CN103956193A - Passive containment heat removal system - Google Patents

Passive containment heat removal system Download PDF

Info

Publication number
CN103956193A
CN103956193A CN201410126253.3A CN201410126253A CN103956193A CN 103956193 A CN103956193 A CN 103956193A CN 201410126253 A CN201410126253 A CN 201410126253A CN 103956193 A CN103956193 A CN 103956193A
Authority
CN
China
Prior art keywords
containment
water
water tank
pipeline section
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410126253.3A
Other languages
Chinese (zh)
Other versions
CN103956193B (en
Inventor
郭强
黄政
赵侠
王长东
陈巧艳
元一单
韩晓峰
石雪垚
张慧敏
孙燕宇
孙登科
李伟
李丽娟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Nuclear Power Engineering Co Ltd
Original Assignee
China Nuclear Power Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Nuclear Power Engineering Co Ltd filed Critical China Nuclear Power Engineering Co Ltd
Priority to CN201410126253.3A priority Critical patent/CN103956193B/en
Publication of CN103956193A publication Critical patent/CN103956193A/en
Application granted granted Critical
Publication of CN103956193B publication Critical patent/CN103956193B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

The invention relates to a reactor safety system design technology, and concretely relates to a passive containment heat removal system. The passive containment heat removal system includes a heat exchanger arranged in a containment, the heat exchange tube of the heat exchanger transfers heat through wall surface condensation and convection in order to remove heat of high temperature moist air in the containment, and heated cooling water in the tube is discharged outside the containment by means of natural with natural circulation driving force (a density difference between a downcomer segment and a riser tube segment). Parts of generated high temperature cooling water scatters into the atmosphere as steam, and the residual high temperature cooling water is recollected to a water tank in a liquid form. The top of the water tank is provided with a liquid water collecting and cooling system having steam-water separation, evaporation, water collection and filtration functions. The passive containment heat removal system can reduce the pressure and the temperature of the containment to acceptable levels when accident conditions (comprising design basis accidents and serious accidents) of heating and boosting phenomena in the containment exist in a nuclear power station in order to maintain the integrity of the containment.

