JPWO2011108068A1 - Air conditioning and hot water supply system - Google Patents

Air conditioning and hot water supply system Download PDF

Info

Publication number
JPWO2011108068A1
JPWO2011108068A1 JP2012502911A JP2012502911A JPWO2011108068A1 JP WO2011108068 A1 JPWO2011108068 A1 JP WO2011108068A1 JP 2012502911 A JP2012502911 A JP 2012502911A JP 2012502911 A JP2012502911 A JP 2012502911A JP WO2011108068 A1 JPWO2011108068 A1 JP WO2011108068A1
Authority
JP
Japan
Prior art keywords
hot water
water supply
air
air conditioning
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012502911A
Other languages
Japanese (ja)
Other versions
JP5373964B2 (en
Inventor
智弘 小松
智弘 小松
小谷 正直
正直 小谷
麻理 内田
麻理 内田
陽子 國眼
陽子 國眼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Publication of JPWO2011108068A1 publication Critical patent/JPWO2011108068A1/en
Application granted granted Critical
Publication of JP5373964B2 publication Critical patent/JP5373964B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0096Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater combined with domestic apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/0005Domestic hot-water supply systems using recuperation of waste heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/0036Domestic hot-water supply systems with combination of different kinds of heating means
    • F24D17/0042Domestic hot-water supply systems with combination of different kinds of heating means recuperated waste heat and solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/0036Domestic hot-water supply systems with combination of different kinds of heating means
    • F24D17/0042Domestic hot-water supply systems with combination of different kinds of heating means recuperated waste heat and solar energy
    • F24D17/0047Domestic hot-water supply systems with combination of different kinds of heating means recuperated waste heat and solar energy with accumulation of the heated water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/02Domestic hot-water supply systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D5/00Hot-air central heating systems; Exhaust gas central heating systems
    • F24D5/12Hot-air central heating systems; Exhaust gas central heating systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0003Exclusively-fluid systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/001Compression cycle type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0046Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H6/00Combined water and air heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • F25B29/003Combined heating and refrigeration systems, e.g. operating alternately or simultaneously of the compression type system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/12Heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/16Waste heat
    • F24D2200/31Air conditioning systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0046Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground
    • F24F2005/0064Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground using solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0403Refrigeration circuit bypassing means for the condenser
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/13Hot air central heating systems using heat pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/18Domestic hot-water supply systems using recuperated or waste heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

【課題】外気温度が室内の露点温度以上である場合であっても、自然循環式サイクルによる冷却除湿を可能とする空調給湯システムを提供することにある。【解決手段】本発明の空調給湯システムは、空調用冷媒回路(5)と、給湯を行う給湯用冷媒回路と(6)、空調用冷媒回路と給湯用冷媒回路との間で熱交換を行う中間熱交換器(23)とを備えている。空調用冷媒回路は、空調用圧縮機(21)、空調用流路切替弁(22)、中間熱交換器(23)、空調用膨張弁(27)、空調用利用側熱交換器(28)を順次冷媒配管で接続して環状に形成される。給湯用冷媒回路は、給湯用圧縮機(41)、給湯用利用側熱交換器(42)、給湯用膨張弁(43)、中間熱交換器(23)を順次冷媒配管で接続して環状に形成される。そして、空調用冷媒回路に、空調用圧縮機をバイパスするバイパス配管(29)とバイパス開閉手段(34a,34b)が設けられる。中間熱交換器は、空調用利用側熱交換器より高い位置に設置されている。【選択図】図1An air conditioning and hot water supply system that enables cooling and dehumidification by a natural circulation cycle even when the outside air temperature is equal to or higher than the dew point temperature in the room. An air conditioning and hot water supply system of the present invention performs heat exchange between an air conditioning refrigerant circuit (5), a hot water supply refrigerant circuit for supplying hot water (6), and the air conditioning refrigerant circuit and the hot water supply refrigerant circuit. And an intermediate heat exchanger (23). The air conditioning refrigerant circuit consists of an air conditioning compressor (21), an air conditioning flow path switching valve (22), an intermediate heat exchanger (23), an air conditioning expansion valve (27), and an air conditioning use side heat exchanger (28). Are sequentially connected by refrigerant piping to form an annular shape. The hot water supply refrigerant circuit consists of a hot water supply compressor (41), a hot water supply use side heat exchanger (42), a hot water supply expansion valve (43), and an intermediate heat exchanger (23) connected in sequence by a refrigerant pipe. It is formed. The air conditioning refrigerant circuit is provided with a bypass pipe (29) for bypassing the air conditioning compressor and bypass opening / closing means (34a, 34b). The intermediate heat exchanger is installed at a position higher than the air-conditioning use side heat exchanger. [Selection] Figure 1

Description

本発明は、冷房と暖房とを切替えて行う空調用冷媒回路と給湯を行う給湯用冷媒回路とを中間熱交換器を介して互いに熱交換可能に接続して、空調用冷凍サイクルと給湯用冷凍サイクルの二元冷凍サイクルが形成される空調給湯システムに係り、特に、空調用冷凍サイクルとして、空調用冷媒が密度差により自然循環する自然循環式サイクルと、空調用圧縮機により空調用冷媒が強制循環する圧縮式サイクルの2つの空調用冷凍サイクルを使い分けることが可能な空調給湯システムに関する。   The present invention relates to an air conditioning refrigeration cycle and a hot water supply refrigeration by connecting an air conditioning refrigerant circuit that switches between cooling and heating and a hot water supply refrigerant circuit that supplies hot water so that they can exchange heat with each other via an intermediate heat exchanger. The present invention relates to an air-conditioning hot-water supply system in which a dual refrigeration cycle is formed. The present invention relates to an air-conditioning hot-water supply system that can selectively use two air-conditioning refrigeration cycles in a circulating compression cycle.

自然循環式サイクルと圧縮式サイクルとの2つの冷凍サイクルを使い分ける従来技術として、例えば、特許文献1には、室内熱交換器と、室外熱交換器と、冷媒配管と、膨張弁と、別装置の圧縮冷凍機に相当する冷媒圧縮強制循環装置とを備えた冷媒自然循環冷却除湿装置が開示されている。この冷媒自然循環冷却除湿装置は、室外熱交換器と、この室外熱交換器より低い位置にある室内熱交換器と、膨張弁とを冷媒配管で環状に接続して形成された自然循環式サイクルと、冷媒圧縮強制循環装置による圧縮式サイクルとを有しており、自然循環式サイクルの室外熱交換器に対して圧縮式サイクルの蒸発熱交換器が密結合した構成となっている。この構成によれば、蒸発熱交換器は、室外熱交換器から熱を効率的に奪うことができるため、室内と室外との気温差が無くなり冷却除湿能力が低下したような場合であっても、冷媒圧縮強制循環装置を稼働することにより、冷媒自然循環冷却除湿装置の冷却除湿能力の低下を補うことができる。   For example, Patent Document 1 discloses an indoor heat exchanger, an outdoor heat exchanger, a refrigerant pipe, an expansion valve, and a separate device as a conventional technique that selectively uses two refrigeration cycles, a natural circulation cycle and a compression cycle. A refrigerant natural circulation cooling and dehumidifying device including a refrigerant compression forced circulation device corresponding to the above-described compression refrigerator is disclosed. This natural circulation cooling dehumidification device is a natural circulation cycle formed by connecting an outdoor heat exchanger, an indoor heat exchanger at a position lower than the outdoor heat exchanger, and an expansion valve in an annular shape with refrigerant piping. And a compression cycle using a refrigerant compression forced circulation device, and an evaporative heat exchanger of the compression cycle is tightly coupled to an outdoor heat exchanger of the natural circulation cycle. According to this configuration, since the evaporative heat exchanger can efficiently take heat from the outdoor heat exchanger, even when the temperature difference between the indoor and the outdoor is eliminated and the cooling and dehumidifying capacity is reduced. By operating the refrigerant compression forced circulation device, it is possible to compensate for a decrease in the cooling and dehumidifying capability of the refrigerant natural circulation cooling and dehumidifying device.

特開平10−300128号公報JP-A-10-300128

しかしながら、上記従来の技術では、自然循環式サイクルと圧縮式サイクルとが独立した冷凍サイクルを構成しているので、自然循環式サイクルの熱交換器を、冷暖房のピーク時などに圧縮式サイクルの熱交換器として利用することは不可能であった。そのため、自然循環式サイクルの熱交換器の熱交換機能が有効に活用されていないといった課題があった。また、上記従来の技術では、外気温度が室内温度以上の場合に、室内から外気への放熱を圧縮式サイクルで行っており、その放熱を有効に活用していないといった課題があった。また、外気温度が室内の露点温度以上である場合には、自然循環式サイクルのみで冷却除湿を行うことができないといった課題があった。   However, in the above conventional technology, the natural circulation cycle and the compression cycle constitute an independent refrigeration cycle. Therefore, the heat exchanger of the natural circulation cycle is installed in the heat of the compression cycle at the peak time of air conditioning. It was impossible to use as an exchanger. Therefore, the subject that the heat exchange function of the heat exchanger of a natural circulation type cycle was not utilized effectively occurred. Moreover, in the said prior art, when outside temperature was more than room temperature, the heat release from room | chamber interior to the outside air was performed by the compression cycle, and there existed a subject that the heat release was not utilized effectively. Further, when the outside air temperature is equal to or higher than the indoor dew point temperature, there is a problem that cooling and dehumidification cannot be performed only by a natural circulation cycle.

本発明は、上記した実情に鑑みてなされたものであり、その第1の目的は、自然循環式サイクルの熱交換器を圧縮式サイクルの熱交換器として利用することができる空調給湯システムを提供することにある。また、本発明の第2の目的は、圧縮式サイクルからの放熱を有効に活用できる空調給湯システムを提供することにある。また、本発明の第3の目的は、外気温度が室内の露点温度以上である場合であっても、自然循環式サイクルによる冷却除湿を可能とする空調給湯システムを提供することにある。   The present invention has been made in view of the above circumstances, and a first object of the present invention is to provide an air-conditioning hot water supply system that can use a heat exchanger of a natural circulation type cycle as a heat exchanger of a compression type cycle. There is to do. A second object of the present invention is to provide an air-conditioning hot water supply system that can effectively utilize heat radiation from a compression cycle. A third object of the present invention is to provide an air-conditioning hot water supply system that enables cooling and dehumidification by a natural circulation cycle even when the outside air temperature is equal to or higher than the dew point temperature in the room.

上記目的を達成するために、本発明に係る空調給湯システムは、冷房運転と暖房運転とを切替えて行う空調用冷媒回路と、給湯を行う給湯用冷媒回路と、前記空調用冷媒回路を循環する空調用冷媒と前記給湯用冷媒回路を循環する給湯用冷媒との間で熱交換を行う中間熱交換器とを備えた空調給湯システムであって、前記空調用冷媒回路を、空調用圧縮機、空調用流路切替弁、前記中間熱交換器、空調用膨張弁、空調用利用側の熱搬送媒体(例えば、室内空気、水、またはブライン)と熱交換を行うための空調用利用側熱交換器を順次冷媒配管で接続して環状に形成し、前記給湯用冷媒回路を、給湯用圧縮機、給湯用利用側の熱搬送媒体(例えば、水)と熱交換を行う給湯用利用側熱交換器、給湯用膨張弁、前記中間熱交換器を順次冷媒配管で接続して環状に形成し、前記空調用冷媒回路に、前記空調用圧縮機をバイパスするバイパス配管と、前記空調用冷媒の流路を、前記空調用圧縮機を経由する流路と前記バイパス配管を経由する流路との何れかに切り替えるバイパス開閉手段とを設け、前記中間熱交換器を前記空調用利用側熱交換器より高い位置に設置したことを特徴とするものである。   In order to achieve the above object, an air conditioning and hot water supply system according to the present invention circulates through an air conditioning refrigerant circuit that switches between cooling operation and heating operation, a hot water supply refrigerant circuit that supplies hot water, and the air conditioning refrigerant circuit. An air conditioning and hot water supply system comprising an intermediate heat exchanger for exchanging heat between the air conditioning refrigerant and the hot water supply refrigerant circulating in the hot water supply refrigerant circuit, the air conditioning refrigerant circuit including the air conditioning compressor, Air-conditioning flow path switching valve, intermediate heat exchanger, air-conditioning expansion valve, air-conditioning use-side heat exchange for heat exchange with the air-conditioning use-side heat transfer medium (for example, indoor air, water, or brine) The hot water supply refrigerant circuit is formed into an annular shape by sequentially connecting with a refrigerant pipe, and the hot water supply side heat exchange is performed by exchanging heat between the hot water supply refrigerant circuit and the hot water supply compressor and the hot water supply side heat transfer medium (for example, water). Refrigerant pipe, hot water supply expansion valve and intermediate heat exchanger in order A bypass pipe connected to the air conditioning refrigerant circuit and bypassing the air conditioning compressor, a flow path of the air conditioning refrigerant, a flow path passing through the air conditioning compressor, and the bypass pipe A bypass opening / closing means for switching to any one of the flow paths passing through is provided, and the intermediate heat exchanger is installed at a position higher than the use side heat exchanger for air conditioning.

本発明によれば、空調用圧縮機を用いて空調用冷媒を空調用冷媒回路内で強制循環させるようにした圧縮式サイクルによる運転ができるうえ、中間熱交換器と空調用利用側熱交換器との間にヘッド差があるため、空調用圧縮機をバイパスするバイパス配管を用いて、空調用冷媒の密度差を利用した自然循環式サイクルによる運転を行うことができる。つまり、1つの空調用冷媒回路で、圧縮式サイクルと自然循環式サイクルの両方のサイクルを構成することができる。よって、本発明は、自然循環式サイクルの熱交換器を圧縮式サイクルの熱交換器として有効利用することができる。また、本発明は、圧縮式サイクルと自然循環式サイクルとを利用環境に応じて適宜切り替えて運転することにより、消費電力を低減することができる。特に、本発明は、冷房負荷が小さいため空調用圧縮機を断続的に運転するような場合には、自然循環式サイクルによる運転を行うことにより、消費電力を大幅に低減することができるのである。   According to the present invention, it is possible to operate with a compression cycle in which an air conditioning refrigerant is forcibly circulated in an air conditioning refrigerant circuit using an air conditioning compressor, and an intermediate heat exchanger and an air conditioning utilization side heat exchanger. Therefore, it is possible to perform a natural circulation cycle operation using the density difference of the air-conditioning refrigerant using a bypass pipe that bypasses the air-conditioning compressor. That is, both a compression cycle and a natural circulation cycle can be configured with a single air conditioning refrigerant circuit. Therefore, the present invention can effectively use a natural circulation cycle heat exchanger as a compression cycle heat exchanger. Moreover, this invention can reduce power consumption by switching and operating a compression cycle and a natural circulation cycle suitably according to utilization environment. In particular, according to the present invention, when the air conditioning compressor is intermittently operated because the cooling load is small, the power consumption can be significantly reduced by performing the operation using the natural circulation cycle. .

さらに、本発明では、中間熱交換器により、空調用冷媒回路を流れる空調用冷媒と給湯用冷媒回路を流れる給湯用冷媒との間で熱交換を行うことが可能であるため、空調用冷媒回路の自然循環式サイクルにおいて、中間熱交換器を凝縮器として用いることができる。つまり、中間熱交換器内にある空調用冷媒を、中間熱交換器に流入する低温の給湯用冷媒へ放熱させることにより、その空調用冷媒を凝縮して液化させることができる。よって、本発明は、温度差が小さくても自然循環式サイクルにより大きな冷却能力を確保することができる。   Furthermore, in the present invention, the intermediate heat exchanger can exchange heat between the air-conditioning refrigerant flowing through the air-conditioning refrigerant circuit and the hot-water supply refrigerant flowing through the hot-water supply refrigerant circuit. In the natural circulation cycle, an intermediate heat exchanger can be used as a condenser. That is, the air-conditioning refrigerant in the intermediate heat exchanger can be condensed and liquefied by dissipating heat to the low-temperature hot water supply refrigerant flowing into the intermediate heat exchanger. Therefore, the present invention can ensure a large cooling capacity by the natural circulation type cycle even if the temperature difference is small.

ここで、外気温度と室内温度との差が小さい場合には、外気を放熱源とした自然循環式サイクルでは、冷却能力を大きくすることはできないが、本発明では、中間熱交換器によって給湯用冷媒と空調用冷媒との熱交換を行うことができるため、外気温度と室内温度との差が小さい場合でも、確実に自然循環式サイクルを運転することができる。つまり、給湯用冷媒回路を流れる給湯用冷媒の吸熱作用によって、自然循環式サイクルの動作をアシストすることができるのである。   Here, when the difference between the outside air temperature and the room temperature is small, the natural circulation type cycle using outside air as a heat radiation source cannot increase the cooling capacity, but in the present invention, the intermediate heat exchanger is used for hot water supply. Since heat exchange between the refrigerant and the air conditioning refrigerant can be performed, the natural circulation cycle can be reliably operated even when the difference between the outside air temperature and the room temperature is small. That is, the operation of the natural circulation cycle can be assisted by the endothermic action of the hot water supply refrigerant flowing through the hot water supply refrigerant circuit.

また、外気温度が室内空気の露点温度以上の場合には、自然循環式サイクルのみによる運転では室内空気の冷却除湿を行うことはできないが、本発明では、給湯用冷媒回路に組み込まれた給湯用膨張弁の弁開度を適宜調整することにより給湯用冷媒の温度を調整できるため、空調用冷媒の温度を中間熱交換器を介して任意の温度に下げることができる。よって、本発明は、外気温度が室内空気の露点温度以上の場合であっても、室内を冷却除湿することができる。   In addition, when the outside air temperature is equal to or higher than the dew point temperature of the room air, the cooling and dehumidification of the room air cannot be performed by the operation using only the natural circulation type cycle, but in the present invention, for the hot water supply incorporated in the hot water supply refrigerant circuit Since the temperature of the hot water supply refrigerant can be adjusted by appropriately adjusting the valve opening degree of the expansion valve, the temperature of the air conditioning refrigerant can be lowered to an arbitrary temperature via the intermediate heat exchanger. Therefore, the present invention can cool and dehumidify the room even when the outside air temperature is equal to or higher than the dew point temperature of the room air.

また、本発明に係る空調給湯システムは、上記構成において、前記空調用冷媒回路に、空調用熱源側の熱搬送媒体(例えば、大気)と前記空調用冷媒との間で熱交換するための空調用熱源側熱交換器を前記中間熱交換器と並列にして設け、前記給湯用冷媒回路に、給湯用熱源側の熱搬送媒体(例えば、大気)と前記給湯用冷媒との間で熱交換するための給湯用熱源側熱交換器を前記中間熱交換器と並列にして設け、前記空調用熱源側熱交換器を前記空調用利用側熱交換器よりも高い位置に設置したことを特徴としている。   In the air conditioning hot water supply system according to the present invention, in the above configuration, the air conditioning refrigerant circuit is configured to exchange heat between a heat transfer medium (for example, air) on the air conditioning heat source side and the air conditioning refrigerant in the air conditioning refrigerant circuit. A heat source side heat exchanger is provided in parallel with the intermediate heat exchanger, and heat exchange is performed between the hot water supply heat source side heat transfer medium (for example, air) and the hot water supply refrigerant in the hot water supply refrigerant circuit. The heat source side heat exchanger for hot water supply is provided in parallel with the intermediate heat exchanger, and the heat source side heat exchanger for air conditioning is installed at a position higher than the use side heat exchanger for air conditioning. .

本発明によれば、空調用冷媒回路と給湯用冷媒回路をそれぞれ単独で運転することもできる。加えて、本発明は、空調用熱源側熱交換器と空調用利用側熱交換器との間にヘッド差が設けられているため、給湯用冷媒回路による給湯サイクルの運転を行わなくても、空調用熱源側熱交換器と空調用利用側熱交換器との間で空調用冷媒を自然循環させることもできる。よって、本発明は、消費電力の低減効果を高めることができる。   According to the present invention, each of the air conditioning refrigerant circuit and the hot water supply refrigerant circuit can be operated independently. In addition, since the present invention provides a head difference between the heat source side heat exchanger for air conditioning and the usage side heat exchanger for air conditioning, even without performing the operation of the hot water supply cycle by the hot water supply refrigerant circuit, The air-conditioning refrigerant can be naturally circulated between the air-conditioning heat source side heat exchanger and the air-conditioning use side heat exchanger. Therefore, the present invention can enhance the power consumption reduction effect.

また、本発明に係る空調給湯システムは、上記構成において、前記空調用利用側熱交換器と被空調空間(例えば、住宅)に設置された室内熱交換器との間を配管で接続して空調用熱搬送媒体循環回路を形成し、前記空調用熱搬送媒体循環回路に前記空調用利用側の熱搬送媒体としての水またはブラインを循環させるようにしたことを特徴としている。   Moreover, the air-conditioning hot-water supply system which concerns on this invention is the said structure, and connects between the said use side heat exchanger for an air conditioning, and the indoor heat exchanger installed in the to-be-conditioned space (for example, house) with piping, and is air-conditioned. A heat transfer medium circulation circuit is formed, and water or brine as a heat transfer medium on the air-conditioning use side is circulated through the air-conditioning heat transfer medium circulation circuit.

本発明によれば、従来のように室内機と室外機をつなぐ冷媒配管が不要となるうえ、冷媒量が少なくて済む。また、従来のような室内機と室外機とを冷媒配管で接続する構成において自然循環式サイクルを形成する場合には、室外機を室内機よりも高い位置に設置する必要があり、レイアウトの制約があった。ところが、本発明によれば、空調用熱搬送媒体循環回路を設ける構成であるため、レイアウトの自由度が増すという利点がある。   According to the present invention, the refrigerant pipe that connects the indoor unit and the outdoor unit is not required as in the prior art, and the amount of refrigerant is small. In addition, when a natural circulation cycle is formed in a conventional configuration in which an indoor unit and an outdoor unit are connected by a refrigerant pipe, the outdoor unit must be installed at a higher position than the indoor unit, and layout restrictions are imposed. was there. However, according to the present invention, since the heat transfer medium circulation circuit for air conditioning is provided, there is an advantage that the degree of freedom in layout increases.

また、本発明に係る空調給湯システムは、上記構成において、前記給湯用利用側熱交換器の入口と出口に、前記給湯用利用側の熱搬送媒体としての水が流れる配管をそれぞれ接続して給湯回路を形成し、前記給湯回路に、水が前記給湯用利用側熱交換器から得た熱を蓄えることが可能なタンク(例えば、貯湯タンク、蓄熱タンクと称されるタンク)を設けたことを特徴としている。   In the air conditioning and hot water supply system according to the present invention, in the above configuration, pipes through which water as a heat transfer medium on the hot water supply use side flows are respectively connected to an inlet and an outlet of the hot water use side heat exchanger. Forming a circuit and providing the hot water supply circuit with a tank (for example, a hot water storage tank, a tank referred to as a heat storage tank) in which water can store heat obtained from the hot water use side heat exchanger. It is a feature.

本発明によれば、空調排熱を回収して給湯用利用側熱交換器から得た温熱をタンクに蓄えることができるため、熱エネルギの有効利用が図られ、エネルギ効率が高まる利点がある。また、本発明は、タンクに蓄熱することができるため、空調負荷と給湯負荷の時間帯の相違を解消することも可能である。例えば、本発明では、冷房負荷はあるものの給湯負荷がない昼間に給湯サイクルを運転しながら被冷却空間を自然循環式サイクルによる冷房を行い、その給湯サイクルの運転中に得た温熱をタンクに蓄熱することができる。分かり易く言えば、本発明は、昼間に冷房しながらお湯を沸かし、そのお湯を夜間に利用することができるのである。   According to the present invention, it is possible to collect the air-conditioning exhaust heat and store the hot heat obtained from the hot water use side heat exchanger in the tank. Therefore, there is an advantage that the thermal energy is effectively used and the energy efficiency is increased. Moreover, since this invention can accumulate heat in a tank, it is also possible to eliminate the difference between the time zones of the air conditioning load and the hot water supply load. For example, in the present invention, the cooling space is cooled by a natural circulation cycle while operating a hot water supply cycle in the daytime when there is a cooling load but no hot water supply load, and the heat obtained during the hot water cycle operation is stored in the tank. can do. In other words, the present invention can boil hot water while cooling it in the daytime and use the hot water at night.

