JP3043080B2 - Air conditioning system - Google Patents

Air conditioning system

Info

Publication number
JP3043080B2
JP3043080B2 JP3022151A JP2215191A JP3043080B2 JP 3043080 B2 JP3043080 B2 JP 3043080B2 JP 3022151 A JP3022151 A JP 3022151A JP 2215191 A JP2215191 A JP 2215191A JP 3043080 B2 JP3043080 B2 JP 3043080B2
Authority
JP
Japan
Prior art keywords
refrigerant
heat storage
gas
liquid separator
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3022151A
Other languages
Japanese (ja)
Other versions
JPH04260756A (en
Inventor
鋼平 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP3022151A priority Critical patent/JP3043080B2/en
Publication of JPH04260756A publication Critical patent/JPH04260756A/en
Application granted granted Critical
Publication of JP3043080B2 publication Critical patent/JP3043080B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Other Air-Conditioning Systems (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は住宅用及びビル等の空気
調和システムに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioning system for houses and buildings.

【0002】[0002]

【従来の技術】一般に、ビルの空気調和システムでは、
熱源装置と空調機との間の熱搬送を行なう熱媒体とし
て、通常は水が用いられる。ところで、この空調機を被
空調室(居室)に設置すると、居室での漏水事故の恐れ
があり、あまり好まれない。
2. Description of the Related Art Generally, in a building air conditioning system,
Normally, water is used as a heat medium for transferring heat between the heat source device and the air conditioner. By the way, if this air conditioner is installed in a room to be air-conditioned (living room), there is a risk of a water leakage accident in the living room, which is not preferred.

【0003】そこで、近来のビルの空気調和システムで
は、熱源装置で得られた熱を蓄熱槽に貯えて、この蓄熱
槽と居室の熱交換器との間をフロン等の冷媒を熱媒体と
して用いることが提案されている(例えば、特公平2−
35216号公報)。
Therefore, in an air-conditioning system of a modern building, heat obtained by a heat source device is stored in a heat storage tank, and a refrigerant such as Freon is used as a heat medium between the heat storage tank and a heat exchanger in a living room. It has been proposed (for example,
No. 35216).

【0004】[0004]

【発明が解決しようとする課題】この提案によれば、熱
源装置内の冷凍回路(冷凍サイクル)と、蓄熱槽と居室
の熱交換器とをつなぐ熱搬送回路(循環サイクル)とに
夫々冷媒が封入されることとなり、冷媒の使用量が増加
することが考えられる。例えば、この提案を高層ビルに
適用した場合は、蓄熱槽と居室の熱交換器との距離が長
くなると、これにともなって、両者をつなぐ配管も長く
なって、この配管に封入される冷媒の使用量が増加す
る。
According to this proposal, refrigerant is supplied to a refrigeration circuit (refrigeration cycle) in a heat source device and a heat transfer circuit (circulation cycle) connecting a heat storage tank and a heat exchanger in a living room. It is conceivable that the amount of the refrigerant increases due to being enclosed. For example, when this proposal is applied to a high-rise building, if the distance between the heat storage tank and the heat exchanger in the living room increases, the length of the pipe connecting the two will also increase, and the refrigerant sealed in this pipe will become longer. Usage increases.

【0005】本発明は冷媒の使用量を減少させ且つ蓄熱
量が減少しても冷房運転を可能にする空調システムを提
案することを目的としたものである。
An object of the present invention is to propose an air conditioning system capable of reducing the amount of refrigerant used and performing cooling operation even when the amount of stored heat is reduced.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明は圧縮機、凝縮器、減圧器、蒸発器、気液分
離器を順次環状につないで冷凍サイクルを構成し、この
蒸発器を蓄熱槽に収めて、利用側室に設けられる熱交換
器は蒸発器と並列に配置し且つこの熱交換器の入口側の
冷媒管を気液分離器の液冷媒層に接続する一方、この入
口側もしくは出口管の冷媒管のどちらか一方に冷媒循環
ポンプを配置させ、蓄熱運転時は圧縮機の運転により冷
凍サイクルで蓄熱層に氷を形成し、冷房運転時は冷媒循
環ポンプの運転により蓄熱層の氷で液化した冷媒を利用
側室の熱交換器へ循環させる循環サイクルを形成した空
気調和システムにおいて、蓄熱運転時に気液分離器内の
液冷媒の量が所定値以下になったら圧縮機を運転させて
凝縮器で凝縮した液冷媒を気液分離器に導くようにした
ものである。
According to the present invention, a compressor, a condenser, a decompressor, an evaporator, and a gas-liquid separator are sequentially connected to form a refrigeration cycle. The heat exchanger provided in the utilization side chamber is placed in parallel with the evaporator, and the refrigerant pipe on the inlet side of the heat exchanger is connected to the liquid refrigerant layer of the gas-liquid separator. A refrigerant circulation pump is arranged on either the inlet side or the outlet side of the refrigerant pipe, ice is formed in the heat storage layer in the refrigeration cycle by operation of the compressor during heat storage operation, and by operation of the refrigerant circulation pump during cooling operation. In an air conditioning system that has a circulation cycle that circulates the refrigerant liquefied by the ice in the heat storage layer to the heat exchanger in the utilization side chamber, if the amount of liquid refrigerant in the gas-liquid separator falls below a predetermined value during heat storage operation, the compressor Was operated and condensed in the condenser It is obtained so as to guide the refrigerant to the gas-liquid separator.

【0007】[0007]

【作用】夜間等に冷凍サイクルを運転させ蓄熱槽の蒸発
器の作用で氷を作る。そして、昼間に冷媒循環ポンプを
運転させることにより、蓄熱槽内の蒸発器と利用側室の
熱交換器との間を冷媒が循環し、蓄熱槽内の氷によって
冷却された冷媒が熱交換器に送り込まれ利用側室の冷房
が行なえる。ここで、蓄熱槽内の氷による冷却能力が低
下(不足)してくると、この蓄熱槽内の蒸発器で液化さ
れる冷媒量が減少して、気液分離器内の液冷媒の量が所
定値以下になると圧縮機を運転させて凝縮器で凝縮した
液冷媒を気液分離器に導くようにしている。これによっ
て、気液分離器内は常に一定量以上の液冷媒の量が貯留
され、液冷媒は利用側室の熱交換器に導かれる。
[Action] The refrigeration cycle is operated at night or the like to produce ice by the action of the evaporator of the heat storage tank. Then, by operating the refrigerant circulation pump in the daytime, the refrigerant circulates between the evaporator in the heat storage tank and the heat exchanger in the use side chamber, and the refrigerant cooled by the ice in the heat storage tank passes through the heat exchanger. It is sent in and can cool the use side room. Here, when the cooling capacity of ice in the heat storage tank decreases (insufficient), the amount of refrigerant liquefied in the evaporator in the heat storage tank decreases, and the amount of liquid refrigerant in the gas-liquid separator decreases. When the pressure falls below a predetermined value, the compressor is operated to guide the liquid refrigerant condensed by the condenser to the gas-liquid separator. As a result, a certain amount or more of the liquid refrigerant is always stored in the gas-liquid separator, and the liquid refrigerant is guided to the heat exchanger in the use side chamber.

【0008】[0008]

【実施例】図1において、1は高層ビル等に据付けられ
る空気調和システムで、このシステム1は熱源装置2
と、ビルの利用側室(居室)3に配置された熱交換器4
と、この熱交換器4の出入口側の冷媒管18,19とか
ら構成されている。この熱源装置は高層ビルの屋上や地
下等に設置されるものである。
FIG. 1 shows an air conditioning system 1 installed in a high-rise building or the like.
And a heat exchanger 4 arranged in the use side room (living room) 3 of the building
And refrigerant tubes 18 and 19 on the inlet and outlet sides of the heat exchanger 4. This heat source device is installed on the rooftop or basement of a high-rise building.

【0009】この熱源装置2において、6は圧縮機、7
は凝縮器、8はこの凝縮器7の熱交換用ファン、9は減
圧器、10は蒸発器、11は気液分離器で、これら機器
は冷媒管で環状につながれて冷凍サイクルを構成してい
る。12は気液分離器11に収納されたフロートスイッ
チで、その動作は後述する。13は蓄熱槽で、蓄熱剤と
して水14が収められている。又、この蓄熱槽13には
蒸発器10が配置されている。15はバイパス管で、減
圧器9と蒸発器10とを側路して、出口端が気液分離器
11の気層部(上部)16につながれている。17はこ
のバイパス管15に設けられたバイパス弁である。
In this heat source device 2, 6 is a compressor, 7
Is a condenser, 8 is a heat exchange fan of the condenser 7, 9 is a decompressor, 10 is an evaporator, 11 is a gas-liquid separator, and these devices are connected in a ring by a refrigerant pipe to constitute a refrigeration cycle. I have. Reference numeral 12 denotes a float switch housed in the gas-liquid separator 11, the operation of which will be described later. A heat storage tank 13 stores water 14 as a heat storage agent. The evaporator 10 is disposed in the heat storage tank 13. Reference numeral 15 denotes a bypass pipe, which bypasses the decompressor 9 and the evaporator 10, and has an outlet end connected to a gas layer (upper part) 16 of the gas-liquid separator 11. Reference numeral 17 denotes a bypass valve provided in the bypass pipe 15.

【0010】又、熱交換器4の出口側の冷媒管18は、
減圧器9と蒸発器10とをつなぐ冷媒管につながれ、入
口側の冷媒管19は気液分離器11の液媒層部(下部)
20につながれている。21は出口側の冷媒管19に設
けられた冷媒循環ポンプである。
The refrigerant pipe 18 on the outlet side of the heat exchanger 4 is
The refrigerant pipe 19 is connected to a refrigerant pipe connecting the decompressor 9 and the evaporator 10, and the refrigerant pipe 19 on the inlet side is a liquid medium layer part (lower part) of the gas-liquid separator 11.
Connected to 20. Reference numeral 21 denotes a refrigerant circulation pump provided in the refrigerant pipe 19 on the outlet side.

【0011】このような構成を有する空気調和システム
において、まず夜間(午後10時〜翌日の午前8時)は
蓄熱運転を行なう。この時間帯は電力料金(夜間電力)
が昼間の電力料金の約1/4程度と安価であるので、こ
の安価な夜間電力を利用して蓄熱槽13に氷を作る。す
なわち、圧縮機6を運転させて(冷媒循環ポンプ21の
運転は停止)、圧縮機6から吐出された冷媒を実線矢印
のように流す。そして、蒸発器10の吸熱作用で蓄熱槽
13の水を氷らせる。この蓄熱運転時に蒸発器10で蒸
発した冷媒は気液分離器11を通り、圧縮機6で再度圧
縮されて凝縮器7へ導びかれる。
In the air-conditioning system having such a configuration, first, a heat storage operation is performed at night (from 10:00 pm to 8:00 am the next day). Electricity rate during this time (nighttime power)
Is inexpensive, about 1/4 of the daytime electricity rate, and ice is made in the heat storage tank 13 using this inexpensive nighttime electric power. That is, the compressor 6 is operated (the operation of the refrigerant circulation pump 21 is stopped), and the refrigerant discharged from the compressor 6 flows as shown by the solid arrow. Then, the water in the heat storage tank 13 is frozen by the heat absorbing action of the evaporator 10. The refrigerant evaporated by the evaporator 10 during the heat storage operation passes through the gas-liquid separator 11, is compressed again by the compressor 6, and is led to the condenser 7.

【0012】そして、昼間(午前8時〜午後10時)は
この蓄熱槽13の氷の熱によって利用側室を冷房する。
すなわち、冷房運転時は、冷媒循環ポンプ21を運転
(圧縮機6の運転は停止)させて、蓄熱槽13の氷で液
化した冷媒を冷媒循環ポンプ21で利用側室3の熱交換
器4へ送り込む。そして、この熱交換器4で気化したガ
ス冷媒は、蓄熱槽13の氷により凝縮され、気液分離器
11に入る。すなわち、この熱交換器4は凝縮器として
作用して、この冷房の気化作用によって利用側室3の冷
房が行なわれる。この冷房運転時に、蓄熱槽13の蒸発
器10と熱交換器4とを循環する冷媒は、前述の蓄熱運
転時に冷凍サイクルを流れる冷媒と同一である。すなわ
ち、この空気調和システム1において、冷凍サイクルに
使用する冷媒と、循環サイクルに使用する冷媒とは同一
であり、従来のように両サイクルを独立させた空気調和
システムに封入される冷媒量と比較してその量を減少さ
せることができる。
In the daytime (8:00 am to 10:00 pm), the use side room is cooled by the heat of the ice in the heat storage tank 13.
That is, during the cooling operation, the refrigerant circulating pump 21 is operated (the operation of the compressor 6 is stopped), and the refrigerant liquefied by the ice in the heat storage tank 13 is sent to the heat exchanger 4 of the use side chamber 3 by the refrigerant circulating pump 21. . Then, the gas refrigerant vaporized in the heat exchanger 4 is condensed by the ice in the heat storage tank 13 and enters the gas-liquid separator 11. That is, the heat exchanger 4 acts as a condenser, and the utilization side chamber 3 is cooled by the vaporization of the cooling. During this cooling operation, the refrigerant circulating through the evaporator 10 and the heat exchanger 4 of the heat storage tank 13 is the same as the refrigerant flowing through the refrigeration cycle during the above-described heat storage operation. That is, in this air-conditioning system 1, the refrigerant used in the refrigeration cycle and the refrigerant used in the circulation cycle are the same, and are compared with the amount of refrigerant sealed in the air-conditioning system in which both cycles are independent as in the related art. The amount can be reduced.

【0013】更に、上述の蓄熱槽13内の氷による冷却
能力が低下(不足)してくると、この蓄熱槽13内の蒸
発器10で液化される冷媒量が減少して、気液分離器1
1内の液冷媒の貯溜量も減少する。この減少を気液分離
器11内のフロートスイッチ12が検出して、このスイ
ッチが作動した時には、圧縮機6並びに凝縮器7の熱交
換用ファン8を運転させると共に、バイパス弁17を開
放する。これによって、凝縮器7で凝縮した液冷媒がバ
イパス管15を介して、蓄熱槽13の蒸発器10で凝縮
した液冷媒と共に、この気液分離器11に流れ込む。
Further, when the cooling capacity of the heat storage tank 13 by the ice in the heat storage tank 13 is reduced (insufficient), the amount of refrigerant liquefied in the evaporator 10 in the heat storage tank 13 is reduced, and the gas-liquid separator 1
The storage amount of the liquid refrigerant in 1 also decreases. This decrease is detected by the float switch 12 in the gas-liquid separator 11, and when this switch is operated, the heat exchange fan 8 of the compressor 6 and the condenser 7 is operated and the bypass valve 17 is opened. Thus, the liquid refrigerant condensed in the condenser 7 flows into the gas-liquid separator 11 via the bypass pipe 15 together with the liquid refrigerant condensed in the evaporator 10 of the heat storage tank 13.

【0014】このようにして、気液分離器11内には常
に一定量以上の液冷媒を貯溜させて、常に液冷媒を熱交
換器4へ流すようにしている。
In this way, a certain amount or more of the liquid refrigerant is always stored in the gas-liquid separator 11 so that the liquid refrigerant always flows to the heat exchanger 4.

【0015】従って、蓄熱槽13内の氷による冷却能力
のみでは不足が生じたとしても、この圧縮機6の運転に
よってその不足分をカバーすることができる。ここで、
冷房能力(昼間の冷房の積算能力)がこの蓄熱槽13内
の氷による蓄熱量を越えた場合は、圧縮機6→凝縮器7
→バイパス弁17→気液分離器11、という冷媒循環サ
イクルによる冷房となる。
Therefore, even if a shortage occurs only with the cooling capacity of the ice in the heat storage tank 13, the shortage can be covered by the operation of the compressor 6. here,
If the cooling capacity (accumulation capacity of daytime cooling) exceeds the heat storage capacity of the ice in the heat storage tank 13, the compressor 6 → condenser 7
The cooling is performed by the refrigerant circulation cycle of the bypass valve 17 and the gas-liquid separator 11.

【0016】このように昼間(午前8時〜午後10時)
は、循環ポンプ21の運転により冷房運転を行なうよう
にしたのは、電力ピーク時に圧縮機6を運転させないよ
うにして電力消費の平滑化を図るためである。
In the daytime (8:00 am to 10:00 pm)
The reason why the cooling operation is performed by the operation of the circulation pump 21 is to smooth the power consumption by not operating the compressor 6 at the peak time of the power.

【0017】尚、上述の夜間の蓄熱運転時にも、循環ポ
ンプ21を運転し、バイパス弁17を開放することによ
って冷房運転は可能である。
In the nighttime heat storage operation, the cooling operation can be performed by operating the circulation pump 21 and opening the bypass valve 17.

【0018】上記実施例では、冷媒循環ポンプ21を熱
交換器4の入口側の冷媒管19に設けて、このポンプ2
1をいわゆる「液ポンプ」として作用させたが、このポ
ンプを熱交換器4の出口側の冷媒管18に設けて、「ガ
スポンプ」として作用させても良い。
In the above embodiment, the refrigerant circulating pump 21 is provided in the refrigerant pipe 19 on the inlet side of the heat exchanger 4, and the pump 2
Although 1 functions as a so-called “liquid pump”, this pump may be provided in the refrigerant pipe 18 on the outlet side of the heat exchanger 4 to function as a “gas pump”.

【0019】[0019]

【発明の効果】以上述べたように、本発明の空気調和シ
ステムによれば、蓄熱槽に熱を貯える冷凍サイクルと、
蓄熱槽で貯えた熱を利用側室の熱交換器へ搬送する循環
サイクルとを同一の冷媒で行うようにしたので両サイク
ルで構成される空気調和システムに使用する冷媒量を少
なくすることができる。しかも、この循環サイクルによ
る蓄熱運転時に蓄熱槽内の氷による冷却能力が不足し
て、気液分離器内の液冷媒量が所定値以下となると、冷
房能力が低下することが考えられるが、本発明によれ
ば、この時には圧縮機を運転させることによって凝縮器
で冷媒を凝縮させて液冷媒としこの液冷媒を気液分離器
に導くようにしたので、この冷房能力の低下を抑えるこ
とができる。更に、この気液分離器は、冷凍サイクル
(蓄熱)運転時は圧縮機への液冷媒の戻りを防止する作
用をし、一方循環サイクル(冷房)運転時は液冷媒量を
調整する作用をするので、一つの容器でいずれのサイク
ル時も活用させてコストの低減を図ることができる。
As described above, according to the air conditioning system of the present invention, a refrigeration cycle for storing heat in a heat storage tank,
Since the same refrigerant is used for the circulation cycle in which the heat stored in the heat storage tank is transferred to the heat exchanger in the utilization side chamber, the amount of refrigerant used in the air conditioning system constituted by both cycles can be reduced. In addition, when the cooling capacity by the ice in the heat storage tank is insufficient during the heat storage operation by the circulation cycle, and the amount of the liquid refrigerant in the gas-liquid separator falls below a predetermined value, the cooling capacity may be reduced. According to the present invention, at this time, by operating the compressor, the refrigerant is condensed by the condenser to be a liquid refrigerant, and the liquid refrigerant is guided to the gas-liquid separator, so that the decrease in the cooling capacity can be suppressed. . Further, the gas-liquid separator functions to prevent the liquid refrigerant from returning to the compressor during the refrigeration cycle (heat storage) operation, and adjusts the liquid refrigerant amount during the circulation cycle (cooling) operation. Therefore, the cost can be reduced by utilizing one container in any cycle.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この本発明の空気調和システムの冷媒回路図で
ある。
FIG. 1 is a refrigerant circuit diagram of the air conditioning system of the present invention.

【符号の説明】[Explanation of symbols]

1 空気調和システム 4 熱交換器 6 圧縮機 7 凝縮器 9 減圧器 10 蒸発器 11 気液分離器 13 蓄熱槽 18,19 冷媒管 21 冷媒循環ポンプ DESCRIPTION OF SYMBOLS 1 Air conditioning system 4 Heat exchanger 6 Compressor 7 Condenser 9 Decompressor 10 Evaporator 11 Gas-liquid separator 13 Heat storage tank 18, 19 Refrigerant pipe 21 Refrigerant circulation pump

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 圧縮機、凝縮器、減圧器、蒸発器、気液
分離器を順次環状につないで冷凍サイクルを構成し、こ
の蒸発器を蓄熱槽に収めて、利用側室に設けられる熱交
換器は前記蒸発器と並列に配置し且つこの熱交換器の入
口側の冷媒管を前記気液分離器の液冷媒層に接続する一
方、この入口側もしくは出口管の冷媒管のどちらか一方
に冷媒循環ポンプを配置させ、蓄熱運転時は前記圧縮機
の運転により前記冷凍サイクルで蓄熱層に氷を形成し、
冷房運転時は前記冷媒循環ポンプの運転により前記蓄熱
層の氷で液化した冷媒を利用側室の熱交換器へ循環させ
る循環サイクルを形成した空気調和システムにおいて、
蓄熱運転時に前記気液器分離器内の液冷媒の量が所定値
以下になったら前記圧縮機を運転させて凝縮器で凝縮し
た液冷媒を前記気液分離器に導くことを特徴とする空気
調和システム。
1. A refrigeration cycle is constructed by connecting a compressor, a condenser, a decompressor, an evaporator, and a gas-liquid separator sequentially in a ring shape, and the evaporator is housed in a heat storage tank and provided in a heat exchanger provided in a utilization side chamber.
A heat exchanger is arranged in parallel with the evaporator and the heat exchanger
One connecting the refrigerant pipe on the mouth side to the liquid refrigerant layer of the gas-liquid separator
On the other hand, either the inlet side or the outlet side refrigerant pipe
A refrigerant circulation pump is disposed in the compressor during the heat storage operation.
Forming ice in the heat storage layer in the refrigeration cycle by the operation of
During the cooling operation, the heat storage is performed by operating the refrigerant circulation pump.
The refrigerant liquefied by the ice layer is circulated to the heat exchanger in the side chamber.
In an air conditioning system that forms a circulation cycle,
During the heat storage operation, the amount of the liquid refrigerant in the gas-liquid separator becomes a predetermined value.
When the following is reached, operate the compressor and condense in the condenser.
An air conditioning system , wherein the liquid refrigerant is guided to the gas-liquid separator .
JP3022151A 1991-02-15 1991-02-15 Air conditioning system Expired - Lifetime JP3043080B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3022151A JP3043080B2 (en) 1991-02-15 1991-02-15 Air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3022151A JP3043080B2 (en) 1991-02-15 1991-02-15 Air conditioning system

Publications (2)

Publication Number Publication Date
JPH04260756A JPH04260756A (en) 1992-09-16
JP3043080B2 true JP3043080B2 (en) 2000-05-22

Family

ID=12074854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3022151A Expired - Lifetime JP3043080B2 (en) 1991-02-15 1991-02-15 Air conditioning system

Country Status (1)

Country Link
JP (1) JP3043080B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6098121B2 (en) * 2012-11-07 2017-03-22 株式会社デンソー Cooling system
CN103277947A (en) * 2013-06-27 2013-09-04 天津商业大学 Efficient evaporator

Also Published As

Publication number Publication date
JPH04260756A (en) 1992-09-16

Similar Documents

Publication Publication Date Title
JP3662557B2 (en) Heat pump system
JP4407082B2 (en) Heating element cooling system and thermal management system
WO1999022181A1 (en) Dehumidifying air-conditioning system
JPH1019305A (en) Cooling system
CN108759142A (en) A kind of special overlapping air source high-temperature heat pump cooling/warming system
US6349558B1 (en) Ammonia refrigerator
JP2004211998A (en) Air conditioning system
JP3043080B2 (en) Air conditioning system
JP2001296068A (en) Regenerative refrigerating device
JPH03294754A (en) Air conditioner
JP2000111190A (en) Cooler
JP3495528B2 (en) Air conditioning system equipment
JPH04257660A (en) Two stage compression refrigerating cycle device
JP3502155B2 (en) Thermal storage type air conditioner
JPH03266765A (en) Air conditioner for railway car
JPH11316038A (en) Air conditioning system
KR200310320Y1 (en) Heat storage heat storage pump
JP2007147133A (en) Air conditioner
JP2000257921A (en) Air conditioner equipped with ice storage tank
JPH0823421B2 (en) Heat storage heat pump
JPS5816622Y2 (en) air conditioner
JP2002061897A (en) Heat storage type air conditioner
JPH04257661A (en) Two stage compression refrigerating cycle device
JP3920540B2 (en) Air conditioner
JP4266426B2 (en) Air conditioner with ice storage tank