ガス冷媒は、熱源側ユニットの圧縮機よりも容量の小さな小容量圧縮機から供給される高圧ガス冷媒であることを特徴とする請求項1又は2に記載の氷蓄熱槽を備えた空気調和装置。The high pressure gas refrigerant supplied alternately to the plurality of tanks is a high pressure gas refrigerant supplied from a small capacity compressor having a smaller capacity than the compressor of the heat source side unit. An air conditioner provided with the described ice heat storage tank.
JP21620698A 1998-07-30 1998-07-30 Air conditioner with ice storage tank Expired - Fee Related JP3806520B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21620698A JP3806520B2 (en) 1998-07-30 1998-07-30 Air conditioner with ice storage tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21620698A JP3806520B2 (en) 1998-07-30 1998-07-30 Air conditioner with ice storage tank

Publications (2)

Publication Number Publication Date
JP2000046432A JP2000046432A (en) 2000-02-18
JP3806520B2 true JP3806520B2 (en) 2006-08-09

Family

ID=16684946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21620698A Expired - Fee Related JP3806520B2 (en) 1998-07-30 1998-07-30 Air conditioner with ice storage tank

Country Status (1)

Country Link
JP (1) JP3806520B2 (en)

Also Published As

Publication number Publication date
JP2000046432A (en) 2000-02-18

Similar Documents

Publication Publication Date Title
US6907923B2 (en) Storage tank for hot water systems
JP3801006B2 (en) Refrigerant circuit
JP2007263401A (en) Heat storage device
CN105102902B (en) Hot-water supply
KR910001907B1 (en) Refrigeration cycle apparatus
CN111174429A (en) Heat pump water heater
CN114616429B (en) Hot water supply device
JP2003232563A (en) Thermal storage hot water supply apparatus
JPH116665A (en) Heat-storing-type air-conditioner
JP3806520B2 (en) Air conditioner with ice storage tank
JP2009085479A (en) Hot water supply device
JP2007322084A (en) Heat pump water heater
JP3802238B2 (en) Air conditioner with ice storage tank
JP3802237B2 (en) Air conditioner with ice storage tank
JP4207867B2 (en) Hot water storage water heater
JP4567909B2 (en) Heat pump type water heater
JP4101190B2 (en) Hot water storage water heater
JP4266426B2 (en) Air conditioner with ice storage tank
JP2020197340A (en) Heat pump system
JP2504416B2 (en) Refrigeration cycle
JP3790206B2 (en) Air conditioner
KR102351454B1 (en) Heating and cooling system with heatpump
JP3992191B2 (en) Heat pump water heater
JP3863670B2 (en) Air conditioner with ice storage tank
JP3831529B2 (en) Ice heat storage unit of air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050106

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060515

LAPS Cancellation because of no payment of annual fees