また、本発明に係る空調給湯システムは、上記構成において、前記空調用冷媒回路および前記給湯用冷媒回路の運転を制御する制御装置を備え、前記制御装置は、利用者によって設定される設定室温(Tr_st)と、利用者によって設定される設定湿度(Hr_st)と、外気温度(Toa)と、前記空調用利用側の熱搬送媒体の前記空調用利用側熱交換器入口の温度(Twbi)と、前記設定室温、前記設定湿度および前記空調用利用側の熱搬送媒体の前記空調用利用側熱交換器入口の温度に基づいて決定される前記空調用利用側の熱搬送媒体の前記空調用利用側熱交換器出口の設定温度(Twb_st)と、前記給湯用利用側の熱搬送媒体の前記給湯用利用側熱交換器入口の温度(Twhi)と、利用者の要求および前記給湯用利用側の熱搬送媒体の前記給湯用利用側熱交換器入口の温度に基づいて決定される給湯出力(Qhw)と、前記給湯用利用側の熱搬送媒体の前記給湯用利用側熱交換器出口の出湯温度(Twho)とに基づいて、複数の運転モードの中から何れかを選択することを特徴としている。   The air conditioning and hot water supply system according to the present invention further includes a control device that controls the operation of the air conditioning refrigerant circuit and the hot water supply refrigerant circuit in the above configuration, and the control device has a set room temperature (set by a user) Tr_st), set humidity (Hr_st) set by the user, outside air temperature (Toa), temperature of the air-conditioning use-side heat exchanger inlet (Twbi) of the air-conditioning use-side heat transfer medium, The air conditioning utilization side of the air conditioning utilization side heat transfer medium determined based on the set room temperature, the set humidity, and the temperature of the air conditioning utilization side heat exchanger of the air conditioning utilization side heat transfer medium The set temperature (Twb_st) of the heat exchanger outlet, the temperature (Twhi) of the hot water use side heat exchanger of the hot water use side heat transfer medium, the user's request and the hot water use side heat Based on the temperature at the inlet side of the hot water supply side heat exchanger of the transport medium. Based on the hot water supply output (Qhw) determined by the hot water supply and the hot water supply side heat exchanger outlet of the hot water supply side heat transfer medium (Twho), one of a plurality of operation modes It is characterized by selecting.

本発明によれば、制御装置によって好適な運転モードを選択できるため、快適な室内空間を維持できるうえ、省エネ性が向上する。   According to the present invention, since a suitable operation mode can be selected by the control device, it is possible to maintain a comfortable indoor space and improve energy saving performance.

本発明によれば、冷房負荷が小さく圧縮機が断続運転をするような場合で、給湯機を動かす必要がある場合(中間期)に、空調用サイクルの圧縮機を運転することなく、給湯サイクルの膨張弁開度により、蒸発温度を下げることで任意の温度(除湿可能な温度)レベルの冷水を作ることができる。これにより空調サイクルを効率の悪い領域で運転することなく冷房運転が可能となり、消費電力を低減できる。   According to the present invention, when the cooling load is small and the compressor is intermittently operated and the water heater needs to be moved (intermediate period), the hot water supply cycle is operated without operating the compressor of the air conditioning cycle. Depending on the opening of the expansion valve, it is possible to make cold water of any temperature (temperature that can be dehumidified) by lowering the evaporation temperature. As a result, the cooling operation can be performed without operating the air conditioning cycle in an inefficient region, and the power consumption can be reduced.

本発明の第1の実施の形態例に係る空調給湯システムの系統図である。1 is a system diagram of an air conditioning and hot water supply system according to a first embodiment of the present invention. 図1に示す空調給湯システムの運転モードNo.1における冷媒と熱搬送媒体の流れを示す動作図である。The operation mode No. of the air conditioning and hot water supply system shown in FIG. 2 is an operation diagram showing the flow of the refrigerant and the heat transfer medium in FIG. 図1に示す空調給湯システムの運転モードNo.2−1における冷媒と熱搬送媒体の流れを示す動作図である。The operation mode No. of the air conditioning and hot water supply system shown in FIG. It is an operation | movement figure which shows the flow of the refrigerant | coolant in 2-1, and a heat carrier medium. 図1に示す空調給湯システムの運転モードNo.2−2における冷媒と熱搬送媒体の流れを示す動作図である。The operation mode No. of the air conditioning and hot water supply system shown in FIG. It is an operation | movement figure which shows the flow of the refrigerant | coolant in 2-2, and a heat carrier medium. 図1に示す空調給湯システムの運転モードNo.3における冷媒と熱搬送媒体の流れを示す動作図である。The operation mode No. of the air conditioning and hot water supply system shown in FIG. 3 is an operation diagram showing the flow of the refrigerant and the heat transfer medium in FIG. 図1に示す空調給湯システムの運転モードNo.4−1における冷媒と熱搬送媒体の流れを示す動作図である。The operation mode No. of the air conditioning and hot water supply system shown in FIG. It is an operation | movement figure which shows the flow of the refrigerant | coolant in 4-1, and a heat carrier medium. 図1に示す空調給湯システムの運転モードNo.4−2における冷媒と熱搬送媒体の流れを示す動作図である。The operation mode No. of the air conditioning and hot water supply system shown in FIG. It is an operation | movement figure which shows the flow of the refrigerant | coolant in 4-2, and a heat carrier medium. 図1に示す空調給湯システムの運転モードNo.5における冷媒と熱搬送媒体の流れを示す動作図である。The operation mode No. of the air conditioning and hot water supply system shown in FIG. 6 is an operation diagram showing the flow of the refrigerant and the heat transfer medium in FIG. 図1に示す空調給湯システムの各運転モードの選択条件を示した図である。It is the figure which showed the selection conditions of each operation mode of the air-conditioning hot-water supply system shown in FIG. 空調給湯システムにおける冷媒の圧力−エンタルピ線図であり、図10(a)は本発明の第1の実施の形態例に係る空調給湯システムにおける冷媒の圧力−エンタルピ線図であり、図10(b)は従来の空調給湯システムにおける冷媒の圧力−エンタルピ線図である。FIG. 10A is a pressure-enthalpy diagram of refrigerant in the air-conditioning hot-water supply system, and FIG. 10A is a pressure-enthalpy diagram of refrigerant in the air-conditioning hot-water supply system according to the first embodiment of the present invention. ) Is a refrigerant pressure-enthalpy diagram in a conventional air-conditioning hot-water supply system. 本発明の第2の実施の形態例に係る空調給湯システムの系統図である。It is a systematic diagram of the air-conditioning hot-water supply system which concerns on the 2nd Example of this invention. 本発明の第3の実施の形態例に係る空調給湯システムの系統図である。It is a systematic diagram of the air-conditioning hot-water supply system which concerns on the 3rd Example of this invention.

[本発明の第1の実施形態]
本発明の第1の実施の形態例に係る空調給湯システムは、図1に示すように、冷房運転と暖房運転とを切り替えて運転を行う空調用冷媒回路5と、給湯を行う給湯用冷媒回路6と、空調用冷媒回路5と熱交換を行って、住宅60の室内の空調を行う空調用冷温水循環回路(空調用熱搬送媒体循環回路)8と、給湯用冷媒回路6と熱交換を行って給湯を行う給湯回路9とを備えている。また、本発明の第1の実施の形態例に係る空調給湯システムは、室外に配置されるヒートポンプユニット1と、室内に配置される室内ユニット2とを備えたユニット構成となっている。
[First embodiment of the present invention]
As shown in FIG. 1, an air conditioning and hot water supply system according to a first embodiment of the present invention includes an air conditioning refrigerant circuit 5 that switches between a cooling operation and a heating operation, and a hot water supply refrigerant circuit that supplies hot water. 6, heat exchange with the air conditioning refrigerant circuit 5, and heat exchange with the air conditioning cold / hot water circulation circuit (air conditioning heat transfer medium circulation circuit) 8 for air conditioning the room 60 and the hot water supply refrigerant circuit 6. And a hot water supply circuit 9 for supplying hot water. Moreover, the air-conditioning hot-water supply system according to the first embodiment of the present invention has a unit configuration including a heat pump unit 1 arranged outside and an indoor unit 2 arranged indoors.

ヒートポンプユニット1には、空調用冷媒回路5、給湯用冷媒回路6、空調用冷温水循環回路8および給湯回路9が組み込まれている。さらに、空調用冷媒回路5と給湯用冷媒回路6との間には中間熱交換器23が配置されている。この中間熱交換器23は、空調用冷媒回路5を循環する空調用冷媒と、給湯用冷媒回路6を循環する給湯用冷媒との間で熱交換を行うことが可能な構造となっている。   The heat pump unit 1 includes an air conditioning refrigerant circuit 5, a hot water supply refrigerant circuit 6, an air conditioning cold / hot water circulation circuit 8, and a hot water supply circuit 9. Further, an intermediate heat exchanger 23 is disposed between the air conditioning refrigerant circuit 5 and the hot water supply refrigerant circuit 6. The intermediate heat exchanger 23 has a structure capable of exchanging heat between the air conditioning refrigerant circulating in the air conditioning refrigerant circuit 5 and the hot water supply refrigerant circulating in the hot water supply refrigerant circuit 6.

空調用冷媒回路5は、空調用冷媒が循環することにより冷凍サイクルが形成される回路であり、空調用冷媒を圧縮する空調用圧縮機21、空調用冷媒の流路を切り替える四方弁(空調用流路切替弁)22、中間熱交換器23、ファン(図示せず)により送られてくる大気と熱交換を行う空調用熱源側熱交換器24、空調用冷媒タンク26、空調用冷媒を減圧する空調用膨張弁27、空調用冷温水循環回路8と熱交換を行う空調用利用側熱交換器28を冷媒配管で接続して環状に形成されている。なお、中間熱交換器23は、空調用利用側熱交換器28よりも高い位置に設置されており、中間熱交換器23と空調用利用側熱交換器28との間にヘッド差が形成されている。このヘッド差によって、空調用冷媒を空調用冷媒回路5内で自然循環させることができるのである(詳しくは後述する)。   The air conditioning refrigerant circuit 5 is a circuit in which a refrigeration cycle is formed by circulating the air conditioning refrigerant. The air conditioning compressor 21 that compresses the air conditioning refrigerant, and a four-way valve that switches the flow path of the air conditioning refrigerant (air conditioning refrigerant). A flow switching valve) 22, an intermediate heat exchanger 23, an air-conditioning heat source side heat exchanger 24 for exchanging heat with the air sent by a fan (not shown), an air-conditioning refrigerant tank 26, and an air-conditioning refrigerant. The air-conditioning expansion valve 27 and the air-conditioning cold / hot water circulation circuit 8 are connected to the air-conditioning use-side heat exchanger 28 for heat exchange by a refrigerant pipe, and are formed in an annular shape. The intermediate heat exchanger 23 is installed at a position higher than the air-conditioning use-side heat exchanger 28, and a head difference is formed between the intermediate heat exchanger 23 and the air-conditioning use-side heat exchanger 28. ing. This head difference allows the air conditioning refrigerant to be naturally circulated in the air conditioning refrigerant circuit 5 (details will be described later).

次に、空調用冷媒回路5の構成の詳細を説明する。空調用冷媒回路5は、まず、空調用圧縮機21の吐出口21b、四方弁22、中間熱交換器23、空調用冷媒タンク26、空調用膨張弁27、空調用利用側熱交換器28、四方弁22、空調用圧縮機21の吸込口21aの順に冷媒配管で接続して環状に形成された空調用冷媒主回路5aを備えている。   Next, the details of the configuration of the air conditioning refrigerant circuit 5 will be described. The air conditioning refrigerant circuit 5 includes an outlet 21b of an air conditioning compressor 21, a four-way valve 22, an intermediate heat exchanger 23, an air conditioning refrigerant tank 26, an air conditioning expansion valve 27, an air conditioning utilization side heat exchanger 28, The air-conditioning refrigerant main circuit 5a is formed in an annular shape by connecting the refrigerant pipes in the order of the four-way valve 22 and the suction port 21a of the air-conditioning compressor 21.

空調用冷媒回路5は、この空調用冷媒主回路5aに2つの空調用冷媒分岐路5b、5cが設けられて構成されている。第1の空調用冷媒分岐路5bは、中間熱交換器23と並列に接続された空調用熱源側熱交換器24を経由する空調用冷媒分岐路であり、具体的には、四方弁22と中間熱交換器23との間の位置にある分岐点Iから分岐し、空調用熱源側熱交換器24を経由して、中間熱交換器23と空調用冷媒タンク26の間の位置にある分岐点Jで合流する空調用冷媒分岐路である。   The air conditioning refrigerant circuit 5 is configured by providing the air conditioning refrigerant main circuit 5a with two air conditioning refrigerant branch paths 5b and 5c. The first air conditioning refrigerant branch 5b is an air conditioning refrigerant branch that passes through an air conditioning heat source side heat exchanger 24 connected in parallel with the intermediate heat exchanger 23. Specifically, the four-way valve 22 A branch is made from a branch point I located between the intermediate heat exchanger 23 and a branch located between the intermediate heat exchanger 23 and the air conditioning refrigerant tank 26 via the heat source side heat exchanger 24 for air conditioning. It is a refrigerant branch for air conditioning that merges at point J.

第2の空調用冷媒分岐路5cは、空調用圧縮機21の吸込口21aと吐出口21bとをバイパスする空調用冷媒分岐路であり、具体的には、空調用利用側熱交換器28と四方弁22との間の位置にある分岐点Aと、四方弁22と分岐点Iの間の位置にある分岐点Bとを空調用冷媒バイパス配管(バイパス配管)29で繋いで形成された空調用冷媒分岐路である。なお、分岐点Aには三方弁34aが、分岐点Bには三方弁34bがそれぞれ設けられており、これらの三方弁(バイパス開閉手段)34a、34bを操作することにより、空調用冷媒の流路が、空調用圧縮機21を経由する流路と、空調用圧縮機21をバイパスする流路の何れかに切り替わる。   The second air conditioning refrigerant branch 5c is an air conditioning refrigerant branch that bypasses the suction port 21a and the discharge port 21b of the air conditioning compressor 21, and more specifically, the air conditioning use-side heat exchanger 28 and An air conditioner formed by connecting a branch point A located between the four-way valve 22 and a branch point B located between the four-way valve 22 and the branch point I with an air-conditioning refrigerant bypass pipe (bypass pipe) 29. This is a refrigerant branch for use. A three-way valve 34a is provided at the branch point A, and a three-way valve 34b is provided at the branch point B. By operating these three-way valves (bypass opening / closing means) 34a and 34b, the flow of the air conditioning refrigerant The path is switched between a flow path passing through the air conditioning compressor 21 and a flow path bypassing the air conditioning compressor 21.

なお、二方弁35a、35bが中間熱交換器23を挟んで設けられ、二方弁35c、35dが空調用熱源側熱交換器24を挟んで設けられている。また、空調用冷媒回路5を循環する空調用冷媒としては、例えば、R410a、R134a,HFO1234yf,HFO1234ze、CO2を用いることができる。   Two-way valves 35a and 35b are provided with the intermediate heat exchanger 23 interposed therebetween, and two-way valves 35c and 35d are provided with the heat source side heat exchanger 24 for air conditioning interposed therebetween. As the air conditioning refrigerant circulating in the air conditioning refrigerant circuit 5, for example, R410a, R134a, HFO1234yf, HFO1234ze, and CO2 can be used.

次に、上記した空調用冷媒回路5に組み込まれる各機器の構造について、詳細に説明する。空調用圧縮機21は、容量制御が可能な可変容量型の圧縮機である。このような圧縮機としては、ピストン式、ロータリー式、スクロール式、スクリュー式、遠心式のものを採用可能である。具体的には、空調用圧縮機21は、スクロール式の圧縮機であり、インバータ制御により容量制御が可能で、低速から高速まで回転速度が可変である。   Next, the structure of each device incorporated in the above-described air conditioning refrigerant circuit 5 will be described in detail. The air conditioning compressor 21 is a variable capacity compressor capable of capacity control. As such a compressor, a piston type, a rotary type, a scroll type, a screw type, or a centrifugal type can be adopted. Specifically, the air conditioning compressor 21 is a scroll type compressor, and capacity control is possible by inverter control, and the rotation speed is variable from low speed to high speed.

中間熱交換器23は、図示しないが、空調用冷媒が流れる空調用冷媒伝熱管と給湯用冷媒が流れる給湯用冷媒伝熱管とがお互いに熱的に接触する(例えば、伝熱管同士を接合する)ように一体に構成された熱交換器である。また、空調用利用側熱交換器28は、図示しないが、空調用冷媒が流れる空調用冷媒伝熱管と水(空調用利用側の熱搬送媒体)が流れる空調用冷温水伝熱管とが熱的に接触するように構成されている。空調用冷媒タンク26は、流路の切替えによって変化する空調用冷媒の量を制御するバッファとして機能するものである。空調用膨張弁27は、弁の開度を調整することにより、空調用冷媒の圧力を所定の圧力まで減圧することができる。   Although not shown, the intermediate heat exchanger 23 is in thermal contact with the air conditioning refrigerant heat transfer tube through which the air conditioning refrigerant flows and the hot water supply refrigerant heat transfer tube through which the hot water supply refrigerant flows (for example, the heat transfer tubes are joined together). It is a heat exchanger configured integrally as described above. In addition, although the air-conditioning use-side heat exchanger 28 is not shown, the air-conditioning refrigerant heat transfer tube through which the air-conditioning refrigerant flows and the air-conditioning cold / hot water heat transfer tube through which water (a heat transfer medium on the air-conditioning use side) flows are thermally connected. It is comprised so that it may contact. The air conditioning refrigerant tank 26 functions as a buffer that controls the amount of the air conditioning refrigerant that is changed by switching the flow path. The air conditioning expansion valve 27 can reduce the pressure of the air conditioning refrigerant to a predetermined pressure by adjusting the opening of the valve.

空調用冷温水循環回路(空調用熱搬送媒体循環回路)8は、空調用冷媒回路5と熱交換を行うための空調用利用側の熱搬送媒体として水が流れる回路であり、住宅(被空調空間)60に設置された室内熱交換器61、空調用冷温水循環ポンプ52、四方弁53、空調用利用側熱交換器28を空調用冷温水配管で順次接続して、環状に形成された回路である。この空調用冷温水循環回路8内を流れる水(冷水または温水)は、室内熱交換器61を介して住宅60内の空気と熱交換して、住宅60内を冷房または暖房する。なお、空調用冷温水循環回路8内を流れる空調用利用側の熱搬送媒体として、水の代わりにエチレングリコールなどのブラインを用いても良い。ブラインを用いると寒冷地でも適用できることは言うまでもない。   The air conditioning cold / hot water circulation circuit (air conditioning heat transfer medium circulation circuit) 8 is a circuit through which water flows as a heat transfer medium on the use side for air conditioning for exchanging heat with the air conditioning refrigerant circuit 5, and houses (air-conditioned space) ) An indoor heat exchanger 61, an air conditioning cold / hot water circulation pump 52, a four-way valve 53, and an air conditioning use side heat exchanger 28 connected to each other by an air conditioning cold / hot water pipe in an annular circuit is there. Water (cold water or hot water) flowing through the air-conditioning cold / hot water circulation circuit 8 exchanges heat with the air in the house 60 via the indoor heat exchanger 61 to cool or heat the house 60. Note that brine such as ethylene glycol may be used in place of water as the heat transfer medium on the air conditioning use side that flows in the cold / hot water circulation circuit 8 for air conditioning. Needless to say, the use of brine can be applied even in cold regions.

なお、以下の説明において、空調用冷温水循環回路8を流れる水として「冷水」または「温水」という言葉が用いられることがあるが、「冷水」とは冷房時に空調用冷温水循環回路8を流れる水の意味で用いられ、「温水」とは暖房時に空調用冷温水循環回路8を流れる水の意味で用いられていることを、ここで付言しておく。   In the following description, the term “cold water” or “warm water” may be used as the water flowing through the air-conditioning cold / hot water circulation circuit 8. The term “cold water” refers to water flowing through the air-conditioning cold / hot water circulation circuit 8 during cooling. It is added here that the term “warm water” is used to mean the water flowing through the air conditioning cold / hot water circulation circuit 8 during heating.

給湯用冷媒回路6は、給湯用冷媒が循環することにより冷凍サイクルが形成される回路であり、給湯用冷媒を圧縮する給湯用圧縮機41、給湯回路9と熱交換を行う給湯用利用側熱交換器42、給湯用冷媒タンク46、給湯用冷媒を減圧する給湯用膨張弁43、中間熱交換器23、およびファン(図示せず)により送られてくる大気と熱交換を行う給湯用熱源側熱交換器44を冷媒配管で接続して環状に形成されている。   The hot water supply refrigerant circuit 6 is a circuit in which a refrigeration cycle is formed by circulation of the hot water supply refrigerant. The hot water supply compressor 41 that compresses the hot water supply refrigerant and the hot water use side heat that exchanges heat with the hot water supply circuit 9. Hot water supply heat source side that exchanges heat with the atmosphere sent by the exchanger 42, the hot water supply refrigerant tank 46, the hot water supply expansion valve 43 that depressurizes the hot water supply refrigerant, the intermediate heat exchanger 23, and a fan (not shown). The heat exchanger 44 is formed in an annular shape by connecting with refrigerant piping.

次に、給湯用冷媒回路6の構成の詳細を説明する。給湯用冷媒回路6は、まず、給湯用圧縮機41の吐出口41b、給湯用利用側熱交換器42、給湯用冷媒タンク46、給湯用膨張弁43、中間熱交換器23、給湯用圧縮機41の吸込口41aの順に冷媒配管で接続して環状に形成された給湯用冷媒主回路6aを備えている。   Next, details of the configuration of the hot water supply refrigerant circuit 6 will be described. The hot water supply refrigerant circuit 6 includes the discharge port 41b of the hot water supply compressor 41, the hot water use side heat exchanger 42, the hot water supply refrigerant tank 46, the hot water supply expansion valve 43, the intermediate heat exchanger 23, and the hot water supply compressor. 41 is provided with a hot water supply refrigerant main circuit 6a formed in an annular shape by being connected by refrigerant pipes in the order of 41 intake ports 41a.

給湯用冷媒回路6は、この給湯用冷媒主回路6aに給湯用冷媒分岐路6bが設けられて構成されている。給湯用冷媒分岐路6bは、中間熱交換器23と並列に接続された給湯用熱源側熱交換器44を経由する給湯用冷媒分岐路であり、具体的には、給湯用膨張弁43と中間熱交換器23の間の位置にある分岐点Kから分岐し、給湯用熱源側熱交換器44を経由して、中間熱交換器23と給湯用圧縮機41の吸込口41aの間の位置にある分岐点Lで合流する給湯用冷媒分岐路である。   The hot water supply refrigerant circuit 6 is configured by providing a hot water supply refrigerant branch circuit 6b to the hot water supply refrigerant main circuit 6a. The hot water supply refrigerant branch 6b is a hot water supply refrigerant branch that passes through the hot water supply heat source side heat exchanger 44 connected in parallel with the intermediate heat exchanger 23. Specifically, the hot water supply refrigerant branch 6b It branches from the branch point K in the position between the heat exchangers 23, and passes through the hot water supply heat source side heat exchanger 44 to a position between the intermediate heat exchanger 23 and the inlet 41a of the hot water supply compressor 41. This is a refrigerant branch path for hot water supply that merges at a certain branch point L.

なお、中間熱交換器23の入口の近傍位置には二方弁49bが、給湯用熱源側熱交換器44の入口の近傍位置には二方弁49aが、それぞれ設けられている。また、給湯用冷媒回路6を循環する給湯用冷媒としては、例えば、R134a,HFO1234yf,HFO1234ze、CO2を用いることができる。   A two-way valve 49b is provided near the inlet of the intermediate heat exchanger 23, and a two-way valve 49a is provided near the inlet of the hot water supply heat source side heat exchanger 44. Further, as the hot water supply refrigerant circulating in the hot water supply refrigerant circuit 6, for example, R134a, HFO1234yf, HFO1234ze, and CO2 can be used.

次に、上記した給湯用冷媒回路6に組み込まれる各機器の構造について、詳細に説明する。給湯用圧縮機41は、空調用圧縮機21と同様にインバータ制御により容量制御が可能で、低速から高速まで回転速度が可変である。給湯用利用側熱交換器42は、図示しないが、給湯回路9に供給される水が流れる給湯用水伝熱管と、給湯用冷媒が流れる給湯用冷媒伝熱管とが熱的に接触するように構成されている。給湯用膨張弁43は、弁の開度を調整することにより、給湯用冷媒の圧力を所定の圧力まで減圧することができる。   Next, the structure of each device incorporated in the above-described hot water supply refrigerant circuit 6 will be described in detail. The hot water supply compressor 41 can perform capacity control by inverter control similarly to the air conditioning compressor 21, and the rotation speed is variable from low speed to high speed. Although not shown, the hot water use side heat exchanger 42 is configured such that a hot water supply water heat transfer tube through which water supplied to the hot water supply circuit 9 flows and a hot water supply refrigerant heat transfer tube through which hot water supply refrigerant flows are in thermal contact. Has been. The hot water supply expansion valve 43 can reduce the pressure of the hot water supply refrigerant to a predetermined pressure by adjusting the opening of the valve.

給湯回路9は、給湯用利用側熱交換器42の入口に給湯用配管72の一端を接続し、給湯用利用側熱交換器42の出口に給湯用配管73の一端を接続して形成された回路である。給湯用配管72の他端は水の供給元と接続され、給湯用配管73の他端は給湯負荷側の機器(浴槽など)と接続されている。よって、給湯回路9内に供給された水は、給湯用利用側熱交換器42と熱交換を行うことにより温水となり、給湯用配管73を流れながら給湯負荷側の機器へと導かれる。なお、給湯回路9には、図示しないが、給湯用循環ポンプと、水の流量を検知する給湯用流量センサとが組み込まれている。なお、給湯用利用側熱交換器42において、給湯用冷媒の流れと水の流れは対向流となっている。   The hot water supply circuit 9 is formed by connecting one end of a hot water supply pipe 72 to the inlet of the hot water use side heat exchanger 42 and connecting one end of the hot water supply pipe 73 to the outlet of the hot water use side heat exchanger 42. Circuit. The other end of the hot water supply pipe 72 is connected to a water supply source, and the other end of the hot water supply pipe 73 is connected to equipment (such as a bathtub) on the hot water supply load side. Therefore, the water supplied into the hot water supply circuit 9 becomes hot water by exchanging heat with the hot water use side heat exchanger 42 and is guided to the hot water supply load side equipment while flowing through the hot water supply pipe 73. Although not shown, the hot water supply circuit 9 incorporates a hot water supply circulation pump and a hot water supply flow rate sensor for detecting the flow rate of water. In addition, in the hot water use side heat exchanger 42, the flow of the hot water supply refrigerant and the flow of water are counterflows.