Description

A kind of passive containment thermal conduction system
Technical field
The present invention relates to reactor safety system designing technique, be specifically related to a kind of passive containment thermal conduction system.
Background technology
Since the eighties in last century, the countries such as the U.S., Japan, France, Germany, Russia have carried out the research of passive technology, wherein taking non-passive safety advanced nuclear plant AP1000 generation Ⅲ nuclear power unit as representative.
The Passive containment cooling system of U.S. AP1000 adopt non-enabling fashion the dissipation of heat in containment to ultimate heat sink-atmosphere, as shown in Figure 1.Under accidental conditions, air enters from shielding structures top entrance 1, flows through after decline passway again oppositely by rising runner, takes away the heat of containment chamber wall transmission, finally drains into environment from chimney, and gravity water injecting tank 2 is set above containment.Receive after containment high pressure signal, after the accident of system, operation starts automatically, only needs to open three normal any one of closing in isolation valve, does not need other actions can start system.The startup of system also can be manually booted at master-control room or long-range shutdown workstation by operator.
No matter consider from security or economy, the security level that adopts passive containment thermal conduction system to improve nuclear power plant is trend of the times, adopt passive containment thermal conduction system, ensure the long-term heat extraction of containment in beyond design basis accident situation, can maintain the integrality of containment, alleviate the consequence of major accident.Reactor is reached or there is the security level of three generations's nuclear power station.Passive containment thermal conduction system is set and can meets China nuclear safety codes HAF102(2004) under major accident of regulation, keep the requirement of containment integrity and containment heat extraction in " nuclear power plant design safety specifies ", meet in EUR and URD about the heat extraction requirement that will ensure containment under beyond design basis accident.
Summary of the invention
The object of the invention is to the needs for nuclear plant safety design, a kind of passive containment thermal conduction system is provided, when the accident conditions of increasing temperature and pressure phenomenon in nuclear power station exists containment (comprising design basis accident and major accident), containment pressure and temperature is reduced to acceptable level, to keep the integrality of containment.
Technical scheme of the present invention is as follows: a kind of passive containment thermal conduction system, comprise the heat interchanger that is arranged on containment inside and the water tank that is arranged on containment outside, the position of described water tank is higher than described heat interchanger, heat interchanger is provided with rising pipeline section and decline pipeline section, described water tank bottom is connected with heat exchanger entrance by described decline pipeline section, described rising pipeline section is upward through described water tank, the top outlet of rising pipeline section is connected with liquid water collection and the cooling system of water tank top, be positioned at different liquid levels place on the body of water tank in described tedge section and be provided with several ascent stages outlet and valvings.
Further, passive containment thermal conduction system as above, wherein, described liquid water collection and cooling system comprise the liquid water collection and the evaporation filtration unit that are arranged on described water tank top, liquid water collection and evaporation filtration unit outside are provided with drainage hood, on the top of drainage hood, wind force intensified device is set, the bottom of drainage hood arranges air-vent, and described liquid water collection is connected water tank water filling port with evaporation filtration unit.
Further, passive containment thermal conduction system as above, wherein, a kind of implementation of described liquid water collection and evaporation filtration unit is the evaporation Water-collecting filtering plate that is arranged on the outlet below, the top of described rising pipeline section; Or, the another kind of implementation of described liquid water collection and evaporation filtration unit comprises liquid water collection plate and spiral liquid film evaporation cold plate, described spiral liquid film evaporation cold plate is spiral structure drop, the bottom of spiral liquid film evaporation cold plate is connected with porous filtering water collection sheet, and described porous filtering water collection sheet connects water tank water filling port.
Further, passive containment thermal conduction system as above, wherein, the valving that is positioned at several ascent stage exits settings of water tank in described tedge section is normal closed gate device, normal closed gate device is connected with liquid level sensor, triggers and opens with low-water level signal.
Further, passive containment thermal conduction system as above, wherein, exports between any two in described several ascent stages respectively, installs for weakening the porous fabric that water tank water flow inside is mixed.
Further, passive containment thermal conduction system as above wherein, arranges at containment the containment isolating valve of often opening outward respectively on described rising pipeline section and decline pipeline section.
Beneficial effect of the present invention is as follows: (1) adopts non-active scheme to discharge heat in containment, has improved the inherent safety of system; (2) system can ensure the long-term heat extraction of containment in design basis and beyond design basis accident situation, comprise the accident relevant with spray system fault to station blackout, improve the dependence of traditional active security system nuclear power plant to safe level power supply, improved the security of power plant; (3) can significantly improve radiomaterial under major accident and discharge to environment the probabilistic safety index of frequency (LERF); (4) can automatic realizing system heat removal capacity and the power match of containment heat extraction demand, intelligentized adjusting cooling effect, especially can provide obviously higher heat removal capacity at the accident initial stage; (5) can realize making full use of of the interior cooling medium of water tank, for the nonintervention time after winning longer accident provides equipment basis.
Brief description of the drawings
Fig. 1 is the Passive containment cooling system schematic diagram of U.S. AP1000;
Fig. 2 is passive containment thermal conduction system structural representation of the present invention;
Fig. 3 is the structural representation of liquid water collection of the present invention and cooling system.
Embodiment
Below in conjunction with drawings and Examples, the present invention is described in detail.
A kind of passive containment thermal conduction system provided by the present invention (pcs system) adopts passive technology, and while there is station blackout, in the situation that there is no Operator actions, system puts into operation automatically, utilizes Natural Circulation to realize the long-term heat extraction of containment.In the situation that operating without operator, the non-active heat extraction time of containment can maintain more than 100 hours, after 100 hours, can consider other moisturizing means.
As shown in Figure 2, pcs system design adopts non-active design concept, comprise the heat interchanger 11 that is arranged on containment 10 inside and the water tank 7 that is arranged on containment 10 outsides, heat interchanger 11 is connected with decline pipeline section 19 by rising pipeline section 9 with water tank 7, is provided with respectively the containment isolating valve 18,20 of often opening on rising pipeline section 9 and decline pipeline section 19 outside containment 10.Utilization is arranged in the heat interchanger 11 in containment 10, condensation and the convection heat transfer' heat-transfer by convection of the heat exchanger tube outside wall surface by heat interchanger 11, the heat of containment 10 interior High Temperature Moist Airs is taken out of, by Natural Circulation driving force (density difference between decline pipeline section 19 and rising pipeline section 9), by cooling water drainage in heated pipe outside containment 10, the high-temperature cooling water producing, a part is fallen apart toward atmosphere with vapor form, and another part is collected again with the form of aqueous water.In the collection process of liquid water collection and evaporation filtration unit, high-temperature cooling water can obtain significantly cooling (cooling 20-40 degree), thereby with the remittance water tank 7 of lower temperature.The position of water tank 7 is higher than heat interchanger 11, and water tank 7 bottoms are connected with heat interchanger 11 entrances by decline pipeline section 19, can under Action of Gravity Field, cooling medium constantly be injected to heat interchanger in a steady stream, to complete lasting system band thermal cycle.Because system is driven by Natural Circulation, the interior temperature of containment 10 is higher, the heat transfer intensity on heat interchanger 11 surfaces is larger, water in heat-transfer pipe will obtain higher temperature, also mean that rising pipeline section 9 has less density, thereby cause density difference larger between rising pipeline section 9 and decline pipeline section 19, so system obtains larger drive ram, bring stronger circulation velocity.Vice versa.Be that the heat removal capacity of system can be realized and Auto-matching and the balance of heat extraction demand.
Described rising pipeline section 9 is upward through described water tank 7, on described rising pipeline section 9, is provided with multiple outlets, and wherein, A5 is higher than water tank 7 in the top outlet of rising pipeline section--ascent stage outlet, and its location arrangements is in liquid water collection and cooling system.Be positioned at different liquid levels place on the body of water tank 7 at rising pipeline section 9 and be respectively equipped with several ascent stages outlets, as the ascent stage outlet B15 in Fig. 2, ascent stage outlet C16 and ascent stage outlet D17, and arrange in turn in short transverse, each exit correspondence arranges valving.Described valving is normal closed gate device, and normal closed gate device is connected with liquid level sensor, and triggers and open with low-water level signal.
Along with evaporation of water, the water level 14 in water tank 7 declines gradually, so trigger step by step ascent stage outlet B15, the valve open of ascent stage outlet C16 and ascent stage outlet D17.On the one hand, the valve of opening has step by step ensured the maintaining of the systemic circulation ability gateway difference in height of the natural cycle system (excessive may cause circulation to set up), on the other hand, open step by step after the ascent stage outlet valve of lower position, steam is still discharged by ascent stage outlet A5, and aqueous water directly imports water tank 7 by the ascent stage outlet of lower position.
In described water tank 7 inside, respectively at ascent stage outlet B15, ascent stage outlet C16 and ascent stage outlet D17 between any two, have installed for weakening water tank water flow inside and have mixed, but do not hindered the porous fabric 8 being communicated with between the water layer of differing heights.
Porous fabric 8 can play and hinder the object that the interior current of water tank 7 are mixed, guarantee that high-temperature water floats over top, water at low temperature is gathered in water tank 7 bottoms, can bring thus two effects, the one, water tank 7 bottom cooling mediums will be directly along decline pipeline section 19 inflow heat exchangers 11, and the inlet water temperature of heat interchanger 11 is lower, and the heat extraction power of system is stronger, be conducive to the interior heat of containment 10 and discharge faster, can realize the maximization of its security function; The 2nd, hot water floats on top, is more conducive to the evaporative effect of the water surface, thereby more can strengthen the evaporative cooling effect of atmosphere to water tank 7, thereby indirectly reduces heat interchanger 11 inlet water temperatures, the i.e. heat removal capacity of consolidation system.
The present invention has designed liquid water collection and cooling system above water tank, and its structure as shown in Figure 2 and Figure 3.Liquid water collection and cooling system comprise the liquid water collection and the evaporation filtration unit that are arranged on described water tank 7 tops, liquid water collection and evaporation filtration unit outside are provided with drainage hood 4, wind force intensified device 3 is set on the top of drainage hood 4, and the bottom of drainage hood 4 arranges air-vent 6,12.
Described liquid water collection and evaporation filtration unit can be better simply structure, be positioned at as shown in Figure 2 the evaporation Water-collecting filtering plate 13 of ascent stage outlet A5 below, evaporation Water-collecting filtering plate 13 is expanded evaporation from water surface area and collects condensate water, and aqueous water is imported to water tank.
The present invention also provides the structure of another kind of liquid water collection and evaporation filtration unit simultaneously, as shown in Figure 3, comprise liquid water collection plate 21 and spiral liquid film evaporation cold plate 22, the position of liquid water collection plate 21 is corresponding with the position of ascent stage outlet A5, described spiral liquid film evaporation cold plate 22 is spiral structure drop, the bottom of spiral liquid film evaporation cold plate 22 is connected with porous filtering water collection sheet 24, and described porous filtering water collection sheet 24 connects water tank water filling port 25.Heated high-temperature cooling water sprays to liquid water collection plate 21, liquid water stream is to the top of spiral liquid film evaporation cold plate 22, along with the inclined-plane of cold plate, current spiral declines, and launches to become liquid film, in reverse flow and the strong wind field of disturbance, evaporation is obvious, and is significantly lowered the temperature simultaneously, and the current of low temperature are assembled in the bottom of spiral liquid film evaporation cold plate 22, by porous filtering water collection sheet 24, finally enter water tank water filling port 25.
It is conical that described drainage hood 4 is, and drainage hood inner side along the circumferential direction can also arrange that several Secondary Flows mix the wing, in order to cause the cross flow of air-flow in drainage hood air channel.
Wind force intensified device 3 can adopt solar wind force intensifying device, comprises the blower fan in solar panel and the air channel that is installed on air channel outside wall surface.By solar wind force intensifying device 3, drainage hood 4 with via the design of air-vent 6,12 and liquid water collection and the evaporation filtration unit of particular design, increase water surface wind-force and expanded evaporation from water surface area, strengthen the evaporation capacity of high temperature coolant, thereby make water tank 7 can finally collect the cooling medium of lower temperature, so indirectly promote the heat removal capacity of system, and finally realize in containment 10 decrease temperature and pressure greatly.
Obviously, those skilled in the art can carry out various changes and modification and not depart from the spirit and scope of the present invention the present invention.Like this, if to these amendments of the present invention with within modification belongs to the scope of the claims in the present invention and equivalent technology thereof, the present invention is also intended to comprise these changes and modification interior.

Claims (7)

1. a passive containment thermal conduction system, comprise and be arranged on the inner heat interchanger (11) of containment (10) and be arranged on the outside water tank (7) of containment (10), the position of described water tank (7) is higher than described heat interchanger (11), heat interchanger (11) is provided with rising pipeline section (9) and decline pipeline section (19), described water tank (7) bottom is connected with heat interchanger (11) entrance by described decline pipeline section (19), it is characterized in that: described rising pipeline section (9) is upward through described water tank (7), the top outlet (5) of rising pipeline section is connected with cooling system with the liquid water collection of water tank (7) top, be positioned at different liquid levels place on the body of water tank (7) at described rising pipeline section (9) and be provided with several ascent stages outlets (15, 16, 17) and valving.
2. passive containment thermal conduction system as claimed in claim 1, it is characterized in that: described liquid water collection and cooling system comprise the liquid water collection and the evaporation filtration unit that are arranged on described water tank (7) top, liquid water collection and evaporation filtration unit outside are provided with drainage hood (4), on the top of drainage hood (4), wind force intensified device (3) is set, the bottom of drainage hood (4) arranges air-vent (6,12), and described liquid water collection is connected water tank water filling port (25) with evaporation filtration unit.
3. passive containment thermal conduction system as claimed in claim 2, is characterized in that: described liquid water collection and evaporation filtration unit are the evaporation Water-collecting filtering plate (13) that is arranged on the top outlet (5) below of described rising pipeline section.
4. passive containment thermal conduction system as claimed in claim 2, it is characterized in that: described liquid water collection and evaporation filtration unit comprise liquid water collection plate (21) and spiral liquid film evaporation cold plate (22), described spiral liquid film evaporation cold plate (22) is spiral structure drop, the bottom of spiral liquid film evaporation cold plate (22) is connected with porous filtering water collection sheet (24), and described porous filtering water collection sheet (24) connects water tank water filling port (25).
5. the passive containment thermal conduction system as described in any one in claim 1-4, it is characterized in that: being positioned at described rising pipeline section (9) valving that several outlets (15,16,17) of water tank locate to arrange ascent stages is normal closed gate device, normal closed gate device is connected with liquid level sensor, triggers and opens with low-water level signal.
6. passive containment thermal conduction system as claimed in claim 5, is characterized in that: in described several ascent stage outlets (15,16,17) between any two, install for weakening the porous fabric (8) that water tank water flow inside is mixed respectively.
7. the passive containment thermal conduction system as described in any one in claim 1-4, is characterized in that: on described rising pipeline section (9) and decline pipeline section (19), at containment, the containment isolating valve (18,20) of often opening is set outward respectively.
CN201410126253.3A 2014-03-31 2014-03-31 A kind of passive containment thermal conduction system Active CN103956193B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410126253.3A CN103956193B (en) 2014-03-31 2014-03-31 A kind of passive containment thermal conduction system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410126253.3A CN103956193B (en) 2014-03-31 2014-03-31 A kind of passive containment thermal conduction system

Publications (2)

Publication Number Publication Date
CN103956193A true CN103956193A (en) 2014-07-30
CN103956193B CN103956193B (en) 2017-01-04

Family

ID=51333455

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410126253.3A Active CN103956193B (en) 2014-03-31 2014-03-31 A kind of passive containment thermal conduction system

Country Status (1)

Country Link
CN (1) CN103956193B (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104157314A (en) * 2014-09-09 2014-11-19 张志雄 Union aluminum alloy silicon nitride high-pressure cooling equipment of nuclear reactor
CN104240775A (en) * 2014-09-09 2014-12-24 张志雄 Nuclear reactor flange copper alloy aluminum oxide high-pressure cooling device
CN104318963A (en) * 2014-09-09 2015-01-28 张志雄 Internal screw thread chromium alloy silicon carbide nuclear reactor cooling assembly
CN104934078A (en) * 2015-05-11 2015-09-23 中国核电工程有限公司 Passive containment cooling system keeping dynamic circulation of cooling water
CN105355239A (en) * 2015-11-05 2016-02-24 中国核电工程有限公司 Passive containment cooling system
CN105427902A (en) * 2015-11-05 2016-03-23 中国核电工程有限公司 Direct evaporative passive self-cooling flow guide plate
CN105741888A (en) * 2016-03-29 2016-07-06 中国人民解放军92609部队 Non-kinetic energy containment cooling system for pressurized water reactor
CN107170493A (en) * 2017-04-27 2017-09-15 中国核电工程有限公司 A kind of passive containment thermal conduction system
CN107958712A (en) * 2017-11-23 2018-04-24 中国核电工程有限公司 A kind of heat pipe exchanging type passive containment thermal conduction system
CN112599257A (en) * 2020-12-01 2021-04-02 武汉第二船舶设计研究所(中国船舶重工集团公司第七一九研究所) Marine capillary force driven containment heat exporting system
CN113140335A (en) * 2021-04-02 2021-07-20 中国核电工程有限公司 Passive containment heat exporting system with internal heat exchanger protection device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000111190A (en) * 1998-10-09 2000-04-18 Mitsubishi Electric Building Techno Service Co Ltd Cooler
CN202110832U (en) * 2011-06-29 2012-01-11 中科华核电技术研究院有限公司 Top-positioned type non-dynamic emergency waste heat discharging system for pressurized water reactor
CN102737738A (en) * 2012-06-25 2012-10-17 中国核电工程有限公司 Passive direct evaporation type cooling system for double-layer concrete containment
CN202887745U (en) * 2012-09-27 2013-04-17 中国核电工程有限公司 Active and passive combined safety shell heat extraction device
CN103615913A (en) * 2013-12-05 2014-03-05 宜兴市裕泰华环保有限公司 Closed type cooling tower
CN203882629U (en) * 2014-03-31 2014-10-15 中国核电工程有限公司 Passive heat exporting system of safety shell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000111190A (en) * 1998-10-09 2000-04-18 Mitsubishi Electric Building Techno Service Co Ltd Cooler
CN202110832U (en) * 2011-06-29 2012-01-11 中科华核电技术研究院有限公司 Top-positioned type non-dynamic emergency waste heat discharging system for pressurized water reactor
CN102737738A (en) * 2012-06-25 2012-10-17 中国核电工程有限公司 Passive direct evaporation type cooling system for double-layer concrete containment
CN202887745U (en) * 2012-09-27 2013-04-17 中国核电工程有限公司 Active and passive combined safety shell heat extraction device
CN103615913A (en) * 2013-12-05 2014-03-05 宜兴市裕泰华环保有限公司 Closed type cooling tower
CN203882629U (en) * 2014-03-31 2014-10-15 中国核电工程有限公司 Passive heat exporting system of safety shell

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
左娟莉: "铋合金冷却反应堆内旗袍提升泵提升自然循环能力的理论研究", 《原子能科学技术》 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104240775A (en) * 2014-09-09 2014-12-24 张志雄 Nuclear reactor flange copper alloy aluminum oxide high-pressure cooling device
CN104318963A (en) * 2014-09-09 2015-01-28 张志雄 Internal screw thread chromium alloy silicon carbide nuclear reactor cooling assembly
CN104157314A (en) * 2014-09-09 2014-11-19 张志雄 Union aluminum alloy silicon nitride high-pressure cooling equipment of nuclear reactor
CN104157314B (en) * 2014-09-09 2016-08-31 温州志杰机电科技有限公司 A kind of nuclear reactor connects aluminium alloy silicon nitride high pressure cooling device by appointing
CN104934078A (en) * 2015-05-11 2015-09-23 中国核电工程有限公司 Passive containment cooling system keeping dynamic circulation of cooling water
CN105355239B (en) * 2015-11-05 2019-12-13 中国核电工程有限公司 Passive containment cooling system
CN105355239A (en) * 2015-11-05 2016-02-24 中国核电工程有限公司 Passive containment cooling system
CN105427902A (en) * 2015-11-05 2016-03-23 中国核电工程有限公司 Direct evaporative passive self-cooling flow guide plate
CN105741888A (en) * 2016-03-29 2016-07-06 中国人民解放军92609部队 Non-kinetic energy containment cooling system for pressurized water reactor
CN107170493A (en) * 2017-04-27 2017-09-15 中国核电工程有限公司 A kind of passive containment thermal conduction system
CN107958712A (en) * 2017-11-23 2018-04-24 中国核电工程有限公司 A kind of heat pipe exchanging type passive containment thermal conduction system
CN112599257A (en) * 2020-12-01 2021-04-02 武汉第二船舶设计研究所(中国船舶重工集团公司第七一九研究所) Marine capillary force driven containment heat exporting system
CN112599257B (en) * 2020-12-01 2024-03-15 武汉第二船舶设计研究所(中国船舶重工集团公司第七一九研究所) Marine capillary force driven containment heat export system
CN113140335A (en) * 2021-04-02 2021-07-20 中国核电工程有限公司 Passive containment heat exporting system with internal heat exchanger protection device

Also Published As

Publication number Publication date
CN103956193B (en) 2017-01-04

Similar Documents

Publication Publication Date Title
CN103956193A (en) Passive containment heat removal system
CN105565412B (en) A kind of outer coagulating type tilts core pattern solar distilling seawater desalinating device
CN102737738B (en) Passive direct evaporation type cooling system for double-layer concrete containment
CN106855269A (en) Condensed water collecting device and air-conditioner
CN103956194B (en) The aqueous water of a kind of passive containment thermal conduction system reclaims and chiller
CN204434315U (en) A kind of sun power and wind energy combine passive vacuum type sea water desalinating plant
CN203882630U (en) Liquid water recovering and cooling device of passive heat exporting system of safety shell
CN101135537B (en) Integral array heat collection type solar drying mechanism and method of use thereof
CN108206064A (en) A kind of steam jet drives passive heat-exchange system
CN203882629U (en) Passive heat exporting system of safety shell
CN203882628U (en) Active-passive combination type containment heat energy leading-out system
CN206310982U (en) The enhanced cooling tower of solar energy with blower fan auxiliary
CN104556278A (en) Solar energy and wind energy combined passive vacuum sea water desalination device
CN205717988U (en) Vacuum collecting heat pipe type solar water heater
CN103956195B (en) Active and passive combination containment heat removal system
CN103604212A (en) Large-temperature-difference wellhead heater and operation mode thereof
CN206959152U (en) Condensed water collecting device and air conditioner
CN103956196B (en) A kind of liquid film evaporation coldplate of liquid water collection and chiller
CN206553479U (en) A kind of new raw gas purifying cooling device
CN208187150U (en) A kind of rainwater-collecting water replenishing type cooling tower
CN106766170A (en) A kind of modularization condenser boiler
CN209371459U (en) A kind of device for recycling heat
CN208389706U (en) A kind of flue gas takes off white device
CN110411067A (en) A kind of falling liquid film generator for low-temperature flue gas driving absorption system
CN201093856Y (en) Integral array heat collection type solar drying apparatus

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant