JP2000111190A - Cooler - Google Patents

Cooler

Info

Publication number
JP2000111190A
JP2000111190A JP10288044A JP28804498A JP2000111190A JP 2000111190 A JP2000111190 A JP 2000111190A JP 10288044 A JP10288044 A JP 10288044A JP 28804498 A JP28804498 A JP 28804498A JP 2000111190 A JP2000111190 A JP 2000111190A
Authority
JP
Japan
Prior art keywords
refrigerant
natural circulation
condenser
gas
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10288044A
Other languages
Japanese (ja)
Inventor
Koichi Hitomi
興一 人見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Building Solutions Corp
Original Assignee
Mitsubishi Electric Building Techno Service Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Building Techno Service Co Ltd filed Critical Mitsubishi Electric Building Techno Service Co Ltd
Priority to JP10288044A priority Critical patent/JP2000111190A/en
Publication of JP2000111190A publication Critical patent/JP2000111190A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Other Air-Conditioning Systems (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a cooler excellent in energy saving performance by providing first and second forced refrigerant circulating circuits and first and second natural refrigerant circulating circuits thereby saving power consumption of a compressor significantly. SOLUTION: In a first forced refrigerant circulating circuit, refrigerant liquid liquefied by a condenser 2 absorbs heat through a first evaporator 4 to cool the air in an indoor unit 24. When the outer air temperature is sufficiently lower than the room temperature in a second natural refrigerant circulating circuit, refrigerant gas vaporized by a natural circulation evaporator 12 ascends through a refrigerant ascend pipe 35 because of the difference of specific gravity before being liquefied in a natural circulation condenser 10 by discharging heat to the outer air. Liquefied refrigerant descends through a refrigerant descend pipe 36 through action of gravity and absorbs heat at the natural circulation evaporator 12. In a first natural circulation circuit, ice in a cold storage tank 22 is employed as a heat source for condensing refrigerant of a first natural circulation condenser 17. In a second forced refrigerant circulating circuit, ice is produced in the cold storage tank 22 using a second evaporator 7 in the nighttime when the electric rate is low.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、冷凍サイクルに
組み込まれた圧縮機の消費電力を節減可能にする冷房装
置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling device that can reduce the power consumption of a compressor incorporated in a refrigeration cycle.

【0002】[0002]

【従来の技術】図2は冷媒自然循環回路を組み入れた冷
房装置(特開平9−68355号公報)の模式的な構成
図である。この冷房装置は、外部動力源によって駆動さ
れ、冷媒ガスを断熱的に圧縮して過熱状態の冷媒ガスと
する圧縮機1と、この圧縮機1で過熱状態となった冷媒
ガスを外気に放熱させて冷媒液とするフィンコイル等の
熱交換器で構成された凝縮器2と、この凝縮器2で液化
された冷媒液を断熱膨張させ気液混合状態の二相冷媒と
する膨張弁3と、冷媒液が冷媒ガスとなる際の気化熱を
被冷却体から吸熱する蒸発器4と、フィンコイル等の熱
交換器で構成されたこの蒸発器4から出た冷媒ガスを一
時的に蓄積し、運転の過渡的現象や冷媒封入量過多など
の場合に緩衝の役割を果たす容器であるサクションアキ
ュムレータ5と、サクションアキュムレータ5と圧縮機
1とをバイパスして蒸発器4からの冷媒ガスが凝縮器2
に直接流れうる冷媒上昇管32に取り付けられた冷媒流
路切替弁40とを備えている。放熱対象が大気で冷却対
象が室内空気であるこの冷房装置では、圧縮機1、凝縮
器2、サクションアキュムレータ5及び冷媒流路切替弁
40が室外ユニット21に含まれ、膨張弁3及び蒸発器
4が室内ユニシト24に含まれている。また、室外ユニ
ット21と室内ユニット24との位置関係は、室外ユニ
ット21は室内ユニット24より高い位置に設置されて
いる。
2. Description of the Related Art FIG. 2 is a schematic configuration diagram of a cooling device (Japanese Patent Laid-Open No. 9-68355) incorporating a refrigerant natural circulation circuit. The cooling device is driven by an external power source and adiabatically compresses the refrigerant gas into a superheated refrigerant gas, and radiates the superheated refrigerant gas to the outside air. A condenser 2 composed of a heat exchanger such as a fin coil that uses the refrigerant liquid as a refrigerant liquid; an expansion valve 3 that adiabatically expands the refrigerant liquid liquefied by the condenser 2 to produce a two-phase refrigerant in a gas-liquid mixed state; The evaporator 4 that absorbs the heat of vaporization when the refrigerant liquid becomes the refrigerant gas from the object to be cooled, and the refrigerant gas that comes out of the evaporator 4 that is constituted by a heat exchanger such as a fin coil is temporarily stored. A suction accumulator 5 which is a container which plays a role of buffering in the event of a transient operation phenomenon or an excessive amount of refrigerant charging, and a refrigerant gas from the evaporator 4 bypassing the suction accumulator 5 and the compressor 1 are discharged from the condenser 2.
And a refrigerant flow switching valve 40 attached to a refrigerant riser pipe 32 which can flow directly to the refrigerant. In this cooling device in which the radiation target is the atmosphere and the cooling target is room air, the outdoor unit 21 includes the compressor 1, the condenser 2, the suction accumulator 5, and the refrigerant flow switching valve 40, and the expansion valve 3 and the evaporator 4 Are included in the indoor unitite 24. The positional relationship between the outdoor unit 21 and the indoor unit 24 is such that the outdoor unit 21 is installed at a position higher than the indoor unit 24.

【0003】この冷房装置の動作には、2つの冷房運転
モードがある。1つは、夏期のように外気温度が室内空
気の温度よりも高い一般の冷凍サイクルでの冷房運転モ
ードである。この冷房運転モードの場合は、冷媒流路切
替弁40は、閉じた状態で運転される。
There are two cooling operation modes in the operation of this cooling device. One is a cooling operation mode in a general refrigeration cycle in which the outside air temperature is higher than the temperature of indoor air as in summer. In the cooling operation mode, the refrigerant flow switching valve 40 is operated in a closed state.

【0004】もう1つの運転モードは、冬期のように外
気温度が室内空気の温度よりも低い冷房運転モードで、
冷媒自然循環モードと呼ばれる。この冷媒自然循環モー
ドの場合は、冷媒流路切替弁40は開いており、蒸発器
4と凝縮器2とは冷媒上昇管32により直接接続され、
サクションアキュムレータ5及び圧縮機1は途中介在し
ない。この場合、凝縮器2に流入した略室内温度の冷媒
ガスは外気への放熱を行ない、凝縮し冷媒液となって流
れ出る。つまり、凝縮器2では冷媒ガスが液化され、蒸
発器4では冷媒液が冷媒ガスとなり、冷媒ガスの圧力は
蒸発器4側で高く凝縮器2側で低くなる。よって、冷媒
上昇管32内には冷媒ガスの圧力勾配が生じ、これによ
り、冷媒ガスは蒸発器4から凝縮器2に自然対流により
上昇する。一方、凝縮器2から流出した冷媒液は重力の
作用により冷媒降下管31を降下して蒸発器4に自然降
下する。即ち、圧縮機1を駆動しなくても冷媒は冷媒上
昇管32を上昇し、冷媒降下管31を降下して凝縮器2
と蒸発器4との間を循環する。
[0004] Another operation mode is a cooling operation mode in which the outside air temperature is lower than the temperature of the indoor air as in winter,
This is called a refrigerant natural circulation mode. In the case of the refrigerant natural circulation mode, the refrigerant flow switching valve 40 is open, and the evaporator 4 and the condenser 2 are directly connected by the refrigerant rising pipe 32,
The suction accumulator 5 and the compressor 1 do not intervene on the way. In this case, the refrigerant gas having a substantially room temperature that has flowed into the condenser 2 radiates heat to the outside air, condenses, and flows out as a refrigerant liquid. That is, the refrigerant gas is liquefied in the condenser 2, the refrigerant liquid becomes the refrigerant gas in the evaporator 4, and the pressure of the refrigerant gas is higher on the evaporator 4 side and lower on the condenser 2 side. Therefore, a pressure gradient of the refrigerant gas is generated in the refrigerant rise pipe 32, whereby the refrigerant gas rises from the evaporator 4 to the condenser 2 by natural convection. On the other hand, the refrigerant liquid flowing out of the condenser 2 descends through the refrigerant downcomer pipe 31 by the action of gravity and naturally descends to the evaporator 4. That is, even if the compressor 1 is not driven, the refrigerant rises through the refrigerant riser tube 32 and descends through the refrigerant descender tube 31 to move the condenser 2
And evaporator 4.

【0005】この冷媒自然循環モードでの冷房は、ヒー
トパイプの原理(ここでは凝縮器2と蒸発器4との温度
差及び高低差と、冷媒の温度及び圧力による相変化)を
応用したものであり、室内外温度差が十分とれる状況に
おいてのみ冷房効果が得られる。そのため、外気温度が
室内温度以上となった時には、圧縮機1を運転し、前述
の冷凍サイクルでの冷房運転モードを行わなければなら
ない。
[0005] The cooling in the refrigerant natural circulation mode is based on the principle of a heat pipe (here, the temperature difference and height difference between the condenser 2 and the evaporator 4 and the phase change due to the temperature and pressure of the refrigerant). In addition, the cooling effect can be obtained only in a situation where the indoor / outdoor temperature difference is sufficient. Therefore, when the outside air temperature becomes equal to or higher than the room temperature, the compressor 1 must be operated to perform the above-described cooling operation mode in the refrigeration cycle.

【0006】図3は氷蓄冷を利用した冷媒強制循環冷房
方式と圧縮機を駆動させる冷凍サイクルとを併用した冷
房装置の模式的な構成図の一例である。この冷房装置
は、外部動力源によって駆動され冷媒ガスを断熱的に圧
縮して過熱状態の冷媒ガスとする圧縮機1と、この圧縮
機1で過熱状態となった冷媒ガスを外部媒体に放熱させ
て冷媒液とする凝縮器2と、この凝縮器2で液化された
冷媒液を断熱膨張させ気液混合状態の二相冷媒とする膨
張弁3と、冷媒液が冷媒ガスとなる際の気化熱を被冷却
体から吸熱する蒸発器4と、この蒸発器4から出た冷媒
ガスを一時的に蓄積し、運転の過渡的現象や冷媒封入量
過多等の場合に緩衝の役割を果たす容器であるサクショ
ンアキュムレータ5と、凝縮器2で液化された冷媒液を
断熱膨張させ気液混合状態の二相冷媒とする膨張弁6
と、この膨張弁6を出た二相冷媒が冷媒ガスとなる際の
気化熱を被冷却体(水)から吸熱する熱交換器27と、
熱交換器27を内部に組込み被冷却体である水を収容す
る蓄冷槽22と、熱交換器27を凝縮器2として使用し
た逆サイクルの運転において、凝縮器2で液化した冷媒
液を断熱膨張させ気液混合状態の二相冷媒とする膨張弁
11につながる蒸発器12と、蒸発器12から出た冷媒
ガスを一時的に蓄積し、運転の過度的現象や冷媒封入量
過多等の場合に緩衝の役割を果たす容器であるサクショ
ンアキュムレータ18と、冷媒循環の流れを確保するた
めの冷媒ガスポンプ19と、蒸発器4と蒸発器12との
間をバイパスする冷媒流路切替弁28、29と、サクシ
ョンアキュムレータ18と冷媒ガスポンプ19とをバイ
パスする冷媒流路切替弁9と、膨張弁6に並列に取付け
られた逆止弁20とを備えている。
FIG. 3 is an example of a schematic configuration diagram of a cooling apparatus using both a forced circulation cooling system using ice cold storage and a refrigeration cycle for driving a compressor. This cooling device is driven by an external power source and adiabatically compresses a refrigerant gas into a superheated refrigerant gas by adiabatically compressing the refrigerant gas, and radiates the superheated refrigerant gas in the compressor 1 to an external medium. A condenser 2 that converts the refrigerant liquid liquefied by the condenser 2 into a two-phase refrigerant in a gas-liquid mixed state by adiabatic expansion, and a heat of vaporization when the refrigerant liquid becomes a refrigerant gas. Evaporator 4 that absorbs heat from the object to be cooled, and a container that temporarily accumulates the refrigerant gas discharged from the evaporator 4 and serves as a buffer in the event of a transient operation phenomenon or an excessive amount of refrigerant encapsulation. A suction accumulator 5 and an expansion valve 6 that adiabatically expands the refrigerant liquid liquefied in the condenser 2 to produce a two-phase refrigerant in a gas-liquid mixed state.
A heat exchanger 27 that absorbs heat of vaporization when the two-phase refrigerant that has exited from the expansion valve 6 becomes refrigerant gas from the object to be cooled (water);
In the reverse cycle operation in which the heat exchanger 27 is incorporated and the water to be cooled is stored in the cold storage tank 22 and the heat exchanger 27 is used as the condenser 2, the refrigerant liquid liquefied in the condenser 2 is adiabatically expanded. An evaporator 12 connected to an expansion valve 11 which is a two-phase refrigerant in a gas-liquid mixed state, and temporarily stores refrigerant gas discharged from the evaporator 12 to prevent an excessive operation phenomenon or an excessive refrigerant encapsulation amount. A suction accumulator 18 which is a container serving as a buffer, a refrigerant gas pump 19 for ensuring a flow of refrigerant circulation, refrigerant flow switching valves 28 and 29 for bypassing between the evaporator 4 and the evaporator 12, A refrigerant flow switching valve 9 that bypasses the suction accumulator 18 and the refrigerant gas pump 19 and a check valve 20 that is mounted in parallel with the expansion valve 6 are provided.

【0007】この冷房装置の動作には4つの運転モード
がある。第1の運転モードは、蓄冷運転モードであり、
この蓄冷運転モードでは、冷媒流路切替弁28,9,2
9を開として、圧縮機1で過熱状態となった冷媒ガス
は、凝縮器2で液化され冷媒配管31、冷媒流路切替弁
28、冷媒配管36を通り膨張弁6で断熱膨張され気液
混合状態の二相冷媒となる。この後、熱交換器27で冷
媒液が冷媒ガスとなる際の気化熱を被冷却体である蓄冷
槽22内の水から吸熱することにより氷を生成し、冷蓄
冷を行う。この蓄冷運転モードでは熱交換器27は蒸発
器の役割を果たす。熱交換器27で気化した冷媒ガス
は、冷媒流路切替弁9、冷媒配管35及び冷媒流路切替
弁29を通過してサクションアキュムレータ5に回収さ
れ、圧縮機1に戻る。
[0007] There are four operation modes for the operation of this cooling device. The first operation mode is a cold storage operation mode,
In this cold storage operation mode, the refrigerant flow switching valves 28, 9, 2
9 is opened, the refrigerant gas that has been overheated in the compressor 1 is liquefied in the condenser 2, passes through the refrigerant pipe 31, the refrigerant flow switching valve 28, and the refrigerant pipe 36, is adiabatically expanded by the expansion valve 6, and is gas-liquid mixed. It becomes a two-phase refrigerant in a state. Thereafter, ice is generated by absorbing heat of vaporization when the refrigerant liquid becomes refrigerant gas in the heat exchanger 27 from water in the cold storage tank 22 which is the object to be cooled, thereby performing cold storage. In this cool storage operation mode, the heat exchanger 27 plays the role of an evaporator. The refrigerant gas vaporized in the heat exchanger 27 passes through the refrigerant flow switching valve 9, the refrigerant pipe 35, and the refrigerant flow switching valve 29, is collected by the suction accumulator 5, and returns to the compressor 1.

【0008】第2の運転モードは、放熱運転モードであ
り、この放熱運転モードでは、冷媒流路切替弁28,2
9を閉とし、冷媒流路切替弁9を開として、サクション
アキュムレータ18から冷媒ガスポンプ19により冷媒
ガスを吸引し、熱交換器27に送り込む。この運転モー
ドにおいては、熱交換器27は蓄冷槽22に貯えられた
氷に放熱を行ない、冷媒ガスの液化を行う凝縮器として
の役割を果たす。熱交換器27で液化された冷媒液は、
逆止弁20及び冷媒配管36を通り、膨張弁11に至
る。この冷媒液は、膨張弁11を通過し、断熱膨張され
気液混合の二相冷媒となり、蒸発器12において気化熱
を被冷却体から吸熱することにより、冷房を行う。蒸発
器12で再びガス化した冷媒ガスは、冷媒配管35を通
りサクションアキュムレータ18に収容され、冷媒ガス
ポンプ19により熱交換器27に送られ、放熱運転が継
続される。
The second operation mode is a heat radiation operation mode. In this heat radiation operation mode, the refrigerant flow switching valves 28, 2
9 is closed, the refrigerant flow switching valve 9 is opened, and the refrigerant gas is sucked from the suction accumulator 18 by the refrigerant gas pump 19 and sent to the heat exchanger 27. In this operation mode, the heat exchanger 27 radiates heat to the ice stored in the cold storage tank 22 and functions as a condenser for liquefying the refrigerant gas. The refrigerant liquid liquefied in the heat exchanger 27 is:
The gas reaches the expansion valve 11 through the check valve 20 and the refrigerant pipe 36. The refrigerant liquid passes through the expansion valve 11 and is adiabatically expanded to become a gas-liquid mixed two-phase refrigerant. The evaporator 12 performs cooling by absorbing heat of vaporization from the object to be cooled. The refrigerant gas gasified again by the evaporator 12 is stored in the suction accumulator 18 through the refrigerant pipe 35, sent to the heat exchanger 27 by the refrigerant gas pump 19, and the heat radiation operation is continued.

【0009】第3の運転モードは、圧縮機1による冷房
運転モードであり、この冷房運転モードでは、冷媒流路
切替弁28,29を閉として、圧縮機1により過熱状態
となった冷媒ガスは、凝幅器2で液化され冷媒配管31
を通り膨張弁3で断熱膨張され気液混合状態の二相冷媒
となる。この後、蒸発器4で冷媒液が冷媒ガスとなる際
の気化熱を被冷却体から吸熱することにより冷房運転を
行う。蒸発器4で気化した冷媒ガスは、サクションアキ
ュムレー夕5で回収され、圧縮機1に再び戻され、冷房
運転が継続される。
The third operation mode is a cooling operation mode using the compressor 1. In this cooling operation mode, the refrigerant gas which has been overheated by the compressor 1 is closed by closing the refrigerant flow switching valves 28 and 29. Liquefied by the condenser 2 and the refrigerant pipe 31
And is adiabatically expanded by the expansion valve 3 to become a two-phase refrigerant in a gas-liquid mixed state. Thereafter, the evaporator 4 performs cooling operation by absorbing the heat of vaporization when the refrigerant liquid becomes the refrigerant gas from the object to be cooled. The refrigerant gas vaporized in the evaporator 4 is collected in the suction accumulator 5 and returned to the compressor 1 again, and the cooling operation is continued.

【0010】第4の運転モードは、第2の運転モードで
ある放熱運転モードと第3の運転モードである冷房運転
モードとを同時に行う運転モードで、2つの運転モード
を同時に行うことにより、より大きな冷房能力が得ら
れ、高負荷に対応出来る。
The fourth operation mode is an operation mode in which the heat dissipation operation mode as the second operation mode and the cooling operation mode as the third operation mode are simultaneously performed. Large cooling capacity can be obtained, and it can cope with high load.

【0011】[0011]

【発明が解決しようとする課題】前述の図2で説明した
従来の冷房装置は、冷媒自然循環モードにおいては、ヒ
ートパイプの原理を応用したものであり(ここでは凝縮
器2と蒸発器4との温度差及び高低差と、冷媒の温度、
圧力による相変化)、室外温度が室内温度よりも十分に
低い状況においてのみ冷房効果が得られる。そのため、
外気温度が高い夏期の運転では、室内の要求温度条件に
よっては、冷媒自然循環での冷房効果が得られず、圧縮
機1の運転による冷房運転モードでの時間が長くなり、
運転経費の節減効果が得難いといった問題点があった。
The conventional cooling device described with reference to FIG. 2 uses the principle of the heat pipe in the refrigerant natural circulation mode (here, the condenser 2 and the evaporator 4 are connected to each other). Temperature difference and height difference of the refrigerant temperature,
Phase change due to pressure), and the cooling effect can be obtained only in a situation where the outdoor temperature is sufficiently lower than the indoor temperature. for that reason,
In the summer operation in which the outside air temperature is high, the cooling effect in the natural circulation of the refrigerant cannot be obtained depending on the required indoor temperature conditions, and the time in the cooling operation mode by the operation of the compressor 1 increases,
There was a problem that it was difficult to reduce the operating cost.

【0012】図3で説明を行った従来の冷房装置は、氷
蓄冷を利用した冷媒強制循環モードにおいては、放熱運
転において冷媒ガスポンプ19の運転により冷媒循環を
行うため、冷媒ガスポンプ19を駆動する動力消費が伴
い前述の図2の冷房装置に比べて省エネルギー性が劣る
という問題点があった。
In the conventional cooling device described with reference to FIG. 3, in the forced refrigerant circulation mode using ice cold storage, the refrigerant gas is circulated by the operation of the refrigerant gas pump 19 in the heat radiation operation. There is a problem in that energy consumption is inferior to that of the cooling device of FIG. 2 due to consumption.

【0013】また、放熱運転モードでの凝縮熱源に氷蓄
冷槽22に蓄積された冷熱源しか使用していないため、
冬期などで外気温度が十分に低下し外気を凝縮冷熱源と
して利用できる時期においても放熱運転用の冷熱源とし
て夜間、圧縮機1を運転し製氷を行わなければならず、
この面でも省エネルギー性に欠ける問題点があった。
Further, since only the cold heat source stored in the ice cold storage tank 22 is used as the condensation heat source in the heat dissipation operation mode,
Even at a time when the outside air temperature is sufficiently lowered in winter or the like and the outside air can be used as a condensing cold heat source, the compressor 1 must be operated at night as a cold heat source for a heat dissipation operation to perform ice making.
Also in this aspect, there is a problem that energy saving property is lacking.

【0014】また、エネルギー需要の抑制、平準化は、
地球温暖化防止のための対応策として国際的課題となっ
ている。一方、国内の電力消費の現状は、冷房装置の普
及により真夏午後の2〜3時間の間に需要のピークを迎
える。この最大電力需要に対応するため各電力会社では
発電所建設の投資を行っているが、この冷房電力需要
は、日中と夜間とでは大きな使用量に開きがあり、また
夏期と冬期とでも大きな開きがある。夏場の短期間の電
力需要を賄うため発電所建設投資は非現実的な状況にあ
り各電力会社では、このような冷房電力需要のアンバラ
ンスの改善を図るために、蓄冷利用の空調方式の普及に
カを入れており、蓄冷のための夜間電力料金に大幅な割
引きの特典を与えている。
In addition, the suppression and leveling of energy demand
It is an international issue as a measure to prevent global warming. On the other hand, the current state of power consumption in Japan reaches a peak in demand in the afternoon of summer in the afternoon of two to three hours due to the spread of cooling devices. To meet this maximum power demand, each power company invests in power plant construction.However, this cooling power demand has large usage during the day and at night, and also has a large amount during summer and winter. There is a gap. In order to cover short-term power demand in summer, investment in power plant construction is unrealistic.Each power company has been promoting the use of air-conditioning systems using cold storage in order to improve the imbalance in cooling power demand. To give a huge discount on nighttime electricity charges for cold storage.

【0015】この発明は、上記のような問題点を解決す
ることを課題とするものであって、圧縮機の消費電力を
大幅に節減でき、省エネルギー性の高い冷房装置を得る
ことを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems, and an object of the present invention is to provide a cooling device which can greatly reduce the power consumption of a compressor and has high energy saving. .

【0016】[0016]

【課題を解決するための手段】この発明の請求項1に係
る冷房装置は、冷媒ガスを圧縮して過熱状態の冷媒ガス
とする圧縮機と、過熱状態の前記冷媒ガスを外気に放熱
させて冷媒液とする凝縮器と、前記冷媒液を断熱膨張さ
せ気液混合状態の低圧の二相冷媒とする第1の膨張弁
と、前記冷媒液が冷媒ガスとなる際に気化熱を第1の被
冷却体から吸熱する第1の蒸発器とを含む第1の冷媒強
制循環回路と、前記凝縮器からの冷媒液を断熱膨張させ
る第2の膨張弁と、第2の被冷却体が入った蓄冷槽内に
設けられ前記第2の膨張弁を通過した冷媒液が気化熱を
第2の被冷却体から吸熱する第2の蒸発器と、この第2
の蒸発器からの冷媒ガスを圧縮して過熱状態の冷媒ガス
とする前記圧縮機と、過熱状態の前記冷媒ガスを外気に
放熱させて冷媒液とする前記凝縮器とを含む第2の冷媒
強制循環回路と、前記蓄冷槽内に設けられ自然循環用冷
媒ガスの凝縮熱を前記第2の被冷却体に放熱させて自然
循環用冷媒液とする第1の自然循環用凝縮器と、凝縮さ
れた自然循環用冷媒液を断熱膨張させ気液混合状態の低
圧の二相冷媒とする自然循環用膨張弁と、前記第1の自
然循環用凝縮器よりも低位置に設けられ自然循環用冷媒
液が自然循環用冷媒ガスとなる際の気化熱を前記第1の
被冷却体から吸熱する自然循環用蒸発器とを含む第1の
冷媒自然循環回路と、自然循環用冷媒ガスの凝縮熱を外
気に放熱させ自然循環用冷媒液とする第2の自然循環用
凝縮器と、凝縮された自然循環用冷媒液を断熱膨張させ
気液混合状態の低圧の二相冷媒とする前記自然循環用膨
張弁と、前記第2の自然循環用凝縮器よりも低位置に設
けられ自然循環用冷媒液が自然循環用冷媒ガスとなる際
の気化熱を前記第1の被冷却体から吸熱する前記自然循
環用蒸発器とを含む第2の冷媒自然循環回路とを備えた
ものである。
According to a first aspect of the present invention, there is provided a cooling apparatus for compressing a refrigerant gas into a superheated refrigerant gas, and radiating the superheated refrigerant gas to the outside air. A condenser as a refrigerant liquid, a first expansion valve as an adiabatic expansion of the refrigerant liquid and a low-pressure two-phase refrigerant in a gas-liquid mixed state, and a first heat of vaporization when the refrigerant liquid becomes refrigerant gas. A first refrigerant forced circulation circuit including a first evaporator that absorbs heat from the object to be cooled, a second expansion valve that adiabatically expands the refrigerant liquid from the condenser, and a second object to be cooled. A second evaporator that is provided in the regenerator and that absorbs heat of vaporization from the second member to be cooled by the refrigerant liquid that has passed through the second expansion valve;
A second compressor forcibly including the compressor that compresses the refrigerant gas from the evaporator into an overheated refrigerant gas, and the condenser that radiates the superheated refrigerant gas to the outside air to generate a refrigerant liquid. A circulation circuit, a first natural circulation condenser provided in the cold storage tank and radiating heat of condensation of the natural circulation refrigerant gas to the second cooled object to form a natural circulation refrigerant liquid; A natural circulation expansion valve that adiabatically expands the natural circulation refrigerant liquid into a low-pressure two-phase refrigerant in a gas-liquid mixed state, and a natural circulation refrigerant liquid that is provided at a lower position than the first natural circulation condenser. A first refrigerant natural circulation circuit including a natural circulation evaporator that absorbs heat of vaporization from the first cooled object when the heat of vaporization becomes a natural circulation refrigerant gas, and converts the heat of condensation of the natural circulation refrigerant gas to outside air. A second natural circulation condenser that radiates heat to the natural circulation refrigerant liquid, The natural circulation expansion valve, which adiabatically expands the natural circulation refrigerant liquid to produce a low-pressure two-phase refrigerant in a gas-liquid mixed state, and the natural circulation refrigerant provided at a lower position than the second natural circulation condenser. A second refrigerant natural circulation circuit including the natural circulation evaporator that absorbs heat of vaporization when the liquid becomes natural circulation refrigerant gas from the first cooled object.

【0017】また、請求項2に係る冷房装置では、第1
の被冷却体は室内空気であり、第2の被冷却体は水であ
る。
Further, in the cooling device according to the second aspect, the first
The object to be cooled is room air, and the second object to be cooled is water.

【0018】また、請求項3に係る冷房装置では、外
気、第1の被冷却体及び第2の被冷却体の各温度を検出
し、この温度の値に応じて、冷媒の経路を第1の冷媒強
制循環回路、第2の冷媒強制循環回路、第1の冷媒自然
循環回路及び第2の冷媒自然循環回路の何れかを選択す
る制御手段を備えたものである。
Further, in the cooling device according to the third aspect, the temperatures of the outside air, the first object to be cooled, and the second object to be cooled are detected, and the path of the refrigerant is set to the first path according to the value of this temperature. And a control means for selecting any one of the forced refrigerant circulation circuit, the second forced refrigerant circuit, the first natural refrigerant circuit, and the second natural refrigerant circuit.

【0019】また、請求項4に係る冷房装置では、時間
帯によって冷媒ガスを第2の冷媒強制循環回路に流通さ
せて蓄冷槽内に氷を生成する制御手段を備えたものであ
る。
Further, the cooling device according to the fourth aspect of the present invention is provided with control means for causing the refrigerant gas to flow through the second refrigerant forced circulation circuit to generate ice in the cold storage tank depending on the time zone.

【0020】[0020]

【発明の実施の形態】実施の形態1.以下、この発明の
冷房装置の実施の形態1について図面を参照して説明す
る。図1はこの発明の冷房装置の冷凍サイクルの模式的
な構成図である。この図において、圧縮機1、凝縮器
2、第1の膨張弁3、第1の蒸発器4、サクションアキ
ュムレータ5については図2及び図3で示した従来の構
成要素と同様であり、これらの構成要素と、冷媒流路切
替弁9、冷媒下降管31及び冷媒上昇管32により第1
の冷媒強制循環回路を構成している。また、圧縮機1、
凝縮器2、冷媒流路切替弁8、第2の膨張弁6、第2の
被冷却体である水が入った蓄冷槽22内に設けられた第
2の蒸発器7及びサクションアキュムレータ5により第
2の冷媒強制循環回路を構成している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 Hereinafter, a cooling device according to a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram of a refrigeration cycle of the cooling device of the present invention. In this figure, a compressor 1, a condenser 2, a first expansion valve 3, a first evaporator 4, and a suction accumulator 5 are the same as the conventional components shown in FIGS. The components, the refrigerant flow switching valve 9, the refrigerant downcomer 31 and the refrigerant upcomer 32 make the first
Of the refrigerant forced circulation circuit. Also, the compressor 1,
The condenser 2, the refrigerant flow switching valve 8, the second expansion valve 6, the second evaporator 7 provided in the cold storage tank 22 containing water as the second object to be cooled, and the suction accumulator 5. 2 constitutes a refrigerant forced circulation circuit.

【0021】そして、凝縮器2で液化された冷媒液が第
1の蒸発器4に流れた場合には、冷媒液は第1の膨張弁
3で断熱膨張され気液混合状態の二相冷媒となり、第1
の蒸発4で冷媒液が冷媒ガスとなる際の気化熱を第1の
被冷却体である室内ユニット24内の空気から吸熱する
ことにより、室内ユニット24内は冷却される。一方、
凝縮器2で液化された冷媒液が第2の蒸発器7側に流れ
た場合には、冷媒液は第2の膨張弁6で断熱膨張され気
液混合状態の二相冷媒となり、第2の蒸発器7で冷媒液
が冷媒ガスとなる際の気化熱を被冷却体である蓄冷槽2
2内の水から吸熱することにより、氷が生成され、蓄冷
熱が行われる。
When the refrigerant liquid liquefied by the condenser 2 flows into the first evaporator 4, the refrigerant liquid is adiabatically expanded by the first expansion valve 3 and becomes a two-phase refrigerant in a gas-liquid mixed state. , First
The interior of the indoor unit 24 is cooled by absorbing the heat of vaporization when the refrigerant liquid becomes the refrigerant gas in the evaporation 4 of the air from the air in the indoor unit 24 as the first cooled object. on the other hand,
When the refrigerant liquid liquefied in the condenser 2 flows to the second evaporator 7 side, the refrigerant liquid is adiabatically expanded by the second expansion valve 6 and becomes a two-phase refrigerant in a gas-liquid mixed state. The heat of vaporization when the refrigerant liquid becomes the refrigerant gas in the evaporator 7 is transferred to the regenerator 2 which is the object to be cooled.
By absorbing heat from the water in 2, ice is generated and cold heat is stored.

【0022】また、室内ユニット24内に設けられ室内
ユニット24内の空気から吸熱を行う自然循環用蒸発器
12、冷媒上昇管35と、室内ユニット24よりも所定
の高位置に設置された蓄熱槽22内に設けられた第1の
自然循環用凝縮器17、冷媒流路切替弁16、冷媒下降
管36及び自然循環用膨張弁11により第1の冷媒自然
循環回路を構成している。また、自然循環用蒸発器1
2、冷媒上昇管35、冷媒流路切替弁13、15、室内
ユニット24より所定の高位置に設置された室外ユニッ
ト23内に設けられた第2の自然循環用凝縮器10、冷
媒下降管36及び自然循環用膨張弁11により第2の冷
媒自然循環回路を構成している。
Also, a natural circulation evaporator 12, which is provided in the indoor unit 24 and absorbs heat from the air in the indoor unit 24, a refrigerant riser 35, and a heat storage tank installed at a predetermined higher position than the indoor unit 24 A first refrigerant natural circulation circuit is configured by the first natural circulation condenser 17, the refrigerant flow switching valve 16, the refrigerant down pipe 36, and the natural circulation expansion valve 11 provided inside 22. In addition, the natural circulation evaporator 1
2. Refrigerant riser 35, refrigerant flow switching valves 13 and 15, second natural circulation condenser 10 provided in outdoor unit 23 installed at a predetermined higher position than indoor unit 24, refrigerant downcomer 36 The natural refrigerant expansion valve 11 forms a second refrigerant natural circulation circuit.

【0023】通常、凝縮器2及び第2の自然循環用凝縮
器10には、被放熱体である外気との熱交換効率を向上
させるために、室外ユニット21、室外ユニット23そ
れぞれに送風機が装備される。室内ユニット24にも同
様に、第1の蒸発器4及び自然循環用蒸発器12の被冷
却体である室内空気との熱交換効率を向上させるため
に、送風機が装備される。
Usually, the condenser 2 and the second condenser for natural circulation 10 are provided with a blower in each of the outdoor unit 21 and the outdoor unit 23 in order to improve the heat exchange efficiency with the outside air which is the heat radiating body. Is done. Similarly, the indoor unit 24 is provided with a blower to improve the efficiency of heat exchange between the first evaporator 4 and the indoor air, which is the object to be cooled, of the natural circulation evaporator 12.

【0024】次に、この実施の形態の冷房装置の動作に
ついて説明する。この冷房装置の冷房運転には、三つの
冷房運転モードがある。まず、第1の冷房運転モードに
ついて説明する。この冷房運転モードでは、前記第1の
冷媒強制循環回路に冷媒が流れるようになっている。第
1の蒸発器4での吸熱により気化した冷媒ガスは圧縮機
1で圧縮され、過熱昇圧される。この冷媒ガスは凝縮器
2で放熱され、凝縮液化した冷媒液は第1の膨張弁3を
通り、減圧膨張され、二相冷媒となり再度蒸発器4で蒸
発による吸熱により室内ユニット24内の空気を冷却す
る。
Next, the operation of the cooling device according to this embodiment will be described. There are three cooling operation modes for the cooling operation of this cooling device. First, the first cooling operation mode will be described. In this cooling operation mode, refrigerant flows through the first refrigerant forced circulation circuit. The refrigerant gas vaporized by the heat absorption in the first evaporator 4 is compressed by the compressor 1 and is overheated and pressurized. This refrigerant gas is radiated in the condenser 2, and the condensed and liquefied refrigerant liquid passes through the first expansion valve 3, is decompressed and expanded, becomes a two-phase refrigerant, and again absorbs heat in the indoor unit 24 by evaporating in the evaporator 4. Cooling.

【0025】次に、第2の冷房運転モードについて説明
する。この冷房運転モードでは、前記第2の冷媒自然循
環回路に冷媒が流れるようになっている。自然循環用蒸
発器12で吸熱気化した冷媒ガスはその比重差により冷
媒上昇管35を上昇し第2の自然循環用凝縮器10で低
温の外気に凝縮熱を放熱し液化する。液化した冷媒液
は、重力の作用により冷媒下降管36を降下し自然循環
用膨張弁11により減圧され、自然循環用蒸発器12で
吸熱する。自然循環用蒸発器12で冷媒は再度気化し、
冷媒上昇管35を上昇し自然循環用凝縮器10に戻り、
自然循環用凝縮器10では再び液化する。この冷媒自然
循環作用による冷房運転モードでは室内温度に対して室
外温度が十分に低く、冷媒の自然循環駆動力が得られる
ことが条件となる。
Next, the second cooling operation mode will be described. In this cooling operation mode, the refrigerant flows through the second refrigerant natural circulation circuit. The refrigerant gas absorbed and vaporized by the natural circulation evaporator 12 rises in the refrigerant riser 35 due to the difference in specific gravity, and the second natural circulation condenser 10 releases heat of condensation to low-temperature outside air to liquefy. The liquefied refrigerant liquid descends the refrigerant downcomer pipe 36 by the action of gravity, is decompressed by the natural circulation expansion valve 11, and absorbs heat in the natural circulation evaporator 12. In the natural circulation evaporator 12, the refrigerant is vaporized again,
The refrigerant riser 35 is raised and returned to the natural circulation condenser 10,
In the condenser 10 for natural circulation, it is liquefied again. In the cooling operation mode using the natural refrigerant circulation operation, the condition is that the outdoor temperature is sufficiently lower than the indoor temperature and a natural circulation driving force of the refrigerant is obtained.

【0026】次に、第3の冷房運転モードについて説明
する。この冷房運転モードでは、前記第1の冷媒自然循
環用回路に冷媒が流れるようになっており、蓄冷槽22
内に充填された氷の冷熱源を冷媒自然循環の凝縮熱源と
して用いている。この第3の冷房運転モードでは、自然
循環用蒸発器12で気化した冷媒ガスはその比重差によ
り冷媒上昇管35を上昇し第1の自然循環用凝縮器17
で蓄冷槽22内の氷に凝縮熱を放熱して液化する。液化
した冷媒液は、重力の作用により冷媒下降管36を降下
し自然循環用膨張弁11により減圧され自然循環用蒸発
器12で吸熱を行い再度気化する。この気化した冷媒ガ
スは冷媒上昇管35を上昇し第1の自然循環用凝縮器1
7に再び戻る。この冷媒自然循環作用による冷房運転モ
ードでは、蓄冷槽22内に蓄冷された冷熱源を凝縮熱源
として用いており、室外温度の条件に影響されることな
く、冷媒自然循環冷房運転を確実に行うことができる。
Next, the third cooling operation mode will be described. In this cooling operation mode, the refrigerant flows through the first refrigerant natural circulation circuit.
The cold heat source of the ice filled inside is used as the condensation heat source of the natural circulation of the refrigerant. In the third cooling operation mode, the refrigerant gas vaporized in the natural circulation evaporator 12 rises in the refrigerant riser 35 due to the difference in specific gravity, and flows into the first natural circulation condenser 17.
Then, the heat of condensation is released to the ice in the cold storage tank 22 to liquefy. The liquefied refrigerant liquid descends through the refrigerant downcomer pipe 36 by the action of gravity, is decompressed by the natural circulation expansion valve 11, absorbs heat in the natural circulation evaporator 12, and is vaporized again. The vaporized refrigerant gas rises in the refrigerant riser 35 and flows into the first natural circulation condenser 1.
Return to 7 again. In the cooling operation mode based on the natural refrigerant circulation operation, the cold heat source stored in the cold storage tank 22 is used as a condensing heat source, and the refrigerant natural circulation cooling operation is reliably performed without being affected by the outdoor temperature condition. Can be.

【0027】なお、蓄冷槽22内には例えば電力料金が
安い夜間時間に前記第2の冷媒強制循環回路に冷媒を循
環させることにより、氷が生成される。つまり、凝縮機
2から出た冷媒液は第2の膨張弁6で断熱膨張され気液
混合状態の二相冷媒となり、この冷媒液が第2の蒸発器
7で水から気化熱を奪い気化し、蓄冷槽22内には氷が
生成される。
Ice is generated in the regenerator 22 by circulating the refrigerant through the second forced circulation circuit at night, for example, when the electricity rate is low. That is, the refrigerant liquid that has flowed out of the condenser 2 is adiabatically expanded by the second expansion valve 6 to become a two-phase refrigerant in a gas-liquid mixed state. Ice is generated in the cold storage tank 22.

【0028】実施の形態2.なお、上記冷房装置におい
て、外気、室内温度及び蓄冷槽22内の温度を検出する
ことにより、またタイマー機能等により自動的に第1な
いし第3の冷房運転モードの切替えを可能にする制御手
段を付加するようにしてもよい。
Embodiment 2 In the above-described cooling device, a control means for enabling the switching of the first to third cooling operation modes by detecting the outside air, the indoor temperature and the temperature in the cold storage tank 22 and automatically by a timer function or the like is provided. It may be added.

【0029】この実施の形態では、例えば、外気温度が
冷却により維持しようとする室内ユニット24の目標温
度よりも5℃以上低い状態では、制御手段からの信号に
より、上述の第2の冷房運転モードに切替られる。つま
り、室外ユニット23と室内ユニット24との間で冷媒
流路切替弁13を開、冷媒流路切替弁14を閉とするこ
とで第2の冷媒自然循環回路が形成され、低温外気を利
用して第2の自然循環用凝縮器10と自然循環用蒸発器
12との間で冷媒が自然循環され、室内ユニット24内
は冷房される。この第2の冷房運転モードで冷房装置が
運転されている間、例えば午後10時から翌朝の午前8
時までの夜間時間帯では、制御手段からの信号で蓄冷運
転により蓄冷槽22内に冷熱を貯えておく。
In this embodiment, for example, in a state where the outside air temperature is lower than the target temperature of the indoor unit 24 to be maintained by cooling by 5 ° C. or more, the above-mentioned second cooling operation mode Is switched to That is, the second refrigerant natural circulation circuit is formed by opening the refrigerant flow switching valve 13 and closing the refrigerant flow switching valve 14 between the outdoor unit 23 and the indoor unit 24, and utilizes low-temperature outside air. Thus, the refrigerant is naturally circulated between the second natural circulation condenser 10 and the natural circulation evaporator 12, and the inside of the indoor unit 24 is cooled. During the operation of the cooling device in the second cooling operation mode, for example, from 10 pm to 8 am
In the night time period until the hour, cold heat is stored in the cold storage tank 22 by the cold storage operation based on a signal from the control means.

【0030】そして、外気温度が上昇し外気温度と室内
目標温度との差が5℃以内となり、低温外気を利用した
冷媒自然循環冷房では十分な冷房効果が得られなくなっ
た昼間では、制御手段からの信号により、冷媒流路切替
弁13を閉、冷媒流路切替弁14を開とすることによ
り、室外ユニット23内の空冷の第2の自然循環用凝縮
器10から蓄冷槽22内の第1の自然循環用凝縮器17
に冷媒循環回路が切替えられ、継続して室内ユニット2
4内は冷房される。
In the daytime when the outside air temperature rises and the difference between the outside air temperature and the indoor target temperature becomes less than 5 ° C., and sufficient cooling effect cannot be obtained in the natural circulation cooling using the low temperature outside air, the control means is used. The refrigerant flow switching valve 13 is closed and the refrigerant flow switching valve 14 is opened in response to the signal from the air-cooled second natural circulation condenser 10 in the outdoor unit 23 to the first in the cold storage tank 22. Condenser for natural circulation 17
The refrigerant circulation circuit is switched to the indoor unit 2 continuously.
The inside of 4 is cooled.

【0031】その後、外気温度が室内温度に比較して高
い状態で、蓄冷槽22内に貯えておいた冷熱源を消費し
てしまい、蓄冷槽22の氷が水となりその温度と室内空
気との温度差では冷媒自然循環冷房方式で冷房効果が得
られなくなった時には、制御手段からの信号により第1
の冷房運転モードに冷房運転は切替えられる。つまり、
制御手段からの信号により、冷媒流路切替弁8を閉じ、
冷媒流路切替弁9を開き、また圧縮機1を駆動させるこ
とにより第1の冷房運転モードに切り替えられる。
Thereafter, in a state where the outside air temperature is higher than the room temperature, the cold heat source stored in the cold storage tank 22 is consumed, and the ice in the cold storage tank 22 becomes water, and the temperature and the room air When the cooling effect cannot be obtained by the refrigerant natural circulation cooling method with the temperature difference, the first
The cooling operation is switched to the cooling operation mode. That is,
By the signal from the control means, the refrigerant flow switching valve 8 is closed,
The first cooling operation mode is switched by opening the refrigerant flow switching valve 9 and driving the compressor 1.

【0032】なお、上記の各実施の形態の冷房装置で
は、第1の被冷却体として空気を用いたが、勿論このも
のに限定されるものではなく、例えば水であってもよ
い。
In the cooling devices of the above embodiments, air is used as the first object to be cooled. However, the air is not limited to this, and may be, for example, water.

【0033】[0033]

【発明の効果】以上説明したように、この発明の請求項
1に係る冷房装置によれば、外気温度が冷却により維持
しようとする被冷却体の温度より所定温度以上低い状態
においては、外気温度と被冷却体との温度差、及び蒸発
器と凝縮器との高低差を利用した冷媒自然循環冷房方式
を採用することで、圧縮機の消費電力を大幅に削減する
ことができる。
As described above, according to the cooling apparatus of the first aspect of the present invention, when the outside air temperature is lower than the temperature of the object to be cooled by a predetermined temperature or more, the outside air temperature is reduced. By adopting the refrigerant natural circulation cooling system that utilizes the temperature difference between the compressor and the object to be cooled and the height difference between the evaporator and the condenser, the power consumption of the compressor can be significantly reduced.

【0034】また、請求項2に係る冷房装置では、第2
の被冷却体は水であるので、熱容量が大きな凝縮熱冷源
を安価に得ることができる。
In the cooling device according to the second aspect, the second
Since the object to be cooled is water, a condensed heat cooling source having a large heat capacity can be obtained at low cost.

【0035】また、請求項3に係る冷房装置では、外
気、第1の被冷却体及び第2の被冷却体の各温度を検出
し、この温度の値に応じて、冷媒の経路を第1の冷媒強
制循環回路、第2の冷媒強制循環回路、第1の冷媒自然
循環回路及び第2の冷媒自然循環回路の何れかを選択す
る制御手段を備えたので、冷房装置は効率よく運転され
る。
In the cooling device according to the third aspect, the temperatures of the outside air, the first cooled object, and the second cooled object are detected, and the path of the refrigerant is set to the first temperature in accordance with the detected temperature. The cooling device is efficiently operated because the cooling unit is provided with a control means for selecting any one of the refrigerant forced circulation circuit, the second refrigerant forced circulation circuit, the first refrigerant natural circulation circuit, and the second refrigerant natural circulation circuit. .

【0036】また、請求項4に係る冷房装置では、時間
帯によって冷媒ガスを第2の冷媒強制循環回路に流通さ
せて蓄冷槽内に氷を生成させる制御手段を備えたので、
例えば電力料金の安価な夜間に氷を生成することで、大
幅に運転コストを低減することができる。
Further, the cooling device according to claim 4 is provided with control means for causing the refrigerant gas to flow through the second refrigerant forced circulation circuit to generate ice in the cold storage tank depending on the time zone.
For example, by generating ice at night when the power rate is low, the operating cost can be significantly reduced.

【図面の簡単の説明】[Brief Description of the Drawings]

【図1】 この発明の冷房装置における冷凍サイクルの
構成図である。
FIG. 1 is a configuration diagram of a refrigeration cycle in a cooling device of the present invention.

【図2】 従来の冷房装置の一例を示す構成図である。FIG. 2 is a configuration diagram illustrating an example of a conventional cooling device.

【図3】 従来の冷房装置の他の例を示す構成図であ
る。
FIG. 3 is a configuration diagram showing another example of a conventional cooling device.

【符号の説明】[Explanation of symbols]

1 圧縮機、2 凝縮器、17 第1の自然循環用凝縮
器、10 第2の自然循環用凝縮器、3 第1の膨張
弁、6 第2の膨張弁、11 自然循環用膨張弁、4
第1の蒸発器、7 第2の蒸発器、12 自然循環用蒸
発器、21、23室外ユニット、24 室内ユニット、
22 蓄冷槽。
REFERENCE SIGNS LIST 1 compressor, 2 condenser, 17 first natural circulation condenser, 10 second natural circulation condenser, 3 first expansion valve, 6 second expansion valve, 11 natural circulation expansion valve, 4
1st evaporator, 7 2nd evaporator, 12 natural circulation evaporator, 21, 23 outdoor unit, 24 indoor unit,
22 Cool storage tank.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 冷媒ガスを圧縮して過熱状態の冷媒ガス
とする圧縮機と、過熱状態の前記冷媒ガスを外気に放熱
させて冷媒液とする凝縮器と、前記冷媒液を断熱膨張さ
せ気液混合状態の低圧の二相冷媒とする第1の膨張弁
と、前記冷媒液が冷媒ガスとなる際に気化熱を第1の被
冷却体から吸熱する第1の蒸発器とを含む第1の冷媒強
制循環回路と、 前記凝縮器からの冷媒液を断熱膨張させる第2の膨張弁
と、第2の被冷却体が入った蓄冷槽内に設けられ前記第
2の膨張弁を通過した冷媒液が気化熱を第2の被冷却体
から吸熱する第2の蒸発器と、この第2の蒸発器からの
冷媒ガスを圧縮して過熱状態の冷媒ガスとする前記圧縮
機と、過熱状態の前記冷媒ガスを外気に放熱させて冷媒
液とする前記凝縮器とを含む第2の冷媒強制循環回路
と、 前記蓄冷槽内に設けられ自然循環用冷媒ガスの凝縮熱を
前記第2の被冷却体に放熱させて自然循環用冷媒液とす
る第1の自然循環用凝縮器と、凝縮された自然循環用冷
媒液を断熱膨張させ気液混合状態の低圧の二相冷媒とす
る自然循環用膨張弁と、前記第1の自然循環用凝縮器よ
りも低位置に設けられ自然循環用冷媒液が自然循環用冷
媒ガスとなる際の気化熱を前記第1の被冷却体から吸熱
する自然循環用蒸発器とを含む第1の冷媒自然循環回路
と、 自然循環用冷媒ガスの凝縮熱を外気に放熱させ自然循環
用冷媒液とする第2の自然循環用凝縮器と、凝縮された
自然循環用冷媒液を断熱膨張させ気液混合状態の低圧の
二相冷媒とする前記自然循環用膨張弁と、前記第2の自
然循環用凝縮器よりも低位置に設けられ自然循環用冷媒
液が自然循環用冷媒ガスとなる際の気化熱を前記第1の
被冷却体から吸熱する前記自然循環用蒸発器とを含む第
2の冷媒自然循環回路とを備えた冷房装置。
1. A compressor that compresses a refrigerant gas to produce a superheated refrigerant gas, a condenser that radiates the superheated refrigerant gas to the outside air to produce a refrigerant liquid, and a compressor that adiabatically expands the refrigerant liquid. A first expansion valve including a first expansion valve that is a low-pressure two-phase refrigerant in a liquid-mixed state, and a first evaporator that absorbs heat of vaporization from a first cooled object when the refrigerant liquid becomes a refrigerant gas. A refrigerant forced circulation circuit, a second expansion valve for adiabatically expanding the refrigerant liquid from the condenser, and a refrigerant provided in a cold storage tank containing a second object to be cooled and passing through the second expansion valve. A second evaporator in which the liquid absorbs heat of vaporization from the second object to be cooled, the compressor that compresses the refrigerant gas from the second evaporator into a superheated refrigerant gas, A second refrigerant forced circulation circuit including: the condenser that radiates the refrigerant gas to the outside air to form a refrigerant liquid; A first natural circulation condenser provided in the cool storage tank and radiating heat of condensation of the natural circulation refrigerant gas to the second cooled object to form a natural circulation refrigerant liquid; and a condensed natural circulation refrigerant. A natural circulation expansion valve that adiabatically expands the liquid to produce a low-pressure two-phase refrigerant in a gas-liquid mixed state; and a natural circulation refrigerant liquid that is provided at a lower position than the first natural circulation condenser. A first refrigerant natural circulation circuit including a natural circulation evaporator that absorbs heat of vaporization when becoming gas from the first object to be cooled; and a natural circulation by releasing heat of condensation of the natural circulation refrigerant gas to the outside air. A second natural circulation condenser as a refrigerant fluid for use, a natural circulation expansion valve for adiabatically expanding the condensed natural circulation refrigerant liquid to produce a low-pressure two-phase refrigerant in a gas-liquid mixed state, Is provided at a lower position than the natural circulation condenser, and the natural circulation refrigerant liquid is used for natural circulation. Cooling apparatus and a second refrigerant natural circulation circuit including said natural circulation evaporator which absorbs heat of vaporization when the medium gas from the first object to be cooled.
【請求項2】 第1の被冷却体は室内空気であり、第2
の被冷却体は水である請求項1に記載の冷房装置。
2. The method according to claim 1, wherein the first object to be cooled is room air.
The cooling device according to claim 1, wherein the object to be cooled is water.
【請求項3】 外気、第1の被冷却体及び第2の被冷却
体の各温度を検出し、この温度の値に応じて、冷媒の経
路を第1の冷媒強制循環回路、第2の冷媒強制循環回
路、第1の冷媒自然循環回路及び第2の冷媒自然循環回
路の何れかを選択する制御手段を備えた請求項1または
請求項2に記載の冷房装置。
3. The temperature of the outside air, the first object to be cooled, and the temperature of the second object to be cooled are detected, and the path of the refrigerant is changed according to the value of the temperature. The cooling device according to claim 1 or 2, further comprising control means for selecting any one of a forced refrigerant circulation circuit, a first refrigerant natural circulation circuit, and a second refrigerant natural circulation circuit.
【請求項4】 時間帯によって冷媒ガスを第2の冷媒強
制循環回路に流通させて蓄冷槽内に氷を生成する制御手
段を備えた請求項2または請求項3に記載の冷房装置。
4. The cooling device according to claim 2, further comprising control means for causing the refrigerant gas to flow through the second refrigerant forced circulation circuit according to a time zone to generate ice in the regenerator.
JP10288044A 1998-10-09 1998-10-09 Cooler Pending JP2000111190A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10288044A JP2000111190A (en) 1998-10-09 1998-10-09 Cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10288044A JP2000111190A (en) 1998-10-09 1998-10-09 Cooler

Publications (1)

Publication Number Publication Date
JP2000111190A true JP2000111190A (en) 2000-04-18

Family

ID=17725118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10288044A Pending JP2000111190A (en) 1998-10-09 1998-10-09 Cooler

Country Status (1)

Country Link
JP (1) JP2000111190A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007509303A (en) * 2003-10-15 2007-04-12 アイス エナジー インコーポレーテッド High performance heat storage and cooling system using refrigerant
WO2011045977A1 (en) * 2009-10-14 2011-04-21 株式会社 日立製作所 Air conditioning apparatus
WO2011104834A1 (en) * 2010-02-24 2011-09-01 株式会社 日立製作所 Air conditioner
CN102252385A (en) * 2011-05-15 2011-11-23 杭州兴环科技开发有限公司 Dual-circuit air-conditioning system
CN102418969A (en) * 2011-08-05 2012-04-18 东南大学 Integral air source and ground source composite heat pump device
WO2013080914A1 (en) * 2011-11-29 2013-06-06 日立アプライアンス株式会社 Air conditioner
CN103956193A (en) * 2014-03-31 2014-07-30 中国核电工程有限公司 Passive containment heat removal system
CN114440357A (en) * 2022-04-11 2022-05-06 深圳市伟力低碳股份有限公司 Refrigeration control method, device and system based on ice cold storage technology

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007509303A (en) * 2003-10-15 2007-04-12 アイス エナジー インコーポレーテッド High performance heat storage and cooling system using refrigerant
CN102472530A (en) * 2009-10-14 2012-05-23 株式会社日立制作所 Air conditioning apparatus
WO2011045977A1 (en) * 2009-10-14 2011-04-21 株式会社 日立製作所 Air conditioning apparatus
JP2011085294A (en) * 2009-10-14 2011-04-28 Hitachi Ltd Air conditioner
WO2011104834A1 (en) * 2010-02-24 2011-09-01 株式会社 日立製作所 Air conditioner
CN102753915A (en) * 2010-02-24 2012-10-24 株式会社日立制作所 Air conditioner
JP5373959B2 (en) * 2010-02-24 2013-12-18 株式会社日立製作所 Air conditioner
CN102753915B (en) * 2010-02-24 2014-11-05 株式会社日立制作所 Air conditioner
CN102252385A (en) * 2011-05-15 2011-11-23 杭州兴环科技开发有限公司 Dual-circuit air-conditioning system
CN102418969A (en) * 2011-08-05 2012-04-18 东南大学 Integral air source and ground source composite heat pump device
WO2013080914A1 (en) * 2011-11-29 2013-06-06 日立アプライアンス株式会社 Air conditioner
JP2013113498A (en) * 2011-11-29 2013-06-10 Hitachi Appliances Inc Air conditioner
CN103956193A (en) * 2014-03-31 2014-07-30 中国核电工程有限公司 Passive containment heat removal system
CN114440357A (en) * 2022-04-11 2022-05-06 深圳市伟力低碳股份有限公司 Refrigeration control method, device and system based on ice cold storage technology
CN114440357B (en) * 2022-04-11 2022-07-15 深圳市伟力低碳股份有限公司 Refrigeration control method, device and system based on ice cold storage technology

Similar Documents

Publication Publication Date Title
US5211029A (en) Combined multi-modal air conditioning apparatus and negative energy storage system
US9212834B2 (en) System and method for liquid-suction heat exchange thermal energy storage
US7124594B2 (en) High efficiency refrigerant based energy storage and cooling system
JP2000314565A (en) Air conditioner
WO2013055520A1 (en) Thermal energy storage in a chiller system
JPH09273876A (en) Cooler with natural circulation loop
JP3125778B2 (en) Air conditioner
JP2006017427A (en) Cooling system
JP2000111190A (en) Cooler
US20040221589A1 (en) Energy storage with refrigeration systems and method
JP5503167B2 (en) Air conditioning system
JP3377846B2 (en) Thermal storage type air conditioner
JP3307915B2 (en) Cooling device
JP2000205774A (en) Capsulated heat storage apparatus
JP3307803B2 (en) Cooling device
JP3666264B2 (en) Air conditioner
JP4156842B2 (en) Operation method of cold heat generation system and cold heat generation system
JP2646877B2 (en) Thermal storage refrigeration cycle device
JP2678211B2 (en) Heat storage type cold / heat generator
JP3804601B2 (en) Refrigeration cycle equipment using non-azeotropic refrigerant mixture
JP7498618B2 (en) Air-cooled refrigerator
JP3043080B2 (en) Air conditioning system
JP2980624B2 (en) Cooling method using heat storage type liquid receiver and liquid pump, and cooling and heating methods
JP2615491B2 (en) Cooling / heating hot water supply system
JP2710883B2 (en) Operation control method in regenerative refrigerating cycle device