なお、この空調給湯システムには、複数の温度センサTE1〜TE8を備えている。具体的には、空調用冷温水循環回路8には、空調用利用側熱交換器28の入口(冷房運転時における入口)に温度センサT1が、出口(冷房運転時における出口)に温度センサTE2がそれぞれ設けられている。空調用冷媒回路5には、空調用圧縮機21の吸込口21aに温度センサTE3が、吐出口21bに温度センサTE4がそれぞれ設けられている。また、給湯回路9には、給湯用利用側熱交換器42の入口に温度センサTE7が、出口に温度センサTE8がそれぞれ設けられている。なお、図示しないが、外気温度を測定するための外気温度センサも設けられている。   In addition, this air-conditioning hot-water supply system is provided with a plurality of temperature sensors TE1 to TE8. Specifically, in the cooling / warm water circulation circuit 8 for air conditioning, a temperature sensor T1 is provided at the inlet (inlet during cooling operation) of the air conditioning use-side heat exchanger 28, and a temperature sensor TE2 is provided at the outlet (outlet during cooling operation). Each is provided. The air conditioning refrigerant circuit 5 is provided with a temperature sensor TE3 at the suction port 21a of the air conditioning compressor 21 and a temperature sensor TE4 at the discharge port 21b. The hot water supply circuit 9 is provided with a temperature sensor TE7 at the inlet of the hot water use side heat exchanger 42 and a temperature sensor TE8 at the outlet. Although not shown, an outside air temperature sensor for measuring the outside air temperature is also provided.

制御装置1aは、図示しないリモコンからの指令信号、温度センサTE1〜TE8および外気温度センサの検知信号などを入力し、これらの入力信号に基づいて、空調用圧縮機21および給湯用圧縮機41の駆動/停止、四方弁22、53の切り替え、空調用膨張弁27および給湯用膨張弁43の弁の開度の調整、三方弁34a、34bの切り替え、空調用冷温水循環ポンプ52の駆動/停止、二方弁35a〜35d、二方弁49a、49bの開閉、その他の空調給湯システムの運転に必要な制御を行っている。   The control device 1a receives a command signal from a remote controller (not shown), detection signals from the temperature sensors TE1 to TE8 and the outside air temperature sensor, and the like. Based on these input signals, the air conditioning compressor 21 and the hot water supply compressor 41 are input. Driving / stopping, switching of the four-way valves 22, 53, adjusting the opening of the air conditioning expansion valve 27 and the hot water supply expansion valve 43, switching of the three-way valves 34a, 34b, driving / stopping of the air conditioning cold / hot water circulation pump 52, Control necessary for opening and closing of the two-way valves 35a to 35d and the two-way valves 49a and 49b and other operations of the air conditioning and hot water supply system is performed.

続いて、上記した空調給湯システムによって行われる各種運転モードについて図2〜図8を参照しながら説明する。図2〜図8において、熱交換器に付された矢印は熱の流れを示しており、各回路5、6、8、9に付された矢印は、流体が各回路を流れる向きを示している。また、図2〜図8において、二方弁については、黒色に塗られたものは閉状態であることを示しており、三方弁については、黒く塗られたポートは閉じていることを示しており、四方弁については、実線の流路が有効となっていることを示している。なお、図2〜図8において、温度センサTE1〜TE8の図示は省略している。   Next, various operation modes performed by the above-described air conditioning and hot water supply system will be described with reference to FIGS. 2-8, the arrow attached | subjected to the heat exchanger has shown the flow of heat, and the arrow attached | subjected to each circuit 5,6,8,9 shows the direction through which a fluid flows through each circuit. Yes. 2-8, as for the two-way valve, the one painted in black indicates that it is in a closed state, and for the three-way valve, indicates that the port painted in black is closed. For the four-way valve, it is shown that the solid line is effective. 2 to 8, the temperature sensors TE1 to TE8 are not shown.

「運転モードNo.1<冷房/給湯運転>」(図2参照)
運転モードNo.1は、空調用冷媒回路5による冷房運転と、給湯用冷媒回路6による給湯運転とをそれぞれ行う運転モードである。
“Operation mode No. 1 <Cooling / hot water supply operation>” (see FIG. 2)
Operation mode No. Reference numeral 1 denotes an operation mode in which a cooling operation by the air conditioning refrigerant circuit 5 and a hot water supply operation by the hot water supply refrigerant circuit 6 are performed.

空調用冷媒回路5では、空調用圧縮機21の吐出口21bより吐出された高温高圧のガス冷媒は、四方弁22を通って、空調用熱源側熱交換器24に流入する。空調用熱源側熱交換器24内を流れる高温高圧のガス冷媒は、大気へ放熱して凝縮し、液化する。この高圧の冷媒は、所定の開度に調節された空調用膨張弁27で減圧、膨張し、低温低圧の気液二相冷媒となり、空調用利用側熱交換器28に流入する。空調用利用側熱交換器28内を流れる気液二相冷媒は、空調用冷温水循環回路8内を流れる冷水から吸熱して蒸発し、低圧のガス冷媒となる。この低圧のガス冷媒は、四方弁22を通って、空調用圧縮機21の吸込口21aに流入し、空調用圧縮機21により再び圧縮されて高温高圧のガス冷媒となる。   In the air conditioning refrigerant circuit 5, the high-temperature and high-pressure gas refrigerant discharged from the discharge port 21 b of the air-conditioning compressor 21 passes through the four-way valve 22 and flows into the air-conditioning heat source side heat exchanger 24. The high-temperature and high-pressure gas refrigerant flowing in the air-conditioning heat source side heat exchanger 24 dissipates heat to the atmosphere, condenses, and liquefies. This high-pressure refrigerant is decompressed and expanded by the air conditioning expansion valve 27 adjusted to a predetermined opening degree, becomes a low-temperature low-pressure gas-liquid two-phase refrigerant, and flows into the air-conditioning use-side heat exchanger 28. The gas-liquid two-phase refrigerant flowing in the air-conditioning use-side heat exchanger 28 absorbs heat from the cold water flowing in the air-conditioning cold / hot water circulation circuit 8 and evaporates to become a low-pressure gas refrigerant. The low-pressure gas refrigerant passes through the four-way valve 22 and flows into the suction port 21a of the air-conditioning compressor 21, and is compressed again by the air-conditioning compressor 21 to become a high-temperature and high-pressure gas refrigerant.

なお、運転モードNo.1では、中間熱交換器23の前後の二方弁35a、35bは閉じており、空調用冷媒が中間熱交換器23内を流れないようになっている。また、空調用圧縮機21の前後の三方弁34a、34bにより、空調用圧縮機21をバイパスする第2の空調用冷媒分岐路5cは閉鎖されている。   The operation mode No. 1, the two-way valves 35 a and 35 b before and after the intermediate heat exchanger 23 are closed so that the air-conditioning refrigerant does not flow through the intermediate heat exchanger 23. The second air conditioning refrigerant branch 5c that bypasses the air conditioning compressor 21 is closed by the three-way valves 34a and 34b before and after the air conditioning compressor 21.

空調用冷温水循環回路8では、空調用利用側熱交換器28を流れる空調用冷媒に放熱した冷水は、空調用冷温水循環ポンプ52を駆動することにより、空調用冷温水配管を通って、室内熱交換器61に流入する。室内熱交換器61では、空調用冷温水循環回路8内の冷水と、住宅60内の高温の空気とで熱交換が行われ、住宅60の空気が冷却される。つまり、住宅60の室内が冷房される。このとき、室内熱交換器61を流れる冷水は、住宅60内の空気から吸熱して昇温される。この昇温された冷水は、空調用冷温水循環ポンプ52により空調用冷温水循環回路8内を循環し、再び空調用利用側熱交換器28を流れる間に空調用冷媒回路5と熱交換を行って、所定温度まで冷却される。   In the air-conditioning cold / hot water circulation circuit 8, the cold water radiated to the air-conditioning refrigerant flowing through the air-conditioning use-side heat exchanger 28 drives the air-conditioning cold / hot water circulation pump 52, passes through the air-conditioning cold / hot water pipe, and passes through the indoor heat. It flows into the exchanger 61. In the indoor heat exchanger 61, heat exchange is performed between the cold water in the cold / hot water circulation circuit 8 for air conditioning and the high-temperature air in the house 60, and the air in the house 60 is cooled. That is, the room of the house 60 is cooled. At this time, the cold water flowing through the indoor heat exchanger 61 absorbs heat from the air in the house 60 and is heated. The raised cold water is circulated in the air conditioning cold / hot water circulation circuit 8 by the air conditioning cold / hot water circulation pump 52 and exchanges heat with the air conditioning refrigerant circuit 5 while flowing through the air conditioning use-side heat exchanger 28 again. And cooled to a predetermined temperature.

一方、給湯用冷媒回路6では、給湯用圧縮機41で圧縮され高温高圧となったガス冷媒は、給湯用利用側熱交換器42に流入する。給湯用利用側熱交換器42内を流れる高温高圧のガス冷媒は、給湯回路9内を流れる水へ放熱して凝縮し、液化する。このとき、給湯回路9では、給湯用利用側熱交換器42で給湯用冷媒回路6から温熱を受け取ることにより、供給された水が所定温度の湯となる。そして、液化した高圧の冷媒は、所定の開度に調節された給湯用膨張弁43で減圧、膨張して、低温低圧の気液二相冷媒となる。この気液二相冷媒は、給湯用熱源側熱交換器44を流れる間に、大気から吸熱して蒸発し、低圧のガス冷媒となる。この低圧のガス冷媒は、給湯用圧縮機41の吸込口41aに流入し、給湯用圧縮機41により再び圧縮されて高温高圧のガス冷媒となる。   On the other hand, in the hot water supply refrigerant circuit 6, the gas refrigerant compressed to a high temperature and high pressure by the hot water supply compressor 41 flows into the hot water use side heat exchanger 42. The high-temperature and high-pressure gas refrigerant flowing in the hot water use side heat exchanger 42 dissipates heat to the water flowing in the hot water supply circuit 9 and condenses and liquefies. At this time, in the hot water supply circuit 9, the supplied water becomes hot water at a predetermined temperature by receiving warm heat from the hot water supply refrigerant circuit 6 by the hot water supply use side heat exchanger 42. The liquefied high-pressure refrigerant is decompressed and expanded by the hot water supply expansion valve 43 adjusted to a predetermined opening degree, and becomes a low-temperature and low-pressure gas-liquid two-phase refrigerant. This gas-liquid two-phase refrigerant absorbs heat from the atmosphere and evaporates while flowing through the hot water supply heat source side heat exchanger 44 to become a low-pressure gas refrigerant. This low-pressure gas refrigerant flows into the suction port 41a of the hot water supply compressor 41 and is compressed again by the hot water supply compressor 41 to become a high-temperature high-pressure gas refrigerant.

なお、運転モードNo.1では、中間熱交換器23の上流側の二方弁49bは閉じており、給湯用冷媒が中間熱交換器23内を流れないようになっている。   The operation mode No. 1, the two-way valve 49 b on the upstream side of the intermediate heat exchanger 23 is closed so that the hot water supply refrigerant does not flow through the intermediate heat exchanger 23.

「運転モードNo.2−1<冷房排熱を利用した給湯運転>」(図3参照)
運転モードNo.2−1は、冷房運転による排熱を利用して給湯運転を行うモードのうち、冷房運転による排熱が給湯運転による吸熱より大きい場合に行われる運転モードである。この運転モードNo.2−1は、冷房運転による排熱が給湯運転による吸熱より大きい場合に行われるモードであるため、給湯用熱源側熱交換器44を使用しなくても済む。そのため、給湯用熱源側熱交換器44の上流側の二方弁49aは閉じて、給湯用冷媒が給湯用熱源側熱交換器44内を流れないようにしている。
“Operation mode No. 2-1 <Hot-water supply operation using cooling exhaust heat>” (see FIG. 3)
Operation mode No. 2-1 is an operation mode performed when the exhaust heat by the cooling operation is larger than the heat absorption by the hot water operation among the modes in which the hot water operation is performed using the exhaust heat by the cooling operation. This operation mode No. 2-1 is a mode that is performed when the exhaust heat from the cooling operation is larger than the heat absorption from the hot water supply operation, and thus it is not necessary to use the hot water supply heat source side heat exchanger 44. Therefore, the two-way valve 49a on the upstream side of the hot water supply heat source side heat exchanger 44 is closed to prevent the hot water supply refrigerant from flowing through the hot water supply heat source side heat exchanger 44.

空調用冷媒回路5では、空調用圧縮機21の吐出口21bより吐出された高温高圧のガス冷媒は、四方弁22を通って、空調用熱源側熱交換器24と中間熱交換器23に分かれて流入する。つまり、ガス冷媒は、空調用冷媒主回路5aと第1の空調用冷媒分岐路5bとに分岐して流れていく。空調用熱源側熱交換器24内を流れる高温高圧のガス冷媒は、大気へ放熱して凝縮し、液化する。一方、中間熱交換器23内を流れる高温高圧のガス冷媒は、給湯用回路6内を流れる給湯用冷媒へ放熱することで凝縮し、液化する。つまり、中間熱交換器23内において、空調用冷媒と給湯用冷媒とによる熱交換が行われるのである。   In the air conditioning refrigerant circuit 5, the high-temperature and high-pressure gas refrigerant discharged from the discharge port 21 b of the air-conditioning compressor 21 passes through the four-way valve 22 and is divided into an air-conditioning heat source side heat exchanger 24 and an intermediate heat exchanger 23. Inflow. That is, the gas refrigerant branches and flows into the air conditioning refrigerant main circuit 5a and the first air conditioning refrigerant branch 5b. The high-temperature and high-pressure gas refrigerant flowing in the air-conditioning heat source side heat exchanger 24 dissipates heat to the atmosphere, condenses, and liquefies. On the other hand, the high-temperature and high-pressure gas refrigerant flowing in the intermediate heat exchanger 23 is condensed and liquefied by releasing heat to the hot-water supply refrigerant flowing in the hot-water supply circuit 6. That is, heat exchange between the air conditioning refrigerant and the hot water supply refrigerant is performed in the intermediate heat exchanger 23.

空調用熱源側熱交換器24および中間熱交換器23からそれぞれ流出した高圧の冷媒は、所定の開度に調節された空調用膨張弁27で減圧、膨張し、低温低圧の気液二相冷媒となり、空調用利用側熱交換器28に流入する。空調用利用側熱交換器28内を流れる気液二相冷媒は、空調用冷温水循環回路8内を流れる冷水から吸熱して蒸発し、低圧のガス冷媒となる。この低圧のガス冷媒は、四方弁22を通って、空調用圧縮機21の吸込口21aに流入し、空調用圧縮機21により再び圧縮されて高温高圧のガス冷媒となる。   The high-pressure refrigerant flowing out of the air-conditioning heat source side heat exchanger 24 and the intermediate heat exchanger 23 is decompressed and expanded by the air-conditioning expansion valve 27 adjusted to a predetermined opening degree, and is a low-temperature and low-pressure gas-liquid two-phase refrigerant. And flows into the air-conditioning use-side heat exchanger 28. The gas-liquid two-phase refrigerant flowing in the air-conditioning use-side heat exchanger 28 absorbs heat from the cold water flowing in the air-conditioning cold / hot water circulation circuit 8 and evaporates to become a low-pressure gas refrigerant. The low-pressure gas refrigerant passes through the four-way valve 22 and flows into the suction port 21a of the air-conditioning compressor 21, and is compressed again by the air-conditioning compressor 21 to become a high-temperature and high-pressure gas refrigerant.

なお、運転モードNo.2−1では、空調用圧縮機21の前後の三方弁34a、34bにより、空調用圧縮機21をバイパスする第2の空調用冷媒分岐路5cは閉鎖されている。   The operation mode No. In 2-1, the second air conditioning refrigerant branch 5c that bypasses the air conditioning compressor 21 is closed by the three-way valves 34a and 34b before and after the air conditioning compressor 21.

空調用冷温水循環回路8では、空調用利用側熱交換器28を流れる空調用冷媒に放熱した冷水は、空調用冷温水循環ポンプ52を駆動することにより、空調用冷温水配管を通って、室内熱交換器61に流入する。室内熱交換器61では、空調用冷温水循環回路8内の冷水と、住宅60内の高温の空気とで熱交換が行われ、住宅60の空気が冷却される。つまり、住宅60の室内が冷房される。このとき、室内熱交換器61を流れる冷水は、住宅60内の空気から吸熱して昇温される。この昇温された冷水は、空調用冷温水循環ポンプ52により空調用冷温水循環回路8内を循環し、再び空調用利用側熱交換器28を流れる間に空調用冷媒回路5と熱交換を行って、所定温度まで冷却される。   In the air-conditioning cold / hot water circulation circuit 8, the cold water radiated to the air-conditioning refrigerant flowing through the air-conditioning use-side heat exchanger 28 drives the air-conditioning cold / hot water circulation pump 52, passes through the air-conditioning cold / hot water pipe, and passes through the indoor heat. It flows into the exchanger 61. In the indoor heat exchanger 61, heat exchange is performed between the cold water in the cold / hot water circulation circuit 8 for air conditioning and the high-temperature air in the house 60, and the air in the house 60 is cooled. That is, the room of the house 60 is cooled. At this time, the cold water flowing through the indoor heat exchanger 61 absorbs heat from the air in the house 60 and is heated. The raised cold water is circulated in the air conditioning cold / hot water circulation circuit 8 by the air conditioning cold / hot water circulation pump 52 and exchanges heat with the air conditioning refrigerant circuit 5 while flowing through the air conditioning use-side heat exchanger 28 again. And cooled to a predetermined temperature.

一方、給湯用冷媒回路6では、給湯用圧縮機41で圧縮され高温高圧となったガス冷媒は、給湯用利用側熱交換器42に流入する。給湯用利用側熱交換器42内を流れる高温高圧のガス冷媒は、給湯回路9内を流れる水へ放熱して凝縮し、液化する。このとき、給湯回路9では、給湯用利用側熱交換器42で給湯用冷媒回路6から温熱を受け取ることにより、供給された水が所定温度の湯となる。そして、液化した高圧の冷媒は、給湯用膨張弁43で減圧、膨張して、低温低圧の気液二相冷媒となる。この気液二相冷媒は、中間熱交換器23を流れる間に、空調用冷媒から吸熱して蒸発し、低圧のガス冷媒となる。つまり、中間熱交換器23内において、空調用冷媒と給湯用冷媒とによる熱交換が行われるのである。この低圧のガス冷媒は、給湯用圧縮機41の吸込口41aに流入し、給湯用圧縮機41により再び圧縮されて高温高圧のガス冷媒となる。この運転モードNo.2−1では、給湯用冷媒回路6における中間熱交換器23は、空調用冷媒回路5の排熱を利用した蒸発器として機能することとなる。   On the other hand, in the hot water supply refrigerant circuit 6, the gas refrigerant compressed to a high temperature and high pressure by the hot water supply compressor 41 flows into the hot water use side heat exchanger 42. The high-temperature and high-pressure gas refrigerant flowing in the hot water use side heat exchanger 42 dissipates heat to the water flowing in the hot water supply circuit 9 and condenses and liquefies. At this time, in the hot water supply circuit 9, the supplied water becomes hot water at a predetermined temperature by receiving warm heat from the hot water supply refrigerant circuit 6 by the hot water supply use side heat exchanger 42. The liquefied high-pressure refrigerant is decompressed and expanded by the hot water supply expansion valve 43 to become a low-temperature low-pressure gas-liquid two-phase refrigerant. This gas-liquid two-phase refrigerant absorbs heat from the air-conditioning refrigerant while flowing through the intermediate heat exchanger 23 and evaporates to become a low-pressure gas refrigerant. That is, heat exchange between the air conditioning refrigerant and the hot water supply refrigerant is performed in the intermediate heat exchanger 23. This low-pressure gas refrigerant flows into the suction port 41a of the hot water supply compressor 41 and is compressed again by the hot water supply compressor 41 to become a high-temperature high-pressure gas refrigerant. This operation mode No. In 2-1, the intermediate heat exchanger 23 in the hot water supply refrigerant circuit 6 functions as an evaporator using the exhaust heat of the air conditioning refrigerant circuit 5.

この運転モードNo.2−1では、空調用冷媒回路5の冷房運転で生じた排熱を利用して、給湯用冷媒回路6による給湯サイクル運転を行うことができるため、エネルギの有効利用が図れることとなる。また、この運転モードNo.2−1は、空調排熱を熱源として利用しているため、外気を熱源として利用する場合に比べて、給湯サイクルの蒸発温度を上げることができる。よって、運転モードNo.2−1では、給湯用圧縮機41への入力を低減できるので、給湯用圧縮機41の消費電力を低減することができる。さらに、運転モードNo.2−1では、給湯用熱源側熱交換器44のファンを停止することができることからも、給湯サイクルの運転に掛かる消費電力は低減する。   This operation mode No. In 2-1, since the hot water supply cycle operation by the hot water supply refrigerant circuit 6 can be performed using the exhaust heat generated by the cooling operation of the air conditioning refrigerant circuit 5, the energy can be effectively used. In addition, this operation mode No. Since 2-1 uses the air-conditioning exhaust heat as a heat source, the evaporation temperature of the hot water supply cycle can be increased as compared with a case where outside air is used as a heat source. Therefore, the operation mode No. In 2-1, since the input to the hot water supply compressor 41 can be reduced, the power consumption of the hot water supply compressor 41 can be reduced. Furthermore, the operation mode No. In 2-1, since the fan of the heat source side heat exchanger 44 for hot water supply can be stopped, the power consumption required for the operation of the hot water supply cycle is reduced.

「運転モードNo.2−2<冷房排熱を利用した給湯運転>」(図4参照)
運転モードNo.2−2は、冷房運転による排熱を利用して給湯運転を行うモードのうち、冷房運転による排熱が給湯運転による吸熱より小さい場合に行われる運転モードである。この運転モードNo.2−2は、冷房運転による排熱が給湯運転による吸熱より小さい場合に行われるモードであるため、空調用熱源側熱交換器24を使用しなくても済む。そのため、空調用熱源側熱交換器24の前後の二方弁35c、35dは閉じて、空調用冷媒が空調用熱源側熱交換器24内を流れないようにしている。
“Operation mode No. 2-2 <Hot-water supply operation using cooling exhaust heat>” (see FIG. 4)
Operation mode No. 2-2 is an operation mode performed when the exhaust heat by the cooling operation is smaller than the heat absorption by the hot water operation among the modes in which the hot water operation is performed using the exhaust heat by the cooling operation. This operation mode No. 2-2 is a mode that is performed when the exhaust heat due to the cooling operation is smaller than the heat absorption due to the hot water supply operation, and thus it is not necessary to use the heat source side heat exchanger 24 for air conditioning. Therefore, the two-way valves 35c and 35d before and after the air-conditioning heat source side heat exchanger 24 are closed to prevent the air-conditioning refrigerant from flowing through the air-conditioning heat source side heat exchanger 24.

空調用冷媒回路5では、空調用圧縮機21の吐出口21bより吐出された高温高圧のガス冷媒は、四方弁22を通って、中間熱交換器23に流入する。中間熱交換器23内を流れる高温高圧のガス冷媒は、給湯用回路6内を流れる給湯用冷媒へ放熱することで凝縮し、液化する。つまり、中間熱交換器23内において、空調用冷媒と給湯用冷媒とによる熱交換が行われるのである。   In the air conditioning refrigerant circuit 5, the high-temperature and high-pressure gas refrigerant discharged from the discharge port 21 b of the air-conditioning compressor 21 passes through the four-way valve 22 and flows into the intermediate heat exchanger 23. The high-temperature and high-pressure gas refrigerant flowing in the intermediate heat exchanger 23 is condensed and liquefied by releasing heat to the hot-water supply refrigerant flowing in the hot-water supply circuit 6. That is, heat exchange between the air conditioning refrigerant and the hot water supply refrigerant is performed in the intermediate heat exchanger 23.

そして、この高圧の冷媒は、所定の開度に調節された空調用膨張弁27で減圧、膨張し、低温低圧の気液二相冷媒となり、空調用利用側熱交換器28に流入する。空調用利用側熱交換器28内を流れる気液二相冷媒は、空調用冷温水循環回路8内を流れる冷水から吸熱して蒸発し、低圧のガス冷媒となる。この低圧のガス冷媒は、四方弁22を通って、空調用圧縮機21の吸込口21aに流入し、空調用圧縮機21により再び圧縮されて高温高圧のガス冷媒となる。   The high-pressure refrigerant is decompressed and expanded by the air-conditioning expansion valve 27 adjusted to a predetermined opening degree, becomes a low-temperature and low-pressure gas-liquid two-phase refrigerant, and flows into the air-conditioning use-side heat exchanger 28. The gas-liquid two-phase refrigerant flowing in the air-conditioning use-side heat exchanger 28 absorbs heat from the cold water flowing in the air-conditioning cold / hot water circulation circuit 8 and evaporates to become a low-pressure gas refrigerant. The low-pressure gas refrigerant passes through the four-way valve 22 and flows into the suction port 21a of the air-conditioning compressor 21, and is compressed again by the air-conditioning compressor 21 to become a high-temperature and high-pressure gas refrigerant.

なお、運転モードNo.2−2では、空調用圧縮機21の前後の三方弁34a、34bにより、空調用圧縮機21をバイパスする第2の空調用冷媒分岐路5cは閉鎖されている。   The operation mode No. In 2-2, the second air conditioning refrigerant branch 5c that bypasses the air conditioning compressor 21 is closed by the three-way valves 34a and 34b before and after the air conditioning compressor 21.

空調用冷温水循環回路8では、空調用利用側熱交換器28を流れる空調用冷媒に放熱した冷水は、空調用冷温水循環ポンプ52を駆動することにより、空調用冷温水配管を通って、室内熱交換器61に流入する。室内熱交換器61では、空調用冷温水循環回路8内の冷水と、住宅60内の高温の空気とで熱交換が行われ、住宅60の空気が冷却される。つまり、住宅60の室内が冷房される。このとき、室内熱交換器61を流れる冷水は、住宅60内の空気から吸熱して昇温される。この昇温された冷水は、空調用冷温水循環ポンプ52により空調用冷温水循環回路8内を循環し、再び空調用利用側熱交換器28を流れる間に空調用冷媒回路5と熱交換を行って、所定温度まで冷却される。   In the air-conditioning cold / hot water circulation circuit 8, the cold water radiated to the air-conditioning refrigerant flowing through the air-conditioning use-side heat exchanger 28 drives the air-conditioning cold / hot water circulation pump 52, passes through the air-conditioning cold / hot water pipe, and passes through the indoor heat. It flows into the exchanger 61. In the indoor heat exchanger 61, heat exchange is performed between the cold water in the cold / hot water circulation circuit 8 for air conditioning and the high-temperature air in the house 60, and the air in the house 60 is cooled. That is, the room of the house 60 is cooled. At this time, the cold water flowing through the indoor heat exchanger 61 absorbs heat from the air in the house 60 and is heated. The raised cold water is circulated in the air conditioning cold / hot water circulation circuit 8 by the air conditioning cold / hot water circulation pump 52 and exchanges heat with the air conditioning refrigerant circuit 5 while flowing through the air conditioning use-side heat exchanger 28 again. And cooled to a predetermined temperature.

一方、給湯用冷媒回路6では、給湯用圧縮機41で圧縮され高温高圧となったガス冷媒は、給湯用利用側熱交換器42に流入する。給湯用利用側熱交換器42内を流れる高温高圧のガス冷媒は、給湯回路9内を流れる水へ放熱して凝縮し、液化する。このとき、給湯回路9では、給湯用利用側熱交換器42で給湯用冷媒回路6から温熱を受け取ることにより、供給された水が所定温度の湯となる。そして、液化した高圧の冷媒は、給湯用膨張弁43で減圧、膨張して、低温低圧の気液二相冷媒となる。この気液二相冷媒は、給湯用熱源側熱交換器44と中間熱交換器23に分かれて流入する。つまり、ガス冷媒は、給湯用冷媒主回路6aと給湯用冷媒分岐路6bとに分岐して流れていく。給湯用熱源側熱交換器44内を流れる気液二相冷媒は、大気から吸熱して蒸発し、低圧のガス冷媒となる。   On the other hand, in the hot water supply refrigerant circuit 6, the gas refrigerant compressed to a high temperature and high pressure by the hot water supply compressor 41 flows into the hot water use side heat exchanger 42. The high-temperature and high-pressure gas refrigerant flowing in the hot water use side heat exchanger 42 dissipates heat to the water flowing in the hot water supply circuit 9 and condenses and liquefies. At this time, in the hot water supply circuit 9, the supplied water becomes hot water at a predetermined temperature by receiving warm heat from the hot water supply refrigerant circuit 6 by the hot water supply use side heat exchanger 42. The liquefied high-pressure refrigerant is decompressed and expanded by the hot water supply expansion valve 43 to become a low-temperature low-pressure gas-liquid two-phase refrigerant. This gas-liquid two-phase refrigerant flows into the hot water supply heat source side heat exchanger 44 and the intermediate heat exchanger 23 separately. That is, the gas refrigerant branches and flows into the hot water supply refrigerant main circuit 6a and the hot water supply refrigerant branch 6b. The gas-liquid two-phase refrigerant flowing in the hot water supply heat source side heat exchanger 44 absorbs heat from the atmosphere and evaporates to become a low-pressure gas refrigerant.

一方、中間熱交換器23内を流れる気液二相冷媒は、空調用回路5内を流れる空調用冷媒から吸熱して蒸発し、低圧のガス冷媒となる。つまり、中間熱交換器23内において、空調用冷媒と給湯用冷媒とによる熱交換が行われるのである。給湯用熱源側熱交換器44および中間熱交換器23からそれぞれ流出した低圧のガス冷媒は、給湯用圧縮機41の吸込口41aに流入し、給湯用圧縮機41により再び圧縮されて高温高圧のガス冷媒となる。この運転モードNo.2−2では、給湯用冷媒回路6における中間熱交換器23は、空調用冷媒回路5の排熱を利用した蒸発器として機能することとなる。   On the other hand, the gas-liquid two-phase refrigerant flowing in the intermediate heat exchanger 23 absorbs heat from the air-conditioning refrigerant flowing in the air-conditioning circuit 5 and evaporates to become a low-pressure gas refrigerant. That is, heat exchange between the air conditioning refrigerant and the hot water supply refrigerant is performed in the intermediate heat exchanger 23. The low-pressure gas refrigerant that has flowed out of the hot water supply heat source side heat exchanger 44 and the intermediate heat exchanger 23 flows into the suction port 41a of the hot water supply compressor 41, and is compressed again by the hot water supply compressor 41 so as to have a high temperature and high pressure. It becomes a gas refrigerant. This operation mode No. In 2-2, the intermediate heat exchanger 23 in the hot water supply refrigerant circuit 6 functions as an evaporator using the exhaust heat of the air conditioning refrigerant circuit 5.

この運転モードNo.2−2では、空調用冷媒回路5の冷房運転で生じた空調排熱を給湯用冷媒回路6へ放熱することができるため、空調排熱を外気に放熱するのに比べて、空調サイクルの凝縮圧力を下げることができるため、空調用圧縮機21の入力を低減することができる。よって、運転モードNo.2−2では、空調用圧縮機21の消費電力を低減することができる。さらに、運転モードNo.2−2では、空調用熱源側熱交換器24のファンを停止することができることからも、空調サイクルの運転に掛かる消費電力は低減する。   This operation mode No. In 2-2, since the air-conditioning exhaust heat generated by the cooling operation of the air-conditioning refrigerant circuit 5 can be radiated to the hot water supply refrigerant circuit 6, the air-conditioning cycle is condensed compared to the case where the air-conditioning exhaust heat is radiated to the outside air. Since the pressure can be lowered, the input of the air conditioning compressor 21 can be reduced. Therefore, the operation mode No. In 2-2, the power consumption of the air conditioning compressor 21 can be reduced. Furthermore, the operation mode No. In 2-2, since the fan of the heat source side heat exchanger 24 for air conditioning can be stopped, the power consumption required for the operation of the air conditioning cycle is reduced.

「運転モードNo.3<暖房/給湯運転>」(図5参照)
運転モードNo.3は、空調用冷媒回路5による暖房運転と、給湯用冷媒回路6による給湯運転とをそれぞれ行うモードである。
“Operation Mode No. 3 <Heating / Hot Water Supply Operation>” (see FIG. 5)
Operation mode No. Reference numeral 3 denotes a mode in which a heating operation by the air conditioning refrigerant circuit 5 and a hot water supply operation by the hot water supply refrigerant circuit 6 are performed.

空調用冷媒回路5では、空調用圧縮機21の吐出口21bより吐出された高温高圧のガス冷媒は、四方弁22を通って、空調用利用側熱交換器28に流入する。空調用利用側熱交換器28内を流れる高温高圧のガス冷媒は、空調用冷温水回路8内を流れる温水へ放熱して凝縮し、液化する。この高圧の冷媒は、所定の開度に調節された空調用膨張弁27で減圧、膨張し、低温低圧の気液二相冷媒となり、空調用熱源側熱交換器24に流入する。空調用熱源側熱交換器24内を流れる気液二相冷媒は、大気から吸熱して蒸発し、低圧のガス冷媒となる。この低圧のガス冷媒は、四方弁22を通って、空調用圧縮機21の吸込口21aに流入し、空調用圧縮機21により再び圧縮されて高温高圧のガス冷媒となる。   In the air conditioning refrigerant circuit 5, the high-temperature and high-pressure gas refrigerant discharged from the discharge port 21 b of the air-conditioning compressor 21 flows into the air-conditioning use-side heat exchanger 28 through the four-way valve 22. The high-temperature and high-pressure gas refrigerant flowing in the air-conditioning use-side heat exchanger 28 dissipates heat to the hot water flowing in the air-conditioning cold / hot water circuit 8 and condenses and liquefies. The high-pressure refrigerant is decompressed and expanded by the air conditioning expansion valve 27 adjusted to a predetermined opening degree, becomes a low-temperature and low-pressure gas-liquid two-phase refrigerant, and flows into the air-conditioning heat source side heat exchanger 24. The gas-liquid two-phase refrigerant flowing in the air-conditioning heat source side heat exchanger 24 absorbs heat from the atmosphere and evaporates to become a low-pressure gas refrigerant. The low-pressure gas refrigerant passes through the four-way valve 22 and flows into the suction port 21a of the air-conditioning compressor 21, and is compressed again by the air-conditioning compressor 21 to become a high-temperature and high-pressure gas refrigerant.

なお、運転モードNo.3では、中間熱交換器23の前後の二方弁35a、35bは閉じており、空調用冷媒が中間熱交換器23内を流れないようになっている。また、空調用圧縮機21の前後の三方弁34a、34bにより、空調用圧縮機21をバイパスする第2の空調用冷媒分岐路5cは閉鎖されている。   The operation mode No. 3, the two-way valves 35 a and 35 b before and after the intermediate heat exchanger 23 are closed so that the air-conditioning refrigerant does not flow through the intermediate heat exchanger 23. The second air conditioning refrigerant branch 5c that bypasses the air conditioning compressor 21 is closed by the three-way valves 34a and 34b before and after the air conditioning compressor 21.

空調用冷温水循環回路8では、空調用利用側熱交換器28を流れる空調用冷媒から吸熱した温水は、空調用冷温水循環ポンプ52を駆動することにより、空調用冷温水配管を通って、室内熱交換器61に流入する。室内熱交換器61では、空調用冷温水循環回路8内の温水と、住宅60内の低温の空気とで熱交換が行われ、住宅60の空気が加熱される。つまり、住宅60の室内が暖房される。このとき、室内熱交換器61を流れる温水は、住宅60内の空気へ放熱して冷却される。この冷却された温水は、空調用冷温水循環ポンプ52により空調用冷温水循環回路8内を循環し、再び空調用利用側熱交換器28を流れる間に空調用冷媒回路5と熱交換を行って、所定温度まで昇温される。   In the air-conditioning cold / hot water circulation circuit 8, the hot water absorbed from the air-conditioning refrigerant flowing through the air-conditioning use-side heat exchanger 28 drives the air-conditioning cold / hot water circulation pump 52, passes through the air-conditioning cold / hot water pipe, and passes through the indoor heat. It flows into the exchanger 61. In the indoor heat exchanger 61, heat exchange is performed between the hot water in the cold / hot water circulation circuit 8 for air conditioning and the low-temperature air in the house 60, and the air in the house 60 is heated. That is, the room of the house 60 is heated. At this time, the hot water flowing through the indoor heat exchanger 61 is cooled by releasing heat to the air in the house 60. The cooled hot water is circulated in the air conditioning cold / hot water circulation circuit 8 by the air conditioning cold / hot water circulation pump 52 and exchanges heat with the air conditioning refrigerant circuit 5 while flowing through the air conditioning use-side heat exchanger 28 again. The temperature is raised to a predetermined temperature.

一方、給湯用冷媒回路6では、給湯用圧縮機41で圧縮され高温高圧となったガス冷媒は、給湯用利用側熱交換器42に流入する。給湯用利用側熱交換器42内を流れる高温高圧のガス冷媒は、給湯回路9内を流れる水へ放熱して凝縮し、液化する。このとき、給湯回路9では、給湯用利用側熱交換器42で給湯用冷媒回路6から温熱を受け取ることにより、供給された水が所定温度の湯となる。そして、液化した高圧の冷媒は、所定の開度に調節された給湯用膨張弁43で減圧、膨張して、低温低圧の気液二相冷媒となる。この気液二相冷媒は、給湯用熱源側熱交換器44を流れる間に、大気から吸熱して蒸発し、低圧のガス冷媒となる。この低圧のガス冷媒は、給湯用圧縮機41の吸込口41aに流入し、給湯用圧縮機41により再び圧縮されて高温高圧のガス冷媒となる。   On the other hand, in the hot water supply refrigerant circuit 6, the gas refrigerant compressed to a high temperature and high pressure by the hot water supply compressor 41 flows into the hot water use side heat exchanger 42. The high-temperature and high-pressure gas refrigerant flowing in the hot water use side heat exchanger 42 dissipates heat to the water flowing in the hot water supply circuit 9 and condenses and liquefies. At this time, in the hot water supply circuit 9, the supplied water becomes hot water at a predetermined temperature by receiving warm heat from the hot water supply refrigerant circuit 6 by the hot water supply use side heat exchanger 42. The liquefied high-pressure refrigerant is decompressed and expanded by the hot water supply expansion valve 43 adjusted to a predetermined opening degree, and becomes a low-temperature and low-pressure gas-liquid two-phase refrigerant. This gas-liquid two-phase refrigerant absorbs heat from the atmosphere and evaporates while flowing through the hot water supply heat source side heat exchanger 44 to become a low-pressure gas refrigerant. This low-pressure gas refrigerant flows into the suction port 41a of the hot water supply compressor 41 and is compressed again by the hot water supply compressor 41 to become a high-temperature high-pressure gas refrigerant.

なお、運転モードNo.3では、中間熱交換器23の上流側の二方弁49bは閉じており、給湯用冷媒が中間熱交換器23内を流れないようになっている。   The operation mode No. 3, the two-way valve 49 b on the upstream side of the intermediate heat exchanger 23 is closed so that the hot water supply refrigerant does not flow through the intermediate heat exchanger 23.

「運転モードNo.4−1<給湯サイクルを利用した空調側自然循環運転>」(図6参照)
運転モードNo.4−1は、給湯用冷媒回路6による給湯運転を行いながら空調用冷媒回路5内の空調用冷媒を自然循環させて冷房運転を行う運転モードのうち、冷房運転による排熱が給湯運転による吸熱より大きい場合に行われる運転モードである。この運転モードNo.4−1は、冷房運転による排熱が給湯運転による吸熱より大きい場合に行われるモードであるため、給湯用熱源側熱交換器44を使用しなくても済む。そのため、給湯用熱源側熱交換器44の上流側の二方弁49aは閉じて、給湯用冷媒が給湯用熱源側熱交換器44内を流れないようにしている。
“Operation mode No. 4-1 <Air-conditioning side natural circulation operation using hot water supply cycle>” (see FIG. 6)
Operation mode No. 4-1 is an operation mode in which the cooling operation is performed by naturally circulating the air-conditioning refrigerant in the air-conditioning refrigerant circuit 5 while performing the hot-water supply operation by the hot-water supply refrigerant circuit 6, and the exhaust heat from the cooling operation is the heat absorption by the hot-water supply operation. This is an operation mode performed when the value is larger. This operation mode No. Since 4-1 is a mode performed when the exhaust heat by the cooling operation is larger than the heat absorption by the hot water supply operation, the hot water supply heat source side heat exchanger 44 need not be used. Therefore, the two-way valve 49a on the upstream side of the hot water supply heat source side heat exchanger 44 is closed to prevent the hot water supply refrigerant from flowing through the hot water supply heat source side heat exchanger 44.

この運転モードNo.4−1では、空調用圧縮機21が停止しており、空調用圧縮機21の前後の三方弁34a、34bにより、空調用圧縮機21をバイパスする第2の空調用冷媒分岐路5cが開放され、空調用圧縮機21を経由する経路(図6において点線で示す経路)が閉鎖されている。そのため、空調用冷媒は、空調用圧縮機21をバイパスして空調用冷媒回路5内を循環する。なお、運転モードNo.4−1では、中間熱交換器23の前後の二方弁35a、35bは開いている。なお、空調用膨張弁27は、空調用利用側熱交換器28で得たい交換熱量に応じて所定の開度に調整されている。   This operation mode No. In 4-1, the air conditioning compressor 21 is stopped, and the second air conditioning refrigerant branch 5c that bypasses the air conditioning compressor 21 is opened by the three-way valves 34a and 34b before and after the air conditioning compressor 21. Thus, the route (route indicated by the dotted line in FIG. 6) passing through the air conditioning compressor 21 is closed. Therefore, the air conditioning refrigerant circulates in the air conditioning refrigerant circuit 5 bypassing the air conditioning compressor 21. The operation mode No. In 4-1, the two-way valves 35a and 35b before and after the intermediate heat exchanger 23 are open. The air conditioning expansion valve 27 is adjusted to a predetermined opening according to the amount of exchange heat desired to be obtained by the air conditioning use-side heat exchanger 28.

中間熱交換器23内に滞留している空調用冷媒は、給湯用冷媒回路6を流れる給湯用冷媒へ放熱して凝縮し、液化する。密度の大きい液冷媒は、重力の影響を受けて下降していき、空調用膨張弁27を通り、空調用利用側熱交換器28を流れる間に空調用冷温水循環回路8内を循環する冷水から吸熱して蒸発し、ガス化する。このとき、冷媒の密度差による圧力勾配ができるため、蒸発した冷媒は、中間熱交換器23に向かって流れていく。空調用熱源側熱交換器24内に滞留している空調用冷媒についても、同様に、大気へ放熱して凝縮し、液化することで、密度差による空調用冷媒回路5内の自然循環が行われることとなる。このように、空調用冷媒回路5には、空調用冷媒が自然循環する自然循環サイクルが形成されているのである。   The air conditioning refrigerant staying in the intermediate heat exchanger 23 dissipates heat to the hot water supply refrigerant flowing through the hot water supply refrigerant circuit 6, condenses, and liquefies. The liquid refrigerant having a high density descends under the influence of gravity, passes through the air conditioning expansion valve 27, and flows from the cold water circulating in the air conditioning cold / hot water circulation circuit 8 while flowing through the air conditioning use side heat exchanger 28. It absorbs heat and evaporates to gasify. At this time, since a pressure gradient due to the density difference of the refrigerant is generated, the evaporated refrigerant flows toward the intermediate heat exchanger 23. Similarly, the air-conditioning refrigerant staying in the heat-source-side heat exchanger 24 for air-conditioning is naturally circulated in the air-conditioning refrigerant circuit 5 due to the density difference by radiating heat to the atmosphere, condensing, and liquefying. Will be. In this manner, the air conditioning refrigerant circuit 5 is formed with a natural circulation cycle in which the air conditioning refrigerant naturally circulates.

空調用冷温水循環回路8では、空調用利用側熱交換器28を流れる空調用冷媒に放熱した冷水は、空調用冷温水循環ポンプ52を駆動することにより、空調用冷温水配管を通って、室内熱交換器61に流入する。室内熱交換器61では、空調用冷温水循環回路8内の冷水と、住宅60内の高温の空気とで熱交換が行われ、住宅60の空気が冷却される。つまり、住宅60の室内が冷房されることとなる。このとき、室内熱交換器61を流れる冷水は、住宅60内の空気から吸熱して昇温される。この昇温された冷水は、空調用冷温水循環ポンプ52により空調用冷温水循環回路8内を循環し、再び空調用利用側熱交換器28を流れる間に空調用冷媒回路5と熱交換を行って、所定温度まで冷却される。   In the air-conditioning cold / hot water circulation circuit 8, the cold water radiated to the air-conditioning refrigerant flowing through the air-conditioning use-side heat exchanger 28 drives the air-conditioning cold / hot water circulation pump 52, passes through the air-conditioning cold / hot water pipe, and passes through the indoor heat. It flows into the exchanger 61. In the indoor heat exchanger 61, heat exchange is performed between the cold water in the cold / hot water circulation circuit 8 for air conditioning and the high-temperature air in the house 60, and the air in the house 60 is cooled. That is, the room of the house 60 is cooled. At this time, the cold water flowing through the indoor heat exchanger 61 absorbs heat from the air in the house 60 and is heated. The raised cold water is circulated in the air conditioning cold / hot water circulation circuit 8 by the air conditioning cold / hot water circulation pump 52 and exchanges heat with the air conditioning refrigerant circuit 5 while flowing through the air conditioning use-side heat exchanger 28 again. And cooled to a predetermined temperature.

一方、給湯用冷媒回路6では、給湯用圧縮機41で圧縮され高温高圧となったガス冷媒は、給湯用利用側熱交換器42に流入する。給湯用利用側熱交換器42内を流れる高温高圧のガス冷媒は、給湯回路9内を流れる水へ放熱して凝縮し、液化する。このとき、給湯回路9では、給湯用利用側熱交換器42で給湯用冷媒回路6から温熱を受け取ることにより、供給された水が所定温度の湯となる。そして、液化した高圧の冷媒は、給湯用膨張弁43で減圧、膨張して、低温低圧の気液二相冷媒となる。この気液二相冷媒は、中間熱交換器23を流れる間に、空調用冷媒から吸熱して蒸発し、低圧のガス冷媒となる。つまり、中間熱交換器23内において、空調用冷媒と給湯用冷媒とによる熱交換が行われるのである。この低圧のガス冷媒は、給湯用圧縮機41の吸込口41aに流入し、給湯用圧縮機41により再び圧縮されて高温高圧のガス冷媒となる。この運転モードでは、給湯用冷媒回路6における中間熱交換器23は、空調用冷媒回路5を自然循環する空調用冷媒の熱を利用した蒸発器として機能することとなる。   On the other hand, in the hot water supply refrigerant circuit 6, the gas refrigerant compressed to a high temperature and high pressure by the hot water supply compressor 41 flows into the hot water use side heat exchanger 42. The high-temperature and high-pressure gas refrigerant flowing in the hot water use side heat exchanger 42 dissipates heat to the water flowing in the hot water supply circuit 9 and condenses and liquefies. At this time, in the hot water supply circuit 9, the supplied water becomes hot water at a predetermined temperature by receiving warm heat from the hot water supply refrigerant circuit 6 by the hot water supply use side heat exchanger 42. The liquefied high-pressure refrigerant is decompressed and expanded by the hot water supply expansion valve 43 to become a low-temperature low-pressure gas-liquid two-phase refrigerant. This gas-liquid two-phase refrigerant absorbs heat from the air-conditioning refrigerant while flowing through the intermediate heat exchanger 23 and evaporates to become a low-pressure gas refrigerant. That is, heat exchange between the air conditioning refrigerant and the hot water supply refrigerant is performed in the intermediate heat exchanger 23. This low-pressure gas refrigerant flows into the suction port 41a of the hot water supply compressor 41 and is compressed again by the hot water supply compressor 41 to become a high-temperature high-pressure gas refrigerant. In this operation mode, the intermediate heat exchanger 23 in the hot water supply refrigerant circuit 6 functions as an evaporator using the heat of the air conditioning refrigerant that naturally circulates in the air conditioning refrigerant circuit 5.

この運転モードNo.4−1では、空調用圧縮機21を運転することなく、空調用冷媒を自然循環させて、住宅60内を冷房できるので、消費電力を大幅に低減できる。   This operation mode No. In 4-1, since the air-conditioning refrigerant can be naturally circulated and the house 60 can be cooled without operating the air-conditioning compressor 21, the power consumption can be greatly reduced.

ここで、住宅60内を効率よく冷房するためには、空調用冷媒の自然循環が連続して行われていかなければならないが、外気温度と住宅60内の温度(室内温度)との差が小さい場合には、冷媒の密度差が小さくなり、自然循環による運転を安定して行うことが難しくなってしまう。しかし、運転モードNo.4−1では、給湯用冷媒回路6による給湯運転が行われているため、中間熱交換器23内に滞留している空調用冷媒は、中間熱交換器23内を流れる給湯用冷媒によって強制的に熱を奪われるため、凝縮して液化し易くなる。つまり、給湯運転で得た給湯用冷媒の熱(冷熱)により、空調用冷媒の自然循環がアシストされるのである。そのため、空調用冷媒の自然循環による冷房の効率は良くなり、住宅60内は快適なものとなる。   Here, in order to efficiently cool the interior of the house 60, the natural circulation of the air-conditioning refrigerant must be continuously performed. However, there is a difference between the outside air temperature and the temperature in the house 60 (indoor temperature). If it is small, the density difference between the refrigerants becomes small, and it becomes difficult to stably operate by natural circulation. However, the operation mode No. 4-1, since the hot water supply operation by the hot water supply refrigerant circuit 6 is performed, the air conditioning refrigerant staying in the intermediate heat exchanger 23 is forced by the hot water supply refrigerant flowing in the intermediate heat exchanger 23. Since heat is taken away, it is easy to condense and liquefy. That is, the natural circulation of the air-conditioning refrigerant is assisted by the heat (cold heat) of the hot-water supply refrigerant obtained in the hot water supply operation. Therefore, the efficiency of cooling by natural circulation of the air-conditioning refrigerant is improved, and the interior of the house 60 becomes comfortable.

「運転モードNo.4−2<給湯サイクルを利用した空調側自然循環運転>」(図7参照)
運転モードNo.4−2は、給湯用冷媒回路6による給湯運転を行いながら空調用冷媒回路5内の空調用冷媒を自然循環させて冷房運転を行うモードのうち、冷房運転による排熱が給湯運転による吸熱より小さい場合に行われる運転モードである。この運転モードNo.4−2は、冷房運転による排熱が給湯運転による吸熱より小さい場合に行われるモードであるため、空調用熱源側熱交換器24を使用しなくても済む。そのため、空調用熱源側熱交換器44の前後の二方弁35c、35dを閉じて、空調用冷媒が空調用熱源側熱交換器24内を流れないようにしている。
“Operation mode No. 4-2 <Air-conditioning side natural circulation operation using hot water supply cycle>” (see FIG. 7)
Operation mode No. 4-2 is a mode in which the cooling operation is performed by naturally circulating the air-conditioning refrigerant in the air-conditioning refrigerant circuit 5 while performing the hot-water supply operation by the hot-water supply refrigerant circuit 6, and the exhaust heat from the cooling operation is more than the heat absorption by the hot-water supply operation. This is an operation mode performed when the size is small. This operation mode No. 4-2 is a mode performed when the exhaust heat by the cooling operation is smaller than the heat absorption by the hot water supply operation, and therefore it is not necessary to use the heat source side heat exchanger 24 for air conditioning. Therefore, the two-way valves 35c and 35d before and after the air-conditioning heat source side heat exchanger 44 are closed so that the air-conditioning refrigerant does not flow through the air-conditioning heat source side heat exchanger 24.

この運転モードNo.4−2では、空調用圧縮機21が停止しており、空調用圧縮機21の前後の三方弁34a、34bにより、空調用圧縮機21をバイパスする第2の空調用冷媒分岐路5cが開放され、空調用圧縮機21を経由する経路(図7において点線で示す経路)が閉鎖されている。そのため、空調用冷媒は、空調用圧縮機21をバイパスして空調用冷媒回路5内を循環する。なお、空調用膨張弁27は、空調用利用側熱交換器28で得たい交換熱量に応じて所定の開度に調整されている。   This operation mode No. In 4-2, the air conditioning compressor 21 is stopped, and the second air conditioning refrigerant branch 5c that bypasses the air conditioning compressor 21 is opened by the three-way valves 34a and 34b before and after the air conditioning compressor 21. Thus, a route (route indicated by a dotted line in FIG. 7) passing through the air conditioning compressor 21 is closed. Therefore, the air conditioning refrigerant circulates in the air conditioning refrigerant circuit 5 bypassing the air conditioning compressor 21. The air conditioning expansion valve 27 is adjusted to a predetermined opening according to the amount of exchange heat desired to be obtained by the air conditioning use-side heat exchanger 28.

中間熱交換器23内に滞留している空調用冷媒は、給湯用冷媒回路6を流れる給湯用冷媒へ放熱して凝縮し、液化する。密度の大きい液冷媒は、重力の影響を受けて下降していき、空調用膨張弁27を通り、空調用利用側熱交換器28を流れる間に空調用冷温水循環回路8内を循環する冷水から吸熱して蒸発し、ガス化する。このとき、冷媒の密度差による圧力勾配ができるため、蒸発した冷媒は、中間熱交換器23に向かって流れていく。このように、空調用冷媒回路5は、空調用冷媒が自然循環する自然循環サイクルが形成されているのである。   The air conditioning refrigerant staying in the intermediate heat exchanger 23 dissipates heat to the hot water supply refrigerant flowing through the hot water supply refrigerant circuit 6, condenses, and liquefies. The liquid refrigerant having a high density descends under the influence of gravity, passes through the air conditioning expansion valve 27, and flows from the cold water circulating in the air conditioning cold / hot water circulation circuit 8 while flowing through the air conditioning use side heat exchanger 28. It absorbs heat and evaporates to gasify. At this time, since a pressure gradient due to the density difference of the refrigerant is generated, the evaporated refrigerant flows toward the intermediate heat exchanger 23. Thus, the air-conditioning refrigerant circuit 5 has a natural circulation cycle in which the air-conditioning refrigerant circulates naturally.

空調用冷温水循環回路8では、空調用利用側熱交換器28を流れる空調用冷媒に放熱した冷水は、空調用冷温水循環ポンプ52を駆動することにより、空調用冷温水配管を通って、室内熱交換器61に流入する。室内熱交換器61では、空調用冷温水循環回路8内の冷水と、住宅60内の高温の空気とで熱交換が行われ、住宅60の空気が冷却される。つまり、住宅60の室内が冷房されることとなる。このとき、室内熱交換器61を流れる冷水は、住宅60内の空気から吸熱して昇温される。この昇温された冷水は、空調用冷温水循環ポンプ52により空調用冷温水循環回路8内を循環し、再び空調用利用側熱交換器28を流れる間に空調用冷媒回路5と熱交換を行って、所定温度まで冷却される。   In the air-conditioning cold / hot water circulation circuit 8, the cold water radiated to the air-conditioning refrigerant flowing through the air-conditioning use-side heat exchanger 28 drives the air-conditioning cold / hot water circulation pump 52, passes through the air-conditioning cold / hot water pipe, and passes through the indoor heat. It flows into the exchanger 61. In the indoor heat exchanger 61, heat exchange is performed between the cold water in the cold / hot water circulation circuit 8 for air conditioning and the high-temperature air in the house 60, and the air in the house 60 is cooled. That is, the room of the house 60 is cooled. At this time, the cold water flowing through the indoor heat exchanger 61 absorbs heat from the air in the house 60 and is heated. The raised cold water is circulated in the air conditioning cold / hot water circulation circuit 8 by the air conditioning cold / hot water circulation pump 52 and exchanges heat with the air conditioning refrigerant circuit 5 while flowing through the air conditioning use-side heat exchanger 28 again. And cooled to a predetermined temperature.

一方、給湯用冷媒回路6では、給湯用圧縮機41で圧縮され高温高圧となったガス冷媒は、給湯用利用側熱交換器42に流入する。給湯用利用側熱交換器42内を流れる高温高圧のガス冷媒は、給湯回路9内を流れる水へ放熱して凝縮し、液化する。このとき、給湯回路9では、給湯用利用側熱交換器42で給湯用冷媒回路6から温熱を受け取ることにより、供給された水が所定温度の湯となる。そして、液化した高圧の冷媒は、給湯用膨張弁43で減圧、膨張して、低温低圧の気液二相冷媒となる。この気液二相冷媒は、中間熱交換器23と給湯用熱源側熱交換器44とに分かれて流れていく。   On the other hand, in the hot water supply refrigerant circuit 6, the gas refrigerant compressed to a high temperature and high pressure by the hot water supply compressor 41 flows into the hot water use side heat exchanger 42. The high-temperature and high-pressure gas refrigerant flowing in the hot water use side heat exchanger 42 dissipates heat to the water flowing in the hot water supply circuit 9 and condenses and liquefies. At this time, in the hot water supply circuit 9, the supplied water becomes hot water at a predetermined temperature by receiving warm heat from the hot water supply refrigerant circuit 6 by the hot water supply use side heat exchanger 42. The liquefied high-pressure refrigerant is decompressed and expanded by the hot water supply expansion valve 43 to become a low-temperature low-pressure gas-liquid two-phase refrigerant. This gas-liquid two-phase refrigerant flows separately into the intermediate heat exchanger 23 and the hot water supply heat source side heat exchanger 44.

中間熱交換器23を流れた気液二相冷媒は、空調用冷媒から吸熱して蒸発し、低圧のガス冷媒となる。つまり、中間熱交換器23内において、空調用冷媒と給湯用冷媒とによる熱交換が行われるのである。また、給湯用熱源側熱交換器44を流れた気液二相冷媒も、大気から吸熱して蒸発し、低圧のガス冷媒となる。   The gas-liquid two-phase refrigerant flowing through the intermediate heat exchanger 23 absorbs heat from the air-conditioning refrigerant and evaporates to become a low-pressure gas refrigerant. That is, heat exchange between the air conditioning refrigerant and the hot water supply refrigerant is performed in the intermediate heat exchanger 23. The gas-liquid two-phase refrigerant that has flowed through the hot water supply heat source side heat exchanger 44 also absorbs heat from the atmosphere and evaporates to become a low-pressure gas refrigerant.

この低圧のガス冷媒は、給湯用圧縮機41の吸込口41aに流入し、給湯用圧縮機41により再び圧縮されて高温高圧のガス冷媒となる。この運転モードでは、給湯用冷媒回路6における中間熱交換器23は、空調用冷媒回路5を自然循環する空調用冷媒の熱を利用した蒸発器として機能することとなる。   This low-pressure gas refrigerant flows into the suction port 41a of the hot water supply compressor 41 and is compressed again by the hot water supply compressor 41 to become a high-temperature high-pressure gas refrigerant. In this operation mode, the intermediate heat exchanger 23 in the hot water supply refrigerant circuit 6 functions as an evaporator using the heat of the air conditioning refrigerant that naturally circulates in the air conditioning refrigerant circuit 5.

この運転モードNo.4−2では、空調用圧縮機21を運転することなく、空調用冷媒を自然循環させて、住宅60内を冷房できるので、消費電力を大幅に低減できる。   This operation mode No. In 4-2, the air-conditioning refrigerant can be naturally circulated and the house 60 can be cooled without operating the air-conditioning compressor 21, so that power consumption can be greatly reduced.

ここで、住宅60内を効率よく冷房するためには、空調用冷媒の自然循環が連続して行われていかなければならないが、外気温度と住宅60内の温度(室内温度)との差が小さい場合には、冷媒の密度差が小さくなり、自然循環による運転を安定して行うことが難しくなってしまう。しかし、運転モードNo.4−2では、給湯用冷媒回路6による給湯運転が行われているため、中間熱交換器23内に滞留している空調用冷媒は、中間熱交換器23内を流れる給湯用冷媒によって強制的に熱を奪われるため、凝縮して液化し易くなる。つまり、給湯運転で得た給湯用冷媒の熱(冷熱)により、空調用冷媒の自然循環がアシストされるのである。そのため、空調用冷媒の自然循環による冷房の効率は良くなり、住宅60内は快適なものとなる。   Here, in order to efficiently cool the interior of the house 60, the natural circulation of the air-conditioning refrigerant must be continuously performed. However, there is a difference between the outside air temperature and the temperature in the house 60 (indoor temperature). If it is small, the density difference between the refrigerants becomes small, and it becomes difficult to stably operate by natural circulation. However, the operation mode No. In 4-2, since the hot water supply operation by the hot water supply refrigerant circuit 6 is performed, the air conditioning refrigerant staying in the intermediate heat exchanger 23 is forced by the hot water supply refrigerant flowing in the intermediate heat exchanger 23. Since heat is taken away, it is easy to condense and liquefy. That is, the natural circulation of the air-conditioning refrigerant is assisted by the heat (cold heat) of the hot-water supply refrigerant obtained in the hot water supply operation. Therefore, the efficiency of cooling by natural circulation of the air-conditioning refrigerant is improved, and the interior of the house 60 becomes comfortable.

また、外気温度が住宅60内の露点温度以上である場合には、空調用冷媒を大気と熱交換させて空調冷媒回路5内を自然循環させるのみでは、住宅60内の空気を冷却除湿することは不可能である。しかしながら、運転モードNo.4−2では、給湯用膨張弁43の弁開度を調整して、中間熱交換器23を流れる給湯用冷媒の温度を任意に調整できるので、中間熱交換器23を介して熱交換される空調用冷媒回路5内の空調用冷媒の温度を所望の温度(住宅60内の露点温度以下となる温度)に調整することができる。よって、外気温度が住宅60内の露点温度以上の環境下においても、住宅60内の空気を自然循環サイクルによって冷却除湿することができるのである。   Further, when the outside air temperature is equal to or higher than the dew point temperature in the house 60, the air in the house 60 is cooled and dehumidified only by allowing the air-conditioning refrigerant to exchange heat with the atmosphere and naturally circulating in the air-conditioning refrigerant circuit 5. Is impossible. However, the operation mode No. In 4-2, the temperature of the hot water supply refrigerant flowing through the intermediate heat exchanger 23 can be arbitrarily adjusted by adjusting the valve opening degree of the hot water supply expansion valve 43, so that heat is exchanged via the intermediate heat exchanger 23. The temperature of the air-conditioning refrigerant in the air-conditioning refrigerant circuit 5 can be adjusted to a desired temperature (a temperature that is not higher than the dew point temperature in the house 60). Therefore, even in an environment where the outside air temperature is equal to or higher than the dew point temperature in the house 60, the air in the house 60 can be cooled and dehumidified by the natural circulation cycle.

「運転モードNo.5<外気利用自然循環運転>」(図8参照)
運転モードNo.5は、給湯用冷媒回路6による給湯運転を行いながら、外気を利用して空調用冷媒回路5内の空調用冷媒を自然循環させて冷房運転を行う運転モードである。この運転モードNo.5では、中間熱交換器23を用いないため、二方弁35a、35b、49bを閉じて、空調用冷媒および給湯用冷媒が中間熱交換器23内を流れないようにしている。
“Operation mode No. 5 <natural circulation operation using outside air>” (see FIG. 8)
Operation mode No. Reference numeral 5 denotes an operation mode in which the cooling operation is performed by naturally circulating the air-conditioning refrigerant in the air-conditioning refrigerant circuit 5 using the outside air while performing the hot-water supply operation by the hot-water supply refrigerant circuit 6. This operation mode No. 5, since the intermediate heat exchanger 23 is not used, the two-way valves 35 a, 35 b, and 49 b are closed so that the air conditioning refrigerant and the hot water supply refrigerant do not flow through the intermediate heat exchanger 23.

この運転モードNo.5では、空調用圧縮機21が停止しており、空調用圧縮機21の前後の三方弁34a、34bにより、空調用圧縮機21をバイパスする第2の空調用冷媒分岐路5cが開放され、空調用圧縮機21を経由する経路(図8において点線で示す経路)が閉鎖されている。そのため、空調用冷媒は、空調用圧縮機21をバイパスして空調用冷媒回路5内を循環する。なお、空調用膨張弁27は、空調用利用側熱交換器28で得たい交換熱量に応じて所定の開度に調整されている。   This operation mode No. 5, the air-conditioning compressor 21 is stopped, and the second air-conditioning refrigerant branch 5 c that bypasses the air-conditioning compressor 21 is opened by the three-way valves 34 a and 34 b before and after the air-conditioning compressor 21. A route (route indicated by a dotted line in FIG. 8) passing through the air conditioning compressor 21 is closed. Therefore, the air conditioning refrigerant circulates in the air conditioning refrigerant circuit 5 bypassing the air conditioning compressor 21. The air conditioning expansion valve 27 is adjusted to a predetermined opening according to the amount of exchange heat desired to be obtained by the air conditioning use-side heat exchanger 28.

空調用熱源側熱交換器24内に滞留している空調用冷媒は、外気へ放熱して凝縮し、液化する。密度の大きい液冷媒は、重力の影響を受けて下降していき、空調用膨張弁27を通り、空調用利用側熱交換器28を流れる間に空調用冷温水循環回路8内を循環する冷水から吸熱して蒸発し、ガス化する。このとき、冷媒の密度差による圧力勾配ができるため、蒸発した冷媒は、空調用熱源側熱交換器24に向かって流れていく。このように、空調用冷媒回路5は、空調用冷媒が自然循環する自然循環サイクルが形成されているのである。   The air-conditioning refrigerant staying in the air-conditioning heat source side heat exchanger 24 dissipates heat to the outside air, condenses, and liquefies. The liquid refrigerant having a high density descends under the influence of gravity, passes through the air conditioning expansion valve 27, and flows from the cold water circulating in the air conditioning cold / hot water circulation circuit 8 while flowing through the air conditioning use side heat exchanger 28. It absorbs heat and evaporates to gasify. At this time, since a pressure gradient is generated due to the difference in density of the refrigerant, the evaporated refrigerant flows toward the heat source side heat exchanger 24 for air conditioning. Thus, the air-conditioning refrigerant circuit 5 has a natural circulation cycle in which the air-conditioning refrigerant circulates naturally.

空調用冷温水循環回路8では、空調用利用側熱交換器28を流れる空調用冷媒に放熱した冷水は、空調用冷温水循環ポンプ52を駆動することにより、空調用冷温水配管を通って、室内熱交換器61に流入する。室内熱交換器61では、空調用冷温水循環回路8内の冷水と、住宅60内の高温の空気とで熱交換が行われ、住宅60の空気が冷却される。つまり、住宅60の室内が冷房されることとなる。このとき、室内熱交換器61を流れる冷水は、住宅60内の空気から吸熱して昇温される。この昇温された冷水は、空調用冷温水循環ポンプ52により空調用冷温水循環回路8内を循環し、再び空調用利用側熱交換器28を流れる間に空調用冷媒回路5と熱交換を行って、所定温度まで冷却される。   In the air-conditioning cold / hot water circulation circuit 8, the cold water radiated to the air-conditioning refrigerant flowing through the air-conditioning use-side heat exchanger 28 drives the air-conditioning cold / hot water circulation pump 52, passes through the air-conditioning cold / hot water pipe, and passes through the indoor heat. It flows into the exchanger 61. In the indoor heat exchanger 61, heat exchange is performed between the cold water in the cold / hot water circulation circuit 8 for air conditioning and the high-temperature air in the house 60, and the air in the house 60 is cooled. That is, the room of the house 60 is cooled. At this time, the cold water flowing through the indoor heat exchanger 61 absorbs heat from the air in the house 60 and is heated. The raised cold water is circulated in the air conditioning cold / hot water circulation circuit 8 by the air conditioning cold / hot water circulation pump 52 and exchanges heat with the air conditioning refrigerant circuit 5 while flowing through the air conditioning use-side heat exchanger 28 again. And cooled to a predetermined temperature.

一方、給湯用冷媒回路6では、給湯用圧縮機41で圧縮され高温高圧となったガス冷媒は、給湯用利用側熱交換器42に流入する。給湯用利用側熱交換器42内を流れる高温高圧のガス冷媒は、給湯回路9内を流れる水へ放熱して凝縮し、液化する。このとき、給湯回路9では、給湯用利用側熱交換器42で給湯用冷媒回路6から温熱を受け取ることにより、供給された水が所定温度の湯となる。そして、液化した高圧の冷媒は、給湯用膨張弁43で減圧、膨張して、低温低圧の気液二相冷媒となる。この気液二相冷媒は、給湯用熱源側熱交換器44へ流れていき、大気から吸熱して蒸発し、低圧のガス冷媒となる。この低圧のガス冷媒は、給湯用圧縮機41の吸込口41aに流入し、給湯用圧縮機41により再び圧縮されて高温高圧のガス冷媒となる。   On the other hand, in the hot water supply refrigerant circuit 6, the gas refrigerant compressed to a high temperature and high pressure by the hot water supply compressor 41 flows into the hot water use side heat exchanger 42. The high-temperature and high-pressure gas refrigerant flowing in the hot water use side heat exchanger 42 dissipates heat to the water flowing in the hot water supply circuit 9 and condenses and liquefies. At this time, in the hot water supply circuit 9, the supplied water becomes hot water at a predetermined temperature by receiving warm heat from the hot water supply refrigerant circuit 6 by the hot water supply use side heat exchanger 42. The liquefied high-pressure refrigerant is decompressed and expanded by the hot water supply expansion valve 43 to become a low-temperature low-pressure gas-liquid two-phase refrigerant. This gas-liquid two-phase refrigerant flows into the hot water supply heat source side heat exchanger 44, absorbs heat from the atmosphere and evaporates, and becomes a low-pressure gas refrigerant. This low-pressure gas refrigerant flows into the suction port 41a of the hot water supply compressor 41 and is compressed again by the hot water supply compressor 41 to become a high-temperature high-pressure gas refrigerant.

この運転モードNo.5では、空調用圧縮機21を運転することなく、空調用冷媒を自然循環させて、住宅60内を冷房できるので、消費電力を大幅に低減できる。   This operation mode No. 5, the air conditioning refrigerant can be naturally circulated and the house 60 can be cooled without operating the air conditioning compressor 21, so that power consumption can be greatly reduced.

次に、制御装置1aが行う空調給湯システムの制御について図9を用いて説明する。制御装置1aは、リモコンからの指令信号、温度センサTE1〜TE8の検知信号、外気温度センサの検知信号などの入力信号に基づいて算出された結果が、上記した各種運転モードNo.1〜No.5のそれぞれに予め設定された運転モードの選択条件の何れを満たすかを判定し、その判定結果に応じた運転モードを選択して運転を行うように制御している。   Next, control of the air conditioning and hot water supply system performed by the control device 1a will be described with reference to FIG. The control device 1a calculates the result of calculation based on the input signals such as the command signal from the remote control, the detection signals of the temperature sensors TE1 to TE8, the detection signal of the outside air temperature sensor, and the like in the various operation mode Nos. 1-No. It is determined which of the operation mode selection conditions set in advance for each of 5 is satisfied, and the operation mode corresponding to the determination result is selected to perform the operation.

この第1の実施の形態例では、運転モードを選択するために必要なパラメータとして、設定室温(Tr_st)、設定湿度(Hr_st)、外気温度(Toa)、冷水入口温度(Twbi)、冷水出口設定温度(Twb_st)、給湯出力(Qhw)、給水温度(Twhi)、出湯温度(Twho)が用いられる。   In the first embodiment, parameters required for selecting an operation mode are set room temperature (Tr_st), set humidity (Hr_st), outside air temperature (Toa), cold water inlet temperature (Twbi), and cold water outlet setting. Temperature (Twb_st), hot water supply output (Qhw), water supply temperature (Twhi), and hot water temperature (Twho) are used.

設定室温(Tr_st)は、利用者がリモコンなどで設定する室内温度である。   The set room temperature (Tr_st) is a room temperature set by a user with a remote controller or the like.

設定湿度(Hr_st)は、利用者がリモコンなどで設定する室内湿度である。   The set humidity (Hr_st) is the room humidity set by the user with a remote controller or the like.

外気温度(Toa)は、室外機で計測される外気の温度である。   The outside air temperature (Toa) is the temperature of the outside air measured by the outdoor unit.

冷水入口温度(Twbi)は、冷温水系統で測定される温度であり、具体的には、空調用冷温水循環回路8の温度センサTE1で測定される温度である。   The cold water inlet temperature (Twbi) is a temperature measured by the cold / hot water system, specifically, a temperature measured by the temperature sensor TE1 of the cold / hot water circulation circuit 8 for air conditioning.

冷水出口設定温度(Twb_st)は、設定室温(Tr_st)と設定湿度(Hr_st)と冷水入口温度(Twbi)とに基づき制御装置1aが決定する温度である。   The cold water outlet set temperature (Twb_st) is a temperature determined by the control device 1a based on the set room temperature (Tr_st), the set humidity (Hr_st), and the cold water inlet temperature (Twbi).

給湯出力(Qhw)は、利用者要求と給水温度(Twhi)から制御装置1aが決定する値である。   The hot water supply output (Qhw) is a value determined by the control device 1a from the user request and the water supply temperature (Twhi).

給水温度(Twhi)は、熱源機給湯系統で測定される温度であり、具体的には、温度センサTE7で測定される温度である。   The water supply temperature (Twhi) is a temperature measured by the heat source machine hot water supply system, specifically, a temperature measured by the temperature sensor TE7.

出湯温度(Twho)は、給湯利用側出口温度(温度センサTE8で測定される温度)の設定値と利用者の要求と空調給湯システム側の仕様とに基づいて決定される温度である。   The hot water temperature (Twho) is a temperature determined based on the set value of the hot water supply side outlet temperature (temperature measured by the temperature sensor TE8), the user's request, and the specifications on the air conditioning hot water supply system side.

制御装置1aは、所定のタイミングで、入力信号に基づき、(a)利用側要求、(b)給湯機運転可否の条件、(c)設定室温Tr_st−関数f1(設定室温Tr_st,設定湿度Hr_st)と外気温度Toaとの差、(d)設定室温Tr_st−関数f2(Tr_st,Hr_st)と外気温度Toaとの差、(e)冷水出口設定温度Twb_stと冷水入口温度Twbiの差、(f)圧縮機運転時間に関する制限、(g)吸熱量−排熱量、即ち、関数f3(Twb_st,Twbi,Toa)−関数f4(Qhw,Twhi,Twho,Toa)を求める。そして、上記(a)〜(g)の結果に応じて、制御装置1aは、運転パターンNo.1〜No.5の何れかを決定する。   The control device 1a, at a predetermined timing, based on the input signal, (a) a request on the use side, (b) a condition regarding whether or not to operate the water heater, (c) a set room temperature Tr_st-function f1 (set room temperature Tr_st, set humidity Hr_st) (D) difference between the set room temperature Tr_st-function f2 (Tr_st, Hr_st) and the outside air temperature Toa, (e) difference between the chilled water outlet set temperature Twb_st and the chilled water inlet temperature Twbi, (f) compression (G) Endothermic amount-exhaust heat amount, that is, function f3 (Twb_st, Twbi, Toa) -function f4 (Qhw, Twhi, Twho, Toa) is obtained. And according to the result of said (a)-(g), the control apparatus 1a is operation pattern No.2. 1-No. 5 is determined.

例えば、図9の示すように、(a)が「冷房運転」、(b)が「利用者の要求=無」、(c)が「<0」、(d)が「<0」、(e)が「>0」の場合には、制御装置1aは、運転モードNo.1を選択する。また、(a)が「冷房運転」、(b)が「利用者の要求=有」、(c)が「<0」、(d)が「>0」、(e)が「ΔT3<」かつ「<ΔT6」、(f)が「空調用圧縮機21停止、または圧縮機2台運転から所定時間Time2経過後」、(g)が「<0」の場合には、制御装置1aは、運転モードNo.4−1を選択する。このようにして、制御装置1aは、条件に応じて好適な運転モードを選択している。また、(a)が「暖房運転」の場合、(b)〜(g)とは関係なく運転モードNo.3を選択する。なお、図9において、Time1、Time2、Time3、ΔT3、ΔT4、ΔT6は、空調給湯システムの仕様などに応じて予め定められた値である。   For example, as shown in FIG. 9, (a) is “cooling operation”, (b) is “user request = none”, (c) is “<0”, (d) is “<0”, ( When “e” is “> 0”, the control device 1a sets the operation mode No. Select 1. Also, (a) is “cooling operation”, (b) is “user request = present”, (c) is “<0”, (d) is “> 0”, and (e) is “ΔT3 <”. In addition, when “<ΔT6”, (f) is “after the predetermined time Time2 has elapsed since the compressor 21 for air conditioning is stopped or two compressors are operating”, and (g) is “<0”, the control device 1a Operation mode No. Select 4-1. In this way, the control device 1a selects a suitable operation mode according to the conditions. When (a) is “heating operation”, the operation mode No. is not related to (b) to (g). Select 3. In FIG. 9, Time1, Time2, Time3, ΔT3, ΔT4, and ΔT6 are values determined in advance according to the specifications of the air conditioning and hot water supply system.

なお、実際に運転モードを切り替える場合は、冷房負荷が時々刻々と変動するため(圧縮機2台−圧縮機1台)の入力差=0を切替点とせず、入力差>x1(x1>0)で給湯側のみ運転、入力差<x2(x2<0)で両サイクル圧縮式運転として切り替えると、運転モードの切り替えが頻繁に生じることを回避できる。   When the operation mode is actually switched, the cooling load fluctuates from moment to moment (2 compressors—1 compressor). Input difference = 0 is not used as a switching point, and input difference> x1 (x1> 0). ), It is possible to avoid frequent switching of operation modes by switching only to the hot water supply side, and switching to a double cycle compression operation with an input difference <x2 (x2 <0).

次に、空調用冷媒回路5を圧縮式サイクルとして用いた運転モードNo.1、No.2−1、No.2−2、No.3における空調用圧縮機21の回転数の制御、空調用膨張弁27の弁開度の制御、および空調用熱源側熱交換器24のファンの回転数の制御について説明する。これらの制御は、制御装置1aによって行われている。   Next, the operation mode No. using the air conditioning refrigerant circuit 5 as a compression cycle is shown. 1, no. 2-1. 2-2, No. 3, control of the rotation speed of the air conditioning compressor 21, control of the valve opening degree of the air conditioning expansion valve 27, and control of the rotation speed of the fan of the heat source side heat exchanger 24 for air conditioning will be described. These controls are performed by the control device 1a.

空調用熱源側熱交換器24のファンは、通常は一定の回転数に制御されている。   The fan of the heat source side heat exchanger 24 for air conditioning is normally controlled at a constant rotational speed.

空調用圧縮機21の回転数制御は、空調用冷温水循環回路8内を循環する水の空調用利用側熱交換器28の出口温度と目標温度(利用者によって設定された室内設定温度に応じて定まる値)の偏差に基づいて行われる。なお、水の空調用利用側熱交換器28の出口温度は、冷房運転では、温度センサTE2で測定された値であり、暖房運転では、温度センサTE1で測定された値である。制御装置1aは、冷房運転において「目標温度−出口温度>0」であれば空調用圧縮機21の回転数を減速にし、「目標温度−出口温度<0」であれば、空調用圧縮機21の回転数を増速にする。暖房運転における制御も冷房運転と同様であり、「目標温度−出口温度>0」であれば空調用圧縮機21の回転数を増速にし、「目標温度−出口温度<0」であれば、空調用圧縮機21の回転数を減速にする。   The number of revolutions of the air conditioning compressor 21 is controlled according to the outlet temperature of the air conditioning use-side heat exchanger 28 circulating in the air conditioning cold / hot water circulation circuit 8 and the target temperature (the indoor set temperature set by the user). This is done based on the deviation of the fixed value. In addition, the outlet temperature of the water-side use-side heat exchanger 28 for water conditioning is a value measured by the temperature sensor TE2 in the cooling operation, and is a value measured by the temperature sensor TE1 in the heating operation. In the cooling operation, the control device 1a decelerates the rotation speed of the air conditioning compressor 21 if “target temperature−outlet temperature> 0”, and the air conditioning compressor 21 if “target temperature−outlet temperature <0”. Increase the rotation speed of. The control in the heating operation is the same as in the cooling operation. If “target temperature−outlet temperature> 0”, the rotational speed of the air conditioning compressor 21 is increased, and if “target temperature−outlet temperature <0”, The rotational speed of the air conditioning compressor 21 is reduced.

空調用膨張弁27の弁開度の制御は、空調用圧縮機21の吸込温度(温度センサTE3で測定された値)、空調用圧縮機21の回転数、および吸熱源温度に基づき行われる。具体的には、制御装置1aは、空調用圧縮機21の吸込における低圧冷媒ガスの過熱度が所定の温度になるように、空調用圧縮機21の回転数、吸熱源温度に基づき決定された吸込温度の目標値と実測値との偏差から膨張弁開度の変化量を決め、空調用膨張弁27を開動作(+パルス)あるいは閉動作(−パルス)させる。ここで,吸熱源温度として、暖房運転では「外気温度」が用いられ、冷房運転では「空調用冷温水循環回路8内を流れる冷水の空調用利用側熱交換器28の入口温度、即ち、TE1で測定された温度」が用いられる。吸込温度の目標値の算出は、予め定められた関数を用いても良いし、空調用圧縮機21の吸込温度、空調用圧縮機21の回転数、および吸熱源温度と吸込温度の目標値とが予め対応付けられたテーブルを用いても良い。なお、空調用圧縮機21の吸込温度に代えて吐出温度(温度センサTE4で測定された値)により制御を行っても良く、吐出温度を用いた場合には、外乱に対して制御目標とする温度が安定して計測される利点がある。   Control of the valve opening degree of the air conditioning expansion valve 27 is performed based on the suction temperature of the air conditioning compressor 21 (value measured by the temperature sensor TE3), the rotational speed of the air conditioning compressor 21, and the heat absorption source temperature. Specifically, the control device 1a is determined based on the rotation speed of the air conditioning compressor 21 and the heat absorption source temperature so that the degree of superheat of the low-pressure refrigerant gas in the suction of the air conditioning compressor 21 becomes a predetermined temperature. The change amount of the expansion valve opening is determined from the deviation between the target value of the suction temperature and the actually measured value, and the air conditioning expansion valve 27 is opened (+ pulse) or closed (−pulse). Here, as the heat absorption source temperature, “outside air temperature” is used in the heating operation, and in the cooling operation, “the inlet temperature of the air-conditioning use side heat exchanger 28 flowing in the air-conditioning cold / hot water circulation circuit 8, that is, TE 1. “Measured temperature” is used. The calculation of the target value of the suction temperature may use a predetermined function, the suction temperature of the air conditioning compressor 21, the number of rotations of the air conditioning compressor 21, and the target values of the heat sink temperature and the suction temperature. May be used in advance. In addition, it may replace with the suction temperature of the compressor 21 for air conditioning, and you may control by discharge temperature (value measured with the temperature sensor TE4), and when discharge temperature is used, it is set as a control target with respect to disturbance. There is an advantage that the temperature is measured stably.

次に、給湯用冷媒回路6を圧縮式サイクルとして用いた運転モードNo.1、No.2−1、No.2−2、No.3、No.4−1、No.4−2、およびNo.5における給湯用圧縮機41の回転数の制御、給湯用膨張弁43の弁開度の制御、給湯用熱源側熱交換器44のファンの回転数、および給湯流量の制御は、制御装置1aによって以下のように行われている。   Next, an operation mode No. using the hot water supply refrigerant circuit 6 as a compression cycle is shown. 1, no. 2-1. 2-2, No. 3, no. 4-1. 4-2, and no. 5, the control of the rotation speed of the hot water supply compressor 41, the opening degree of the hot water supply expansion valve 43, the rotation speed of the fan of the hot water supply heat source side heat exchanger 44, and the hot water supply flow rate are controlled by the controller 1 a. It is done as follows.

給湯用熱源側熱交換器44のファンは、通常は一定の回転数に制御されている。   The fan of the hot water supply heat source side heat exchanger 44 is normally controlled at a constant rotational speed.

給湯流量は、給湯回路9を流れる水の給水温度(温度センサTE7で測定された値)あるいは給湯回路9の給湯負荷側の機器(浴槽など)からの要求に応じて制御される。   The hot water supply flow rate is controlled in response to a supply temperature of water flowing through the hot water supply circuit 9 (a value measured by the temperature sensor TE7) or a request from a hot water supply load side device (such as a bathtub) of the hot water supply circuit 9.

給湯用圧縮機41の回転数制御は、給湯回路9に給水される水の給水温度(温度センサTE8で測定された値)と、浴槽へ供給する温水(給湯用利用側熱交換器42の下流を流れる温水)の目標温度(利用者によって設定された給湯設定温度を考慮して定まる値)との偏差に応じて行われる。具体的には、制御装置1aは、給湯運転において「目標温度−給湯温度>0」であれば給湯用圧縮機41の回転数を増速にし、「目標温度−給湯温度<0」であれば、給湯用圧縮機41の回転数を減速にする。   The number of revolutions of the hot water supply compressor 41 is controlled by the temperature of the water supplied to the hot water supply circuit 9 (value measured by the temperature sensor TE8) and the hot water supplied to the bathtub (downstream of the hot water use side heat exchanger 42). Is performed according to a deviation from a target temperature (a value determined in consideration of a hot water supply set temperature set by a user). Specifically, in the hot water supply operation, the control device 1a increases the rotational speed of the hot water supply compressor 41 if “target temperature−hot water temperature> 0”, and if “target temperature−hot water temperature <0”. The rotational speed of the hot water supply compressor 41 is reduced.

給湯用膨張弁43の弁開度の制御は、給湯用圧縮機41の吸込温度(温度センサTE5で測定された値)、給湯用圧縮機41の回転数、および吸熱源温度に基づき行われる。具体的には、制御装置1aは、給湯用圧縮機41の吸込における低圧冷媒ガスの過熱度が所定の温度になるように、給湯用圧縮機41の回転数、吸熱源温度に基づき決定された吸込温度の目標値と実測値との偏差から膨張弁開度の変化量を決め、給湯用膨張弁43を開動作(+パルス)あるいは閉動作(−パルス)させる。ここで、吸熱源温度には「外気温度」が用いられる。吸込温度の目標値の算出は、予め定められた関数を用いても良いし、給湯用圧縮機41の吸込温度、給湯用圧縮機41の回転数、および吸熱源温度と吸込温度の目標値とが予め対応付けられたテーブルを用いても良い。なお、給湯用圧縮機41の吸込温度に代えて吐出温度(温度センサTE6で測定された値)により制御を行っても良く、吐出温度を用いた場合には、外乱に対して制御目標とする温度が安定して計測される利点がある。   The valve opening degree of the hot water supply expansion valve 43 is controlled based on the suction temperature of the hot water supply compressor 41 (value measured by the temperature sensor TE5), the rotational speed of the hot water supply compressor 41, and the heat absorption source temperature. Specifically, the control device 1a is determined based on the rotational speed of the hot water supply compressor 41 and the heat absorption source temperature so that the degree of superheat of the low-pressure refrigerant gas in the suction of the hot water supply compressor 41 becomes a predetermined temperature. The amount of change in the expansion valve opening is determined from the deviation between the target value of the suction temperature and the actual measurement value, and the hot water supply expansion valve 43 is opened (+ pulse) or closed (−pulse). Here, the “outside air temperature” is used as the heat absorption source temperature. The calculation of the target value of the suction temperature may use a predetermined function, the suction temperature of the hot water supply compressor 41, the rotation speed of the hot water supply compressor 41, and the target values of the heat absorption source temperature and the suction temperature. May be used in advance. In addition, it may replace with the suction temperature of the compressor 41 for hot water supply, and may control by discharge temperature (value measured by the temperature sensor TE6), and when discharge temperature is used, it is set as a control target with respect to disturbance. There is an advantage that the temperature is measured stably.

次に、空調用冷媒回路5を自然循環式サイクルとして用いた運転モードNo.4−1、No.4−2における給湯用圧縮機41の回転数の制御、給湯用膨張弁43の弁開度の制御、給湯流量の制御、および空調用膨張弁27の弁開度の制御は、制御装置1aによって以下のように行われている。   Next, the operation mode No. using the air-conditioning refrigerant circuit 5 as a natural circulation cycle is shown. 4-1. Control of the rotation speed of the hot water supply compressor 41 in 4-2, control of the valve opening degree of the hot water supply expansion valve 43, control of the hot water supply flow rate, and control of the valve opening degree of the expansion valve 27 for air conditioning are performed by the control device 1a. It is done as follows.

(a1)給湯を主に利用した運転の場合(給湯出力を固定した場合)
次に説明する制御は、例えば、住宅60の室内にエアコン等の補助空調機が併設しているような場合に用いると良い。
(A1) In the case of operation mainly using hot water supply (when the hot water supply output is fixed)
The control described below may be used when, for example, an auxiliary air conditioner such as an air conditioner is installed in the room of the house 60.

給湯流量は、給湯回路9を流れる水の給水温度(温度センサTE7で測定された値)と給湯温度(給湯用利用側熱交換器42の下流側を流れる温水の温度)の目標値から定まる目標流量に応じて制御される。なお、給水温度と給湯温度の目標値とを比較して、給湯流量を増減するように制御しても良い。   The hot water flow rate is a target determined from the target values of the temperature of the water flowing through the hot water supply circuit 9 (the value measured by the temperature sensor TE7) and the temperature of the hot water (the temperature of the hot water flowing downstream of the hot water use side heat exchanger 42). It is controlled according to the flow rate. Note that the hot water flow rate may be controlled to be increased or decreased by comparing the hot water temperature and the target value of the hot water temperature.

給湯用圧縮機41の回転数制御は、給湯回路9における給湯用利用側熱交換器42の出口温度、即ち、給湯出口温度(温度センサTE8で測定された値)と、給湯の目標温度(利用者からの要求やシステムの仕様によって定まる値)との偏差に応じて行われる。具体的には、制御装置1aは、「給湯目標温度−給湯出口温度<0」であれば給湯用圧縮機41の回転数を減速にし、「給湯目標温度−給湯出口温度>0」であれば、給湯用圧縮機41の回転数を増速にする。なお、給水温度と給湯の目標温度とに基づいて給湯用圧縮機41の回転数制御を行っても良い。   The number of revolutions of the hot water supply compressor 41 is controlled by adjusting the outlet temperature of the hot water use side heat exchanger 42 in the hot water supply circuit 9, that is, the hot water outlet temperature (value measured by the temperature sensor TE8) and the target temperature (use of hot water). The value is determined according to a request from a person or a value determined by system specifications). Specifically, if “hot water supply target temperature−hot water supply outlet temperature <0”, the control device 1a decelerates the rotation speed of the hot water supply compressor 41, and “hot water supply target temperature−hot water supply outlet temperature> 0”. The rotational speed of the hot water supply compressor 41 is increased. Note that the rotation speed control of the hot water supply compressor 41 may be performed based on the hot water supply temperature and the target temperature of the hot water supply.

給湯用膨張弁43の弁開度の制御は、給湯用圧縮機41の吸込温度(温度センサTE5で測定された値)、空調用冷温水循環回路8内を循環する水の空調用利用側熱交換器28の出口温度(温度センサTE2で測定された値)の目標値と空調用利用側熱交換器28の入口温度(温度センサTE1で測定された値)、および給湯用圧縮機41の回転数から定まる弁開度の目標値と、弁開度の実測値とに基づいて制御される。具体的には、制御装置1aは、「弁開度の目標値−弁開度の実測値>0」であれば給湯用膨張弁43の弁開度を開動作(+パルス)させ、「弁開度の目標値−弁開度の実測値<0」であれば給湯用膨張弁43の弁開度を閉動作(−パルス)させる。ここで、弁開度の目標値の算出には、予め定められた関数を用いても良いし、給湯用圧縮機41の吸込温度、空調用冷温水循環回路8内を循環する水の空調用利用側熱交換器28の出口温度の目標値と空調用利用側熱交換器28の入口温度、および給湯用圧縮機41の回転数と弁開度の目標値とが予め対応付けられたテーブルを用いても良い。なお、給湯用圧縮機41の吸込温度に代えて吐出温度(温度センサTE6で測定された値)により制御を行っても良い。   The control of the valve opening degree of the hot water supply expansion valve 43 includes the suction temperature of the hot water supply compressor 41 (value measured by the temperature sensor TE5), and the air conditioning use side heat exchange of water circulating in the air conditioning cold / hot water circulation circuit 8. Target value of the outlet temperature of the heater 28 (value measured by the temperature sensor TE2), the inlet temperature of the air conditioning use-side heat exchanger 28 (value measured by the temperature sensor TE1), and the rotation speed of the hot water supply compressor 41 Is controlled based on the target value of the valve opening determined from the above and the measured value of the valve opening. Specifically, if “the target value of the valve opening—the measured value of the valve opening> 0”, the control device 1a opens (+ pulses) the valve opening of the hot water supply expansion valve 43, If the target value of the opening-the actual measurement value of the valve opening <0 ", the valve opening of the hot water supply expansion valve 43 is closed (-pulsed). Here, for the calculation of the target value of the valve opening, a predetermined function may be used, or the suction temperature of the hot water supply compressor 41 and the use for air conditioning of water circulating in the air conditioning cold / hot water circulation circuit 8. A table in which the target value of the outlet temperature of the side heat exchanger 28, the inlet temperature of the air-conditioning use-side heat exchanger 28, and the target value of the rotation speed of the hot water supply compressor 41 and the valve opening is used in advance. May be. In addition, it may replace with the suction temperature of the compressor 41 for hot water supply, and may control by discharge temperature (value measured by temperature sensor TE6).

空調用膨張弁27の弁開度の制御は、空調用冷温水循環回路8内を循環する水の空調用利用側熱交換器28の目標出口温度と、実測した出口温度(温度センサTE2で測定された値)との偏差に基づいて制御される。具体的には、制御装置1aは、「目標出口温度−実測した出口温度<0」であれば空調用膨張弁27の弁開度を開動作(+パルス)させ、「目標出口温度−実測した出口温度>0」であれば空調用膨張弁27の弁開度を閉動作(−パルス)させる。   Control of the valve opening degree of the air conditioning expansion valve 27 is controlled by a target outlet temperature of the air conditioning use side heat exchanger 28 for circulating water in the air conditioning cold / hot water circulation circuit 8 and an actually measured outlet temperature (measured by the temperature sensor TE2). The value is controlled based on the deviation from the value. Specifically, if “target outlet temperature−measured outlet temperature <0”, the control device 1a opens (+ pulses) the opening degree of the air conditioning expansion valve 27, and “target outlet temperature—measured”. If the outlet temperature> 0, the opening degree of the air conditioning expansion valve 27 is closed (-pulsed).

(b1)空調を主に利用した運転の場合(給湯出力を変化させる場合)
給湯回路9から供給する給湯流量は、空調用冷温水循環回路8内を循環する水の空調用利用側熱交換器28の目標出口温度と、実測した入口温度(温度センサTE1で測定された値)との偏差に応じて制御される。具体的には、制御装置1aは、「目標入口温度−実測した入口温度<0」であれば給湯流量を増加させ、「目標入口温度−実測した入口温度>0」であれば、給湯流量を減少させる。
(B1) When driving mainly using air conditioning (when changing the hot water supply output)
The hot water supply flow rate supplied from the hot water supply circuit 9 includes the target outlet temperature of the air-conditioning use-side heat exchanger 28 circulating in the air-conditioning cold / hot water circulation circuit 8, and the measured inlet temperature (value measured by the temperature sensor TE1) It is controlled according to the deviation. Specifically, the control device 1a increases the hot water flow rate if “target inlet temperature−measured inlet temperature <0”, and increases the hot water flow rate if “target inlet temperature−measured inlet temperature> 0”. Decrease.

給湯用圧縮機41の回転数制御は、給湯回路9における給湯用利用側熱交換器42の出口温度、即ち、給湯出口温度(温度センサTE8で測定された値)と、給湯の目標温度(利用者によって設定された給湯設定温度を考慮して定まる値)との偏差に応じて行われる。具体的には、制御装置1aは、「給湯目標温度−給湯出口温度<0」であれば給湯用圧縮機41の回転数を減速にし、「給湯目標温度−給湯出口温度>0」であれば、給湯用圧縮機41の回転数を増速にする。なお、給水温度と給湯の目標温度とに基づいて給湯用圧縮機41の回転数制御を行っても良い。   The number of revolutions of the hot water supply compressor 41 is controlled by adjusting the outlet temperature of the hot water use side heat exchanger 42 in the hot water supply circuit 9, that is, the hot water outlet temperature (value measured by the temperature sensor TE8) and the target temperature (use of hot water). And a value determined in consideration of the hot water supply set temperature set by the person). Specifically, if “hot water supply target temperature−hot water supply outlet temperature <0”, the control device 1a decelerates the rotation speed of the hot water supply compressor 41, and “hot water supply target temperature−hot water supply outlet temperature> 0”. The rotational speed of the hot water supply compressor 41 is increased. Note that the rotation speed control of the hot water supply compressor 41 may be performed based on the hot water supply temperature and the target temperature of the hot water supply.

給湯用膨張弁43の弁開度の制御は、給湯用圧縮機41の吸込温度(温度センサTE5で測定された値)、空調用冷温水循環回路8内を循環する水の空調用利用側熱交換器28の出口温度(温度センサTE2で測定された値)の目標値と空調用利用側熱交換器28の入口温度(温度センサTE1で測定された値)、および給湯用圧縮機41の回転数から定まる弁開度の目標値と、弁開度の実測値とに基づいて制御される。具体的には、制御装置1aは、「弁開度の目標値−弁開度の実測値>0」であれば給湯用膨張弁43の弁開度を開動作(+パルス)させ、「弁開度の目標値−弁開度の実測値<0」であれば給湯用膨張弁43の弁開度を閉動作(−パルス)させる。ここで、弁開度の目標値の算出には、予め定められた関数を用いても良いし、給湯用圧縮機41の吸込温度、空調用冷温水循環回路8内を循環する水の空調用利用側熱交換器28の出口温度の目標値と空調用利用側熱交換器28の入口温度、および給湯用圧縮機41の回転数と弁開度の目標値とが予め対応付けられたテーブルを用いても良い。なお、給湯用圧縮機41の吸込温度に代えて吐出温度(温度センサTE6で測定された値)により制御を行っても良い。   The control of the valve opening degree of the hot water supply expansion valve 43 includes the suction temperature of the hot water supply compressor 41 (value measured by the temperature sensor TE5), and the air conditioning use side heat exchange of water circulating in the air conditioning cold / hot water circulation circuit 8. Target value of the outlet temperature of the heater 28 (value measured by the temperature sensor TE2), the inlet temperature of the air conditioning use-side heat exchanger 28 (value measured by the temperature sensor TE1), and the rotation speed of the hot water supply compressor 41 Is controlled based on the target value of the valve opening determined from the above and the measured value of the valve opening. Specifically, if “the target value of the valve opening—the measured value of the valve opening> 0”, the control device 1a opens (+ pulses) the valve opening of the hot water supply expansion valve 43, If the target value of the opening-the actual measurement value of the valve opening <0 ", the valve opening of the hot water supply expansion valve 43 is closed (-pulsed). Here, for the calculation of the target value of the valve opening, a predetermined function may be used, or the suction temperature of the hot water supply compressor 41 and the use for air conditioning of water circulating in the air conditioning cold / hot water circulation circuit 8. A table in which the target value of the outlet temperature of the side heat exchanger 28, the inlet temperature of the air-conditioning use-side heat exchanger 28, and the target value of the rotation speed of the hot water supply compressor 41 and the valve opening is used in advance. May be. In addition, it may replace with the suction temperature of the compressor 41 for hot water supply, and may control by discharge temperature (value measured by temperature sensor TE6).

空調用膨張弁27の弁開度の制御は、空調用冷温水循環回路8内を循環する水の空調用利用側熱交換器28の目標出口温度と、実測した出口温度(温度センサTE2で測定された値)との偏差に基づいて制御される。具体的には、制御装置1aは、「目標出口温度−実測した出口温度<0」であれば空調用膨張弁27の弁開度を開動作(+パルス)させ、「目標出口温度−実測した出口温度>0」であれば空調用膨張弁27の弁開度を閉動作(−パルス)させる。   Control of the valve opening degree of the air conditioning expansion valve 27 is controlled by a target outlet temperature of the air conditioning use side heat exchanger 28 for circulating water in the air conditioning cold / hot water circulation circuit 8 and an actually measured outlet temperature (measured by the temperature sensor TE2). The value is controlled based on the deviation from the value. Specifically, if “target outlet temperature−measured outlet temperature <0”, the control device 1a opens (+ pulses) the opening degree of the air conditioning expansion valve 27, and “target outlet temperature—measured”. If the outlet temperature> 0, the opening degree of the air conditioning expansion valve 27 is closed (-pulsed).

なお、自然循環式サイクルの空調排熱が給湯サイクルの吸熱量に対して不足する場合には、制御装置1aは、給湯用冷媒回路6における給湯用熱源側熱交換器44の上流の二方弁49aを開き、給湯用熱源側熱交換器44のファンを動作させる。これにより、給湯量冷媒回路6を流れる給湯用冷媒は、給湯用熱源側熱交換器44を介して外気から吸熱を行うことが可能となる。よって、給湯サイクルが必要とする吸熱量のうち空調側の自然循環式サイクルからの吸熱では賄えなかった不足分を、外気からの吸熱で補うことができる。吸熱量の不足は、給湯回路9における給水温度(温度センサTE7で測定された温度)、給水流量あるいは給湯用圧縮機41の回転数から推定される吸熱量と、空調用冷温水循環回路8における空調用利用側熱交換器28の冷水入口温度(温度センサTE1で測定された温度)と冷水出口温度の目標値から推定される必要放熱量との差で判断することができる。   When the air-conditioning exhaust heat of the natural circulation type cycle is insufficient with respect to the heat absorption amount of the hot water supply cycle, the control device 1a detects the two-way valve upstream of the hot water supply heat source side heat exchanger 44 in the hot water supply refrigerant circuit 6. 49a is opened, and the fan of the hot water supply heat source side heat exchanger 44 is operated. Thereby, the hot water supply refrigerant flowing through the hot water supply amount refrigerant circuit 6 can absorb heat from the outside air via the hot water supply heat source side heat exchanger 44. Therefore, the shortage that cannot be covered by the heat absorption from the natural circulation cycle on the air conditioning side in the heat absorption amount required for the hot water supply cycle can be compensated by the heat absorption from the outside air. The shortage of the amount of heat absorption is due to the heat absorption amount estimated from the water supply temperature in the hot water supply circuit 9 (temperature measured by the temperature sensor TE7), the water supply flow rate or the rotation speed of the hot water supply compressor 41, and the air conditioning in the cold / hot water circulation circuit 8 for air conditioning. This can be determined by the difference between the chilled water inlet temperature (temperature measured by the temperature sensor TE1) of the use side heat exchanger 28 and the necessary heat radiation amount estimated from the target value of the chilled water outlet temperature.

また、給湯サイクルの吸熱量に対し自然循環式サイクルの空調排熱が過剰な場合には、制御装置1aは、空調用冷媒回路5における空調用熱源側熱交換器24の前後の二方弁35c、35dを開き、空調用熱源側熱交換器24のファンを動作させる。これにより、空調用冷媒回路5を自然循環する空調用冷媒は、空調用熱源側熱交換器24を介して外気へ放熱を行うことが可能となる。よって、自然循環式サイクルの空調排熱のうち給湯サイクルへ放熱して残った空調排熱、即ち、空調排熱の過剰分を、外気へ放熱することができる。排熱過剰は、給湯回路9における給水温度(温度センサTE7で測定された温度)、給水流量あるいは給湯用圧縮機41の回転数から推定される吸熱量と、空調用冷温水循環回路8における空調用利用側熱交換器28の冷水入口温度(温度センサTE1で測定された温度)と冷水出口温度の目標値から推定される必要放熱量との差で判断することができる。   Further, when the air-conditioning exhaust heat of the natural circulation type cycle is excessive with respect to the heat absorption amount of the hot water supply cycle, the control device 1a includes the two-way valves 35c before and after the air-conditioning heat source side heat exchanger 24 in the air-conditioning refrigerant circuit 5. , 35d are opened, and the fan of the heat source side heat exchanger 24 for air conditioning is operated. Thereby, the air-conditioning refrigerant that naturally circulates in the air-conditioning refrigerant circuit 5 can radiate heat to the outside air via the air-conditioning heat source side heat exchanger 24. Therefore, the air-conditioning exhaust heat remaining in the natural-circulation cycle after being radiated to the hot water supply cycle, that is, the excess air-conditioning exhaust heat can be radiated to the outside air. Excess heat exhaustion is the water supply temperature in the hot water supply circuit 9 (temperature measured by the temperature sensor TE7), the heat absorption amount estimated from the water supply flow rate or the rotation speed of the hot water supply compressor 41, and the air conditioning in the cold / hot water circulation circuit 8 for air conditioning. This can be determined by the difference between the chilled water inlet temperature (temperature measured by the temperature sensor TE1) of the usage-side heat exchanger 28 and the necessary heat radiation amount estimated from the target value of the chilled water outlet temperature.

次に、本発明の第1の実施の形態例に係る空調給湯システムの効果について、図10を参照しながら説明する。図10(a)は本発明の第1の実施の形態例に係る空調給湯システムの冷媒の圧力−エンタルピ線図であり、図10(b)は、従来の空調給湯システムの冷媒の圧力−エンタルピ線図である。   Next, effects of the air conditioning and hot water supply system according to the first embodiment of the present invention will be described with reference to FIG. FIG. 10A is a refrigerant pressure-enthalpy diagram of the air conditioning hot water supply system according to the first embodiment of the present invention, and FIG. 10B is a refrigerant pressure-enthalpy of the conventional air conditioning hot water supply system. FIG.

従来の空調給湯システムにおける冷房/給湯運転では、冷房時に空調用冷媒回路5を圧縮式サイクルで運転し、同時に、給湯用冷媒回路6を圧縮式サイクルで運転するため、図10(b)に示すように、空調側の圧縮式サイクルは、PA1’→PA2’→PA3’→PA4’の循環経路で動作し、給湯側の圧縮式サイクルは、PH1’→PH2’→PH3’→PH4’の循環経路で動作する。ここで、PA1’は空調用圧縮機21の吸込口21aの空調用冷媒の状態、PA2’は空調用圧縮機21の吐出口21bの空調用冷媒の状態、PA3’は中間熱交換器23の出口の空調用冷媒の状態、PA4’は空調用利用側熱交換器28の入口の空調用冷媒の状態である。また、PH1’は給湯用圧縮機41の吸込口41aの給湯用冷媒の状態、PH2’は給湯用圧縮機41の吐出口41bの給湯用冷媒の状態、PH3’は給湯用利用側熱交換器42の出口の給湯用冷媒の状態、PH4’は中間熱交換器23の入口の給湯用冷媒の状態である。   In the cooling / hot-water supply operation in the conventional air-conditioning hot-water supply system, the air-conditioning refrigerant circuit 5 is operated in a compression cycle at the time of cooling, and at the same time, the hot-water supply refrigerant circuit 6 is operated in a compression cycle. As described above, the compression cycle on the air conditioning side operates in a circulation path of PA1 ′ → PA2 ′ → PA3 ′ → PA4 ′, and the compression cycle on the hot water supply side circulates in the order of PH1 ′ → PH2 ′ → PH3 ′ → PH4 ′. Operates on the path. Here, PA1 ′ is the state of the air-conditioning refrigerant in the suction port 21a of the air-conditioning compressor 21, PA2 ′ is the state of the air-conditioning refrigerant in the discharge port 21b of the air-conditioning compressor 21, and PA3 ′ is the state of the intermediate heat exchanger 23. The state of the air-conditioning refrigerant at the outlet, PA4 ′ is the state of the air-conditioning refrigerant at the inlet of the air-conditioning use-side heat exchanger 28. Further, PH1 ′ is a state of the hot water supply refrigerant at the suction port 41a of the hot water supply compressor 41, PH2 ′ is a state of the hot water supply refrigerant at the discharge port 41b of the hot water supply compressor 41, and PH3 ′ is a use side heat exchanger for hot water supply. The state of the hot water supply refrigerant at the outlet of 42, PH4 ′ is the state of the hot water supply refrigerant at the inlet of the intermediate heat exchanger 23.

この図10(b)から明らかなように、冷房時に空調側と給湯側を共に圧縮式サイクルで運転した場合には、空調用圧縮機21による圧縮仕事WA’と給湯用圧縮機41による圧縮仕事WH’とを合計した仕事量Wが発生する。即ち、仕事量W=WA’+WH’である。   As apparent from FIG. 10B, when both the air conditioning side and the hot water supply side are operated in a compression cycle during cooling, the compression work WA ′ by the air conditioning compressor 21 and the compression work by the hot water supply compressor 41 are performed. A work amount W obtained by adding WH ′ is generated. That is, the work amount W = WA ′ + WH ′.

これに対して、冷房時に空調用冷媒回路5を自然循環式サイクルにて運転し、同時に、給湯用冷媒回路6を圧縮式サイクルで運転した場合(例えば、運転モードNo.4−1、No.4−2)には、図10(a)に示すように、空調側の自然循環式サイクルは、PA1→PA2→PA3の循環経路で動作し、給湯側の圧縮式サイクルは、PH1→PH2→PH3→PH4の循環経路で動作する。ここで、PA1は中間熱交換器23の出口の空調用冷媒の状態、PA2は空調用利用側交換器28の入口の空調用冷媒の状態、PA3は中間熱交換器23の入口の空調用冷媒の状態である。また、PH1は給湯用圧縮機41の吸込口41aの給湯用冷媒の状態、PH2は給湯用圧縮機41の吐出口41bの給湯用冷媒の状態、PH3は給湯用利用側熱交換器42の出口の給湯用冷媒の状態、PH4は中間熱交換器23の入口の給湯用冷媒の状態である。   On the other hand, when the air-conditioning refrigerant circuit 5 is operated in a natural circulation cycle during cooling and the hot water supply refrigerant circuit 6 is operated in a compression cycle at the same time (for example, operation modes No. 4-1, No. 4). 4-2), as shown in FIG. 10 (a), the natural circulation type cycle on the air conditioning side operates in the circulation path of PA1 → PA2 → PA3, and the compression cycle on the hot water supply side is PH1 → PH2 → It operates in the circulation path of PH3 → PH4. Here, PA1 is the state of the air-conditioning refrigerant at the outlet of the intermediate heat exchanger 23, PA2 is the state of the air-conditioning refrigerant at the inlet of the air-conditioning use side exchanger 28, and PA3 is the air-conditioning refrigerant at the inlet of the intermediate heat exchanger 23 It is a state. Further, PH1 is the state of the hot water supply refrigerant at the suction port 41a of the hot water supply compressor 41, PH2 is the state of the hot water supply refrigerant at the discharge port 41b of the hot water supply compressor 41, and PH3 is the outlet of the hot water use side heat exchanger 42. The hot water supply refrigerant state PH4 is the hot water supply refrigerant state at the inlet of the intermediate heat exchanger 23.

この図10(a)から明らかなように、冷房時に空調側を自然循環式サイクルで運転し、給湯側を圧縮式サイクルで運転した場合には、前述したように給湯側の圧縮式サイクルの運転により、空調側の自然循環式サイクルをアシストするため、給湯用圧縮機41による圧縮仕事WHは上記の圧縮仕事WH’より増えるものの、空調用圧縮機21による圧縮仕事WA’が不要となるため、空調側を自然循環式サイクルで運転し給湯側を圧縮式サイクルで運転した場合の仕事量W=WHとなる。この圧縮仕事WHは、圧縮仕事WA’と圧縮仕事WH’の合計値よりも小さい。即ち、WH<WA’+WH’の関係が成り立つ。   As apparent from FIG. 10 (a), when the air conditioning side is operated in a natural circulation type cycle and the hot water supply side is operated in a compression cycle during cooling, the hot water supply side is operated in the compression cycle as described above. Thus, in order to assist the natural circulation type cycle on the air conditioning side, the compression work WH by the hot water supply compressor 41 is larger than the above compression work WH ′, but the compression work WA ′ by the air conditioning compressor 21 becomes unnecessary. When the air conditioning side is operated in a natural circulation cycle and the hot water supply side is operated in a compression cycle, the work amount W = WH. The compression work WH is smaller than the total value of the compression work WA ′ and the compression work WH ′. That is, the relationship of WH <WA ′ + WH ′ is established.

このように、空調側を自然循環式サイクルによる運転にした場合、空調給湯システム全体としてWA’+WH’−WHで求められる圧縮仕事の分だけ仕事量を軽減することができる。つまり、第1の実施の形態例に係る空調給湯システムによれば、空調側の自然循環式サイクルと給湯サイクルとを組み合わせた運転モードによって、運転効率を高め、省エネに寄与するとともに、消費電力の大幅な低減を実現できるのである。   Thus, when the air-conditioning side is operated by a natural circulation type cycle, the work amount can be reduced by the amount of compression work required by WA ′ + WH′−WH as the entire air-conditioning hot water supply system. In other words, according to the air conditioning and hot water supply system according to the first embodiment, the operation mode that combines the natural circulation cycle and the hot water supply cycle on the air conditioning side increases the operation efficiency, contributes to energy saving, and reduces the power consumption. A significant reduction can be achieved.

[本発明の第2の実施形態]
次に、本発明の第2の実施の形態例に係る空調給湯システムについて図11を用いて説明するが、第1の実施の形態例に係る空調給湯システムと同一の構成については、同一の符号を付して、その説明を省略する。第2の実施の形態例に係る空調給湯システムは、第1の実施の形態例に係る空調給湯システムに比べて、給湯回路9に蓄熱・貯湯ユニット7を設けた点に相違がある。この相違について、以下、詳しく説明していくことにする。
[Second Embodiment of the Present Invention]
Next, an air conditioning and hot water supply system according to a second embodiment of the present invention will be described with reference to FIG. 11. The same reference numerals are used for the same configurations as those of the air conditioning and hot water supply system according to the first embodiment. The description is omitted. The air conditioning and hot water supply system according to the second embodiment is different from the air conditioning and hot water supply system according to the first embodiment in that a heat storage / hot water storage unit 7 is provided in the hot water supply circuit 9. This difference will be described in detail below.

蓄熱・貯湯ユニット7は、貯湯タンク70と蓄熱タンク71とを備えて構成されており、貯湯タンク70および蓄熱タンク71は、給湯用回路9を構成する給湯用配管72、73とそれぞれ配管を用いて接続されている。貯湯タンク70は、蓄熱が可能であって、給湯用冷媒回路6と熱交換して生成された温水を貯めるためのタンクである。一方、蓄熱タンク71は、蓄熱が可能なタンクであって、太陽熱集熱器74で集熱された熱が取り込まれるようになっている。この蓄熱タンク71内の水は、太陽熱集熱器74により冷水と温水の間の温度(中間温度)に温められる。給湯回路9内の水は、給湯用循環ポンプを駆動することにより、図9の矢印の方向に流れていき、給湯用利用側熱交換器42にて給湯用冷媒と熱交換を行って温水となり、貯留タンク70へ流れていく。   The heat storage / hot water storage unit 7 includes a hot water storage tank 70 and a heat storage tank 71, and the hot water storage tank 70 and the heat storage tank 71 use hot water supply pipes 72 and 73 that constitute the hot water supply circuit 9, respectively. Connected. The hot water storage tank 70 is a tank that can store heat and stores hot water generated by heat exchange with the hot water supply refrigerant circuit 6. On the other hand, the heat storage tank 71 is a tank capable of storing heat, and the heat collected by the solar heat collector 74 is taken in. The water in the heat storage tank 71 is warmed to a temperature (intermediate temperature) between cold water and hot water by the solar heat collector 74. The water in the hot water supply circuit 9 flows in the direction of the arrow in FIG. 9 by driving the hot water supply circulation pump, and heat is exchanged with the hot water supply refrigerant in the hot water use side heat exchanger 42 to become hot water. And flows to the storage tank 70.

貯湯タンク70から給湯負荷側の機器へ温水を供給する配管と、蓄熱タンク50から給湯負荷側である浴槽へ中間温度の水を供給する配管とは、蓄熱・貯湯ユニット7内で合流されており、配管と配管の合流部分には、図示しない三方弁が設けられている。また、給湯負荷側の機器に接続される配管には、図示しない給湯供給ポンプが設けられている。このように構成された蓄熱・貯湯ユニット7によれば、制御装置1aにより上記三方弁を操作することにより、貯湯タンク70内の温水と、蓄熱タンク50内の中間温度の水とを混ぜて好適な温度の温水を浴槽等へ供給できることとなる。   The pipe for supplying hot water from the hot water storage tank 70 to the hot water supply load side equipment and the pipe for supplying intermediate temperature water from the heat storage tank 50 to the bathtub on the hot water supply load side are joined in the heat storage / hot water storage unit 7. A three-way valve (not shown) is provided at the junction of the pipe and the pipe. Moreover, a hot water supply pump (not shown) is provided in the pipe connected to the hot water supply load side device. According to the heat storage / hot water storage unit 7 configured in this way, the control device 1a operates the three-way valve to mix the hot water in the hot water storage tank 70 with the water at the intermediate temperature in the heat storage tank 50. It will be possible to supply hot water of a certain temperature to a bathtub or the like.

ところで、一般住宅において空調(冷房)負荷は、昼間から夕方にかけて生じるが、給湯需要は夜間に存在する。つまり、冷房運転が主に行われる時間帯と、給湯運転が主に行われる時間帯には異なっている(ズレがある)のが一般的である。ここで、蓄熱・貯湯ユニット7がない場合、例えば、給湯回路9と給湯負荷側の機器(浴槽など)とが直接接続されているような場合には、給湯需要の発生する夜間の時間帯にしか給湯サイクルと空調側の自然循環サイクルとを用いた運転モード(運転モードNo.4−1、No.4−2)による運転を行うことができない。   By the way, although air conditioning (cooling) load is generated from daytime to evening in ordinary houses, hot water supply demand exists at night. That is, the time zone in which the cooling operation is mainly performed is different from the time zone in which the hot water supply operation is mainly performed (there is a deviation). Here, when there is no heat storage / hot water storage unit 7, for example, when a hot water supply circuit 9 and a hot water supply load side device (such as a bathtub) are directly connected, during the night time when hot water supply demand occurs. However, the operation in the operation mode (operation mode No. 4-1, No. 4-2) using the hot water supply cycle and the natural circulation cycle on the air conditioning side cannot be performed.

しかし、本発明の第2の実施の形態例に係る空調給湯システムでは、蓄熱・貯湯ユニット7を備えているので、任意の時間に蓄熱タンク50と貯湯タンク70に蓄えられた温水を供給することができる。もう少し詳しく説明すると、第2の実施の形態例では、給湯負荷がない場合であっても、給湯サイクルを運転しながら自然循環式サイクルによる空調を行いつつ、その給湯運転で得られた湯を蓄熱・貯湯ユニット7に蓄えておくことにより、必要なときに湯を使用することができるのである。よって、第2の実施の形態例に係る空調給湯システムは、自然循環式サイクルによる運転モードを活用し易くなり、空調給湯システムの消費電力を低減することができる。   However, in the air conditioning and hot water supply system according to the second embodiment of the present invention, since the heat storage / hot water storage unit 7 is provided, hot water stored in the heat storage tank 50 and the hot water storage tank 70 is supplied at an arbitrary time. Can do. More specifically, in the second embodiment, even when there is no hot water supply load, the hot water obtained by the hot water supply operation is stored while performing air conditioning by the natural circulation cycle while operating the hot water supply cycle. -By storing in the hot water storage unit 7, hot water can be used when necessary. Therefore, the air conditioning and hot water supply system according to the second embodiment can easily utilize the operation mode based on the natural circulation type cycle, and can reduce the power consumption of the air conditioning and hot water supply system.

なお、貯湯タンク70と蓄熱タンク71の何れか一方のみを設けた構成であっても、熱を有効利用することができることは言うまでもない。また、太陽熱集熱器74を貯湯タンク70に組み込むようにしても良い。また、蓄熱タンク71の水を中間熱交換器23に導入し、この中間熱交換器23において、空調用冷媒回路5の空調用冷媒と給湯用冷媒回路6の給湯用冷媒と、蓄熱タンク71内の水(中間温度の水)との3流体間で熱交換を行うようにしても良い。かかる構成によれば、冷房運転による排熱をより一層有効に利用することができ、省エネ効果も高まる。   Needless to say, even if only one of the hot water storage tank 70 and the heat storage tank 71 is provided, heat can be used effectively. Further, the solar heat collector 74 may be incorporated in the hot water storage tank 70. Further, water in the heat storage tank 71 is introduced into the intermediate heat exchanger 23, and in this intermediate heat exchanger 23, the air conditioning refrigerant in the air conditioning refrigerant circuit 5, the hot water supply refrigerant in the hot water supply refrigerant circuit 6, and the heat storage tank 71 Heat exchange may be performed between the three fluids of the water (intermediate temperature water). According to such a configuration, the exhaust heat from the cooling operation can be used more effectively, and the energy saving effect is enhanced.

[本発明の第3の実施形態]
次に、本発明の第3の実施の形態例に係る空調給湯システムについて図12を用いて説明するが、第1の実施の形態例に係る空調給湯システムと同一の構成については、同一の符号を付して、その説明を省略する。第3の実施の形態例に係る空調給湯システムは、空調用利用側熱交換器として、第1の空調用利用側分割熱交換器28aと第2の空調用利用側分割熱交換器28bの2つの熱交換器に分割されている点、分岐点Dと分岐点Eとを繋ぐバイパス経路が形成されている点、および、分岐点Cと分岐点Fとを繋ぐバイパス経路が形成されている点が第1の実施の形態例に係る空調給湯システムに比べて、大きく相違している。この相違について、以下、詳しく説明していくことにする。
[Third embodiment of the present invention]
Next, an air conditioning and hot water supply system according to a third embodiment of the present invention will be described with reference to FIG. 12, but the same reference numerals are used for the same configurations as those of the air conditioning and hot water supply system according to the first embodiment. The description is omitted. The air-conditioning hot-water supply system according to the third embodiment has two air conditioning use-side heat exchangers: a first air-conditioning use-side divided heat exchanger 28a and a second air-conditioning use-side divided heat exchanger 28b. A point that is divided into two heat exchangers, a bypass path that connects the branch point D and the branch point E is formed, and a bypass path that connects the branch point C and the branch point F is formed However, it is significantly different from the air conditioning hot water supply system according to the first embodiment. This difference will be described in detail below.

第1の空調用利用側分割熱交換器28aおよび第2の空調用利用側分割熱交換器28bは、何れも空調用冷媒回路5を流れる空調用冷媒と、空調用冷温水循環回路8内を流れる水とで熱交換が可能な構成となっており、第1の空調用利用側分割熱交換器28aと第2の空調用利用側分割熱交換器28bとは直列に接続されている。なお、第1の空調用利用側分割熱交換器28aおよび第2の空調用利用側分割熱交換器28bは、ヘッド差を設けるために、空調用熱源側熱交換器24よりも低い位置に設置されている。   The first air-conditioning use-side divided heat exchanger 28 a and the second air-conditioning use-side divided heat exchanger 28 b both flow in the air-conditioning refrigerant circuit 5 and the air-conditioning cold / hot water circulation circuit 8. Heat exchange is possible with water, and the first air-conditioning use-side divided heat exchanger 28a and the second air-conditioning use-side divided heat exchanger 28b are connected in series. The first air-conditioning use-side divided heat exchanger 28a and the second air-conditioning use-side divided heat exchanger 28b are installed at a position lower than the air-conditioning heat source-side heat exchanger 24 in order to provide a head difference. Has been.

中間熱交換器23と二方弁35bの間に位置する分岐点Dと、第1の空調用利用側分割熱交換器28aと第2の空調用利用側分割熱交換器28bとの間に位置する分岐点Eとは、第2の空調用冷媒バイパス配管29bで接続されている。この第2の空調用冷媒バイパス配管29bには、空調用補助膨張弁27bが組み込まれている。   Positioned between the branch point D located between the intermediate heat exchanger 23 and the two-way valve 35b, and between the first air-conditioning use-side divided heat exchanger 28a and the second air-conditioning use-side divided heat exchanger 28b. The branch point E to be connected is connected by a second air-conditioning refrigerant bypass pipe 29b. An air conditioning auxiliary expansion valve 27b is incorporated in the second air conditioning refrigerant bypass pipe 29b.

空調用熱源側熱交換器24と二方弁35cとの間に位置する分岐点Cと、第1の空調用利用側分割熱交換器28aと第2の空調用利用側分割熱交換器28bとの間に位置する分岐点Fとは、第3の空調用冷媒バイパス配管29cで接続されている。この空調用冷媒バイパス配管29bには、二方弁35fが組み込まれている。さらに、分岐点Eと分岐点Fの間には、二方弁35gが設けられている。   A branch point C positioned between the air-conditioning heat source side heat exchanger 24 and the two-way valve 35c, a first air-conditioning use-side divided heat exchanger 28a, and a second air-conditioning use-side divided heat exchanger 28b; Is connected to the branch point F located between the two by a third air-conditioning refrigerant bypass pipe 29c. A two-way valve 35f is incorporated in the air-conditioning refrigerant bypass pipe 29b. Further, a two-way valve 35g is provided between the branch point E and the branch point F.

第3の実施の形態例に係る空調給湯システムでは、上記した構成の相違により、空調用冷媒が自然循環する経路を複数設定することができる。まず、第1の自然循環経路は、分岐点B→分岐点I→分岐点D→分岐点E→分岐点A→分岐点Bを辿る経路である。この第1の自然循環経路では、中間熱交換器23で給湯用冷媒回路6内を流れる給湯用冷媒と熱交換して液化した空調用冷媒は、密度差により自然に空調用冷媒バイパス配管29bを流れていき、空調用補助膨張弁27bを経由して第2の空調用利用側分割熱交換器28bへと流入する。そして、液化した空調用冷媒は、第2の空調用利用側分割熱交換器28bで空調用冷温水循環回路8内を流れる水から吸熱して蒸発し、自然に空調用冷媒バイパス配管29を通って、中間熱交換器23へと戻っていく。なお、この第1の自然循環経路が形成される際には、二方弁35b、二方弁35c、二方弁35fは閉じており、空調用補助膨張弁27bは、適度な弁開度に調整されている。   In the air conditioning and hot water supply system according to the third embodiment, a plurality of paths through which the air conditioning refrigerant naturally circulates can be set due to the difference in configuration described above. First, the first natural circulation path is a path that follows a branch point B → a branch point I → a branch point D → a branch point E → a branch point A → a branch point B. In the first natural circulation path, the air-conditioning refrigerant liquefied by heat exchange with the hot-water supply refrigerant flowing in the hot-water supply refrigerant circuit 6 by the intermediate heat exchanger 23 naturally passes through the air-conditioning refrigerant bypass pipe 29b due to the density difference. It flows into the second air-conditioning use-side split heat exchanger 28b via the air-conditioning auxiliary expansion valve 27b. The liquefied air-conditioning refrigerant absorbs heat from the water flowing in the air-conditioning cold / hot water circulation circuit 8 and evaporates in the second air-conditioning use-side divided heat exchanger 28b, and naturally passes through the air-conditioning refrigerant bypass pipe 29. Return to the intermediate heat exchanger 23. When the first natural circulation path is formed, the two-way valve 35b, the two-way valve 35c, and the two-way valve 35f are closed, and the air conditioning auxiliary expansion valve 27b has an appropriate valve opening. It has been adjusted.

次に、第2の自然循環経路は、分岐点B→分岐点I→分岐点D→分岐点J→分岐点F→分岐点E→分岐点A→分岐点Bを辿る経路である。この第2の自然循環経路では、中間熱交換器23で給湯用冷媒回路6内を流れる給湯用冷媒と熱交換して液化した空調用冷媒は、密度差により自然に空調用冷媒タンク26へと流れていき、空調用膨張弁27を経由して第1の空調用利用側熱交換器28a、第2の空調用利用側分割熱交換器28bの順に流れていく。液化した空調用冷媒は、第1の空調用利用側熱交換器28aおよび第2の空調用利用側分割熱交換器28bを順に流れていく間に、空調用冷温水循環回路8内を流れる水から吸熱して蒸発し、自然に空調用冷媒バイパス配管29を通って、中間熱交換器23へと戻っていく。なお、この第2の自然循環経路が形成される際には、二方弁35c、二方弁35d、二方弁35f、および空調用補助膨張弁27bは閉じており、空調用膨張弁27は、適度な弁開度に調整されている。   Next, the second natural circulation path is a path that follows a branch point B → a branch point I → a branch point D → a branch point J → a branch point F → a branch point E → a branch point A → a branch point B. In the second natural circulation path, the air-conditioning refrigerant liquefied by heat exchange with the hot-water supply refrigerant flowing in the hot-water supply refrigerant circuit 6 by the intermediate heat exchanger 23 is naturally transferred to the air-conditioning refrigerant tank 26 due to the density difference. The air flows through the air conditioning expansion valve 27 and flows in the order of the first air conditioning use side heat exchanger 28a and the second air conditioning use side heat exchanger 28b. The liquefied air-conditioning refrigerant flows from the water flowing through the air-conditioning cold / hot water circulation circuit 8 while sequentially flowing through the first air-conditioning use-side heat exchanger 28a and the second air-conditioning use-side heat exchanger 28b. It absorbs heat and evaporates, and naturally returns to the intermediate heat exchanger 23 through the refrigerant bypass pipe 29 for air conditioning. When the second natural circulation path is formed, the two-way valve 35c, the two-way valve 35d, the two-way valve 35f, and the air conditioning auxiliary expansion valve 27b are closed, and the air conditioning expansion valve 27 is The valve opening is adjusted to an appropriate level.

次に、第3の自然循環経路は、分岐点B→分岐点I→分岐点C→分岐点J→分岐点F→分岐点E→分岐点A→分岐点Bを辿る経路である。この第3の自然循環経路では、空調用熱源側熱交換器24で大気と熱交換して液化した空調用冷媒は、密度差により自然に空調用冷媒タンク26へと流れていき、空調用膨張弁27を経由して第1の空調用利用側熱交換器28a、第2の空調用利用側分割熱交換器28bの順に流れていく。そして、液化した空調用冷媒は、第1の空調用利用側熱交換器28aおよび第2の空調用利用側分割熱交換器28bで空調用冷温水循環回路8内を流れる水から吸熱して蒸発し、自然に空調用冷媒バイパス配管29を通って、空調用熱源側熱交換器24へと戻っていく。なお、この第3の自然循環経路が形成される際には、二方弁35a、二方弁35b、二方弁35f、および空調用補助膨張弁27bは閉じており、空調用膨張弁27は、適度な弁開度に調整されている。   Next, the third natural circulation path is a path that follows a branch point B → a branch point I → a branch point C → a branch point J → a branch point F → a branch point E → a branch point A → a branch point B. In the third natural circulation path, the air-conditioning refrigerant liquefied by heat exchange with the atmosphere in the air-conditioning heat source side heat exchanger 24 naturally flows into the air-conditioning refrigerant tank 26 due to the density difference, and the air-conditioning expansion The first air-conditioning use side heat exchanger 28a and the second air-conditioning use-side divided heat exchanger 28b flow through the valve 27 in this order. The liquefied air-conditioning refrigerant absorbs heat from the water flowing in the air-conditioning cold / hot water circulation circuit 8 and evaporates in the first air-conditioning use-side heat exchanger 28a and the second air-conditioning use-side heat exchanger 28b. Then, the air naturally passes through the air-conditioning refrigerant bypass pipe 29 and returns to the air-conditioning heat source side heat exchanger 24. When the third natural circulation path is formed, the two-way valve 35a, the two-way valve 35b, the two-way valve 35f, and the air conditioning auxiliary expansion valve 27b are closed, and the air conditioning expansion valve 27 is The valve opening is adjusted to an appropriate level.

次に、第4の自然循環経路は、分岐点C→分岐点J→分岐点F→分岐点Cを辿る経路である。この第4の自然循環経路では、空調用熱源側熱交換器24で大気と熱交換して液化した空調用冷媒は、密度差により自然に空調用冷媒タンク26へと流れていき、空調用膨張弁27を経由して第1の空調用利用側熱交換器28aに流れていく。そして、液化した空調用冷媒は、第1の空調用利用側熱交換器28aで空調用冷温水循環回路8内を流れる水から吸熱して蒸発し、自然に第3の空調用冷媒バイパス配管29cを通って、空調用熱源側熱交換器24へと戻っていく。なお、この第3の自然循環経路が形成される際には、二方弁35a、二方弁35b、二方弁35c、二方弁35e、および空調用補助膨張弁27bは閉じており、空調用膨張弁27は、適度な弁開度に調整されている。   Next, the fourth natural circulation path is a path that follows a branch point C → a branch point J → a branch point F → a branch point C. In the fourth natural circulation path, the air-conditioning refrigerant liquefied by heat exchange with the atmosphere in the air-conditioning heat source side heat exchanger 24 naturally flows into the air-conditioning refrigerant tank 26 due to the density difference, and the air-conditioning expansion It flows through the valve 27 to the first air conditioning use side heat exchanger 28a. The liquefied air-conditioning refrigerant absorbs heat from the water flowing in the air-conditioning cold / hot water circulation circuit 8 by the first air-conditioning use-side heat exchanger 28a and evaporates, and naturally passes through the third air-conditioning refrigerant bypass pipe 29c. Then, it returns to the heat source side heat exchanger 24 for air conditioning. When the third natural circulation path is formed, the two-way valve 35a, the two-way valve 35b, the two-way valve 35c, the two-way valve 35e, and the air conditioning auxiliary expansion valve 27b are closed, and the air conditioning The expansion valve 27 for use is adjusted to an appropriate valve opening.

このように、第3の実施の形態例によれば、第1の自然循環経路〜第4の自然循環経路の4パターンの自然循環式サイクルを形成することができるので、住宅60の室内温度と室外温度との関係や室内の露点温度、その他の環境条件を考慮したうえで最適な自然循環式サイクルを制御装置1aが選択することができる。よって、自然循環サイクルの活用のバリエーションが増え、空調用圧縮機21を停止した運転を行える場合が増えるため、第3の実施の形態例に掛かる空調給湯システムは、空調サイクルの運転に掛かる消費電力を軽減することができる。   As described above, according to the third embodiment, four patterns of the natural circulation type cycle of the first natural circulation route to the fourth natural circulation route can be formed. The control device 1a can select the optimum natural circulation cycle in consideration of the relationship with the outdoor temperature, the indoor dew point temperature, and other environmental conditions. Therefore, the variation in utilization of the natural circulation cycle increases, and the number of cases where the operation with the air-conditioning compressor 21 stopped can be increased. Therefore, the air-conditioning hot-water supply system according to the third embodiment uses the power consumption for the operation of the air-conditioning cycle. Can be reduced.

なお、第3の実施の形態例に係る空調給湯システムでは、制御装置1aが行う運転モードの選択の処理において、上記した(b)給湯機運転可否の条件に、利用者の要求の有無だけでなく、タンク温度が予め定めた温度T1より大または小のどちらであるかを追加することができる(図9参照)。   In the air conditioning and hot water supply system according to the third embodiment, in the operation mode selection process performed by the control device 1a, only the presence or absence of a user's request is included in the above-described (b) hot water heater operation condition. Alternatively, it can be added whether the tank temperature is larger or smaller than a predetermined temperature T1 (see FIG. 9).

1…ヒートポンプユニット、1a…制御装置、2…室内ユニット、5…空調用冷媒回路、6…給湯用冷媒回路、7…蓄熱・貯湯ユニット、8…空調用冷温水循環回路(空調用熱搬送媒体循環回路)、9…給湯回路、21…空調用圧縮機、22…四方弁(空調用流路切替弁)、23…中間熱交換器、24…空調用熱源側熱交換器、27…空調用膨張弁、28…空調用利用側熱交換器、29…空調用冷媒バイパス配管(バイパス配管)、34a、34b…三方弁(バイパス開閉手段)、41…給湯用圧縮機、42…給湯用利用側熱交換器、43…給湯用膨張弁、44…給湯用熱源側熱交換器、46…給湯用冷媒タンク、60…住宅(被空調空間)、61…室内熱交換器、70…貯湯タンク(タンク)、71…蓄熱タンク(タンク)、TE1〜TE8…温度センサ   DESCRIPTION OF SYMBOLS 1 ... Heat pump unit, 1a ... Control apparatus, 2 ... Indoor unit, 5 ... Air conditioning refrigerant circuit, 6 ... Hot water supply refrigerant circuit, 7 ... Heat storage / hot water storage unit, 8 ... Air conditioning cold / hot water circulation circuit (air conditioning heat transfer medium circulation) Circuit), 9 ... hot water supply circuit, 21 ... compressor for air conditioning, 22 ... four-way valve (air conditioning flow path switching valve), 23 ... intermediate heat exchanger, 24 ... heat source side heat exchanger for air conditioning, 27 ... expansion for air conditioning Valves 28... Air-conditioning use side heat exchangers 29. Air-conditioning refrigerant bypass pipes (bypass pipes) 34 a and 34 b Three-way valves (bypass opening / closing means) 41. Exchanger, 43 ... Hot water supply expansion valve, 44 ... Hot water supply heat source side heat exchanger, 46 ... Hot water supply refrigerant tank, 60 ... Housing (air-conditioned space), 61 ... Indoor heat exchanger, 70 ... Hot water storage tank (tank) 71 ... Thermal storage tank (tank), TE1 to TE ... temperature sensor

Claims (5)

冷房運転と暖房運転とを切替えて行う空調用冷媒回路と、給湯を行う給湯用冷媒回路と、前記空調用冷媒回路を循環する空調用冷媒と前記給湯用冷媒回路を循環する給湯用冷媒との間で熱交換を行う中間熱交換器とを備えた空調給湯システムであって、
前記空調用冷媒回路を、空調用圧縮機、空調用流路切替弁、前記中間熱交換器、空調用膨張弁、空調用利用側の熱搬送媒体と熱交換を行うための空調用利用側熱交換器を順次冷媒配管で接続して環状に形成し、
前記給湯用冷媒回路を、給湯用圧縮機、給湯用利用側の熱搬送媒体と熱交換を行う給湯用利用側熱交換器、給湯用膨張弁、前記中間熱交換器を順次冷媒配管で接続して環状に形成し、
前記空調用冷媒回路に、前記空調用圧縮機をバイパスするバイパス配管と、前記空調用冷媒の流路を、前記空調用圧縮機を経由する流路と前記バイパス配管を経由する流路との何れかに切り替えるバイパス開閉手段とを設け、
前記中間熱交換器を前記空調用利用側熱交換器より高い位置に設置した
ことを特徴とする空調給湯システム。
An air conditioning refrigerant circuit that switches between cooling operation and heating operation, a hot water supply refrigerant circuit that supplies hot water, an air conditioning refrigerant that circulates through the air conditioning refrigerant circuit, and a hot water supply refrigerant that circulates through the hot water supply refrigerant circuit An air conditioning and hot water supply system with an intermediate heat exchanger that exchanges heat between
Air-conditioning compressor circuit, air-conditioning flow path switching valve, intermediate heat exchanger, air-conditioning expansion valve, air-conditioning use side heat for heat exchange with air-conditioning use side heat transfer medium Connect the exchangers sequentially with refrigerant piping to form a ring,
In the hot water supply refrigerant circuit, a hot water supply compressor, a hot water use side heat exchanger for exchanging heat with a hot water use side heat transfer medium, a hot water supply expansion valve, and the intermediate heat exchanger are sequentially connected by a refrigerant pipe. To form a ring,
Either a bypass pipe that bypasses the air conditioning compressor, a flow path of the air conditioning refrigerant in the air conditioning refrigerant circuit, a flow path that passes through the air conditioning compressor, or a flow path that passes through the bypass pipe And a bypass opening and closing means for switching between
The air conditioning hot water supply system, wherein the intermediate heat exchanger is installed at a position higher than the air conditioning use side heat exchanger.
請求項1の記載において、
前記空調用冷媒回路に、空調用熱源側の熱搬送媒体と前記空調用冷媒との間で熱交換するための空調用熱源側熱交換器を前記中間熱交換器と並列にして設け、
前記給湯用冷媒回路に、給湯用熱源側の熱搬送媒体と前記給湯用冷媒との間で熱交換するための給湯用熱源側熱交換器を前記中間熱交換器と並列にして設け、
前記空調用熱源側熱交換器を前記空調用利用側熱交換器よりも高い位置に設置した
ことを特徴とする空調給湯システム。
In the description of claim 1,
In the air conditioning refrigerant circuit, an air conditioning heat source side heat exchanger for exchanging heat between an air conditioning heat source side heat transfer medium and the air conditioning refrigerant is provided in parallel with the intermediate heat exchanger,
In the hot water supply refrigerant circuit, a hot water supply heat source side heat exchanger for exchanging heat between the hot water supply heat source side heat transfer medium and the hot water supply refrigerant is provided in parallel with the intermediate heat exchanger,
The air conditioning hot water supply system, wherein the air conditioning heat source side heat exchanger is installed at a position higher than the air conditioning use side heat exchanger.
請求項1または2の記載において、
前記空調用利用側熱交換器と被空調空間に設置された室内熱交換器との間を配管で接続して空調用熱搬送媒体循環回路を形成し、前記空調用熱搬送媒体循環回路に前記空調用利用側の熱搬送媒体としての水またはブラインを循環させるようにしたことを特徴とする空調給湯システム。
In the description of claim 1 or 2,
An air-conditioning heat transfer medium circulation circuit is formed by connecting the air-conditioning use-side heat exchanger and an indoor heat exchanger installed in the air-conditioned space with a pipe, and the air-conditioning heat transfer medium circulation circuit includes the An air conditioning hot water supply system characterized in that water or brine as a heat transfer medium on the air conditioning use side is circulated.
請求項1〜3のいずれか1項の記載において、
前記給湯用利用側熱交換器の入口と出口に、前記給湯用利用側の熱搬送媒体としての水が流れる配管をそれぞれ接続して給湯回路を形成し、前記給湯回路に、水が前記給湯用利用側熱交換器から得た熱を蓄えることが可能なタンクを設けたことを特徴とする空調給湯システム。
In the description of any one of claims 1 to 3,
A hot water supply circuit is formed by connecting pipes through which water as a heat transfer medium on the hot water use side is connected to an inlet and an outlet of the hot water use side heat exchanger, and water is supplied to the hot water supply circuit. An air-conditioning hot water supply system provided with a tank capable of storing heat obtained from a use side heat exchanger.
請求項1〜4のいずれか1項の記載において、
前記空調用冷媒回路および前記給湯用冷媒回路の運転を制御する制御装置を備え、
前記制御装置は、
利用者によって設定される設定室温と、
利用者によって設定される設定湿度と、
外気温度と、
前記空調用利用側の熱搬送媒体の前記空調用利用側熱交換器入口の温度と、
前記設定室温、前記設定湿度および前記空調用利用側の熱搬送媒体の前記空調用利用側熱交換器入口の温度に基づいて決定される前記空調用利用側の熱搬送媒体の前記空調用利用側熱交換器出口の設定温度と、
前記給湯用利用側の熱搬送媒体の前記給湯用利用側熱交換器入口の温度と、
利用者の要求および前記給湯用利用側の熱搬送媒体の前記給湯用利用側熱交換器入口の温度に基づいて決定される給湯出力と、
前記給湯用利用側の熱搬送媒体の前記給湯用利用側熱交換器出口の出湯温度と
に基づいて、複数の運転モードの中から何れかを選択する
ことを特徴とする空調給湯システム。
In description of any one of Claims 1-4,
A control device for controlling the operation of the air conditioning refrigerant circuit and the hot water supply refrigerant circuit;
The controller is
Set room temperature set by the user,
Set humidity set by the user,
Outside temperature,
The temperature of the air conditioning utilization side heat exchanger inlet of the air conditioning utilization side heat transfer medium; and
The air conditioning utilization side of the air conditioning utilization side heat transfer medium determined based on the set room temperature, the set humidity, and the temperature of the air conditioning utilization side heat exchanger of the air conditioning utilization side heat transfer medium The set temperature at the outlet of the heat exchanger,
The temperature of the hot water supply use side heat exchanger inlet of the hot water supply use side heat transfer medium;
Hot water supply output determined based on the user's request and the temperature of the hot water supply use side heat exchanger entrance of the hot water supply use side heat transfer medium;
An air-conditioning hot water supply system, wherein one of a plurality of operation modes is selected based on a hot water supply temperature at a hot water supply use side heat exchanger outlet of the hot water supply use side heat transfer medium.
JP2012502911A 2010-03-01 2010-03-01 Air conditioning and hot water supply system Expired - Fee Related JP5373964B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/053275 WO2011108068A1 (en) 2010-03-01 2010-03-01 Air-conditioning hot-water-supplying system

Publications (2)

Publication Number Publication Date
JPWO2011108068A1 true JPWO2011108068A1 (en) 2013-06-20
JP5373964B2 JP5373964B2 (en) 2013-12-18

Family

ID=44541754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012502911A Expired - Fee Related JP5373964B2 (en) 2010-03-01 2010-03-01 Air conditioning and hot water supply system

Country Status (3)

Country Link
JP (1) JP5373964B2 (en)
CN (1) CN102770725B (en)
WO (1) WO2011108068A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013061473A1 (en) * 2011-10-28 2013-05-02 株式会社日立製作所 Hot-water supply and air-conditioning device
JP2013103632A (en) * 2011-11-15 2013-05-30 Furukawa Electric Co Ltd:The Heating system and heat transport system for vehicle
JP5788526B2 (en) * 2011-11-29 2015-09-30 株式会社日立製作所 Air conditioning and hot water supply system
JP5591214B2 (en) * 2011-11-30 2014-09-17 日立アプライアンス株式会社 Air conditioner and method of operating air conditioner
JP5629280B2 (en) 2012-03-02 2014-11-19 株式会社日立製作所 Waste heat recovery system and operation method thereof
CN103363705B (en) * 2013-05-28 2015-05-13 广东美的制冷设备有限公司 Refrigeration system, refrigeration equipment comprising refrigeration system and control method of refrigeration equipment
WO2015081997A1 (en) * 2013-12-04 2015-06-11 Electrolux Appliances Aktiebolag Refrigeration system
CN109974318B (en) * 2017-12-27 2021-03-12 杭州三花研究院有限公司 Thermal management system
CN109253486B (en) * 2018-09-29 2020-10-09 杨晓军 Mixed loading structure with natural circulation and forced circulation in same heating system
CN109405102B (en) * 2018-10-08 2024-01-16 珠海格力电器股份有限公司 Air Conditioning System
JP7019211B1 (en) 2020-09-11 2022-02-15 オリオン機械株式会社 Simultaneous cold and hot temperature control device
JP7019215B1 (en) 2020-09-11 2022-02-15 オリオン機械株式会社 Simultaneous cold and hot temperature control device
JP7019213B1 (en) 2020-09-11 2022-02-15 オリオン機械株式会社 Simultaneous cold and hot temperature control device
JPWO2022224392A1 (en) * 2021-04-22 2022-10-27

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2553738B2 (en) * 1990-05-25 1996-11-13 松下電器産業株式会社 Heat pump system and its control method
JPH05204466A (en) * 1991-07-05 1993-08-13 Takenaka Komuten Co Ltd Control method for flow rate control valve
JP2790016B2 (en) * 1993-10-08 1998-08-27 三菱電機株式会社 Heat pump water heater
JP3107284B2 (en) * 1995-08-30 2000-11-06 松下電工株式会社 Hot water supply / air conditioning system
JPH10300128A (en) * 1997-04-23 1998-11-13 Matsushita Electric Works Ltd Cooling/dehumidifying apparatus of refrigerant natural circulation type air air-conditioning apparatus combinedly provided therewith
JP3125778B2 (en) * 1998-02-23 2001-01-22 三菱電機株式会社 Air conditioner
JP2002243310A (en) * 2001-02-19 2002-08-28 Sanden Corp Heat exchanger and freezing apparatus using it
JP3932955B2 (en) * 2002-04-04 2007-06-20 三菱電機株式会社 Air conditioner
JP4167196B2 (en) * 2004-03-12 2008-10-15 三菱電機株式会社 Natural circulation combined use air conditioner and natural circulation combined use air conditioner control method
JP2005299935A (en) * 2004-04-06 2005-10-27 Fujitsu General Ltd Air conditioner
JP4241662B2 (en) * 2005-04-26 2009-03-18 幸信 池本 Heat pump system
CN100458313C (en) * 2006-05-26 2009-02-04 陈则韶 Heat pump hot water machine set of water-containing internal circulation heat-exchanging loop
WO2011104877A1 (en) * 2010-02-26 2011-09-01 株式会社 日立製作所 Air-conditioning hot-water-supply system

Also Published As

Publication number Publication date
JP5373964B2 (en) 2013-12-18
WO2011108068A1 (en) 2011-09-09
CN102770725B (en) 2015-04-08
CN102770725A (en) 2012-11-07

Similar Documents

Publication Publication Date Title
JP5373964B2 (en) Air conditioning and hot water supply system
JP5380226B2 (en) Air conditioning and hot water supply system and heat pump unit
JP5455521B2 (en) Air conditioning and hot water supply system
JP5279919B2 (en) Air conditioner
JP5188629B2 (en) Air conditioner
JP5615381B2 (en) Hot water supply and air conditioning complex equipment
JP5752148B2 (en) Air conditioner
JP5784117B2 (en) Air conditioner
WO2010131378A1 (en) Air conditioner
JP5236080B2 (en) Air conditioner
JP5395950B2 (en) Air conditioner and air conditioning hot water supply system
JP5572711B2 (en) Air conditioning and hot water supply system
JP5905110B2 (en) Air conditioner
JPWO2012070192A1 (en) Air conditioner
EP2489965A1 (en) Air-conditioning hot-water supply system
JP5335131B2 (en) Air conditioning and hot water supply system
JP5689079B2 (en) Refrigeration cycle equipment
JP5523470B2 (en) Air conditioner
JP5312606B2 (en) Air conditioner
WO2011099056A1 (en) Air conditioner
JP5499153B2 (en) Air conditioner
JPWO2011052050A1 (en) Air conditioner
JP6062030B2 (en) Air conditioner
JP5791717B2 (en) Air conditioner

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130919

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees