JPH0423654B2 - - Google Patents

Info

Publication number
JPH0423654B2
JPH0423654B2 JP984186A JP984186A JPH0423654B2 JP H0423654 B2 JPH0423654 B2 JP H0423654B2 JP 984186 A JP984186 A JP 984186A JP 984186 A JP984186 A JP 984186A JP H0423654 B2 JPH0423654 B2 JP H0423654B2
Authority
JP
Japan
Prior art keywords
epoxy
glycidyl ether
epoxy resin
naphthol
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP984186A
Other languages
Japanese (ja)
Other versions
JPS62169828A (en
Inventor
Shigeyoshi Hara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP984186A priority Critical patent/JPS62169828A/en
Publication of JPS62169828A publication Critical patent/JPS62169828A/en
Publication of JPH0423654B2 publication Critical patent/JPH0423654B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

a 産業上の利用分野 本発明は、従来よりも優れた耐熱性・寸法安定
性と作業性とのバランスのとれたエポキシ樹脂系
のプリント回路用基板の製造方法に関し、更に詳
しくは、特定のエポキシ化合物組成を用いること
により上記目的を達成せんとする製造方法であ
る。 b 従来技術 大規模集積回路の高密度化及び電子部品の小型
化に伴い、それをうけるプリント配線板も高密度
化、多層化の方向へ向つている。 ところで一般にプリント回路用基板の製造に用
いられるマトリツクス樹脂としては、エポキシ樹
脂が賞用されている。即ち、エポキシ樹脂は一般
に電気特性にすぐれ、またガラス繊維や銅板との
接着性や硬化作業性等にすぐれており、プリント
回路基板用として広く用いられるに到つている。
かかるプリント回路基板用のエポキシ樹脂は、ビ
スフエノールA−グリシジルエーテル型のエポキ
シ化合物とジシアンジアミドをも包含したアミン
系硬化剤の組合せが一般に用いられている。 しかしながら、高密度化・多層化が進行するに
従つて耐熱性・寸法安定性等の面で、上記の如き
一般的エポキシ樹脂では性能が不足していること
が明らかとなり、それらの改良が強く望まれるに
到つている。そのため、エポキシ樹脂よりも耐熱
性の優れた、例えばポリイミド樹脂がこの用途に
用いられはじめているが、作業性・接着性の面で
エポキシ樹脂に比べるとどうしても劣らざるを得
ない。 c 発明が解決しようとする課題 したがつて、本発明は、従来のプリント回線基
板のもつ上述の如き欠点を解消し、耐熱性・寸法
安定性と作業性とのバランスのとれたエポキシ樹
脂系の基板を製造する方法を提供しようとするも
のである。 d 課題を解決するための手段 本発明者はかかる目的に用いうる耐熱性エポキ
シ樹脂を鋭意検討した結果、α−ナフトールノボ
ラツク・グリシジルエーテル型のエポキシ化合物
に着目した。 かかる化合物は、フエノールをより大きな芳香
環を有するナフトールにかえる事により、対応す
るフエノールノボラツクグリシジルエーテル化合
物より誘導されるエポキシ樹脂よりも数等優れた
耐熱性・低吸湿性を有するエポキシ樹脂が得られ
る。所が、かかるエポキシ化合物単独で用いると
硬化後のエポキシ樹脂が、かたくなり過ぎて可撓
性や接着性・作業性の面で、プリント回路用基板
として問題点が生じる。 しかるに、特定のビスフエノールA−ジグリシ
ジルエーテル型のエポキシ化合物を単独で用いた
場合は勿論、その耐熱性を改良するために例えば
フエノールノボラツクグリシジルエーテル型エポ
キシ化合物をそれに加えて用いた場合に比して、
より良好な耐熱性が発揮しうる事を見出し得て本
発明に到達したものである。 即ち本発明は、繊維性基材にエポキシ樹脂組成
物を含浸・積層する工程及びそれに電導性物体を
組合せる工程を有するプリント回路用基板の製造
方法において、当該エポキシ樹脂組成物として、
エポキシ当量が170〜3500のビスフエノールA−
グリシジルエーテル系エポキシ化合物5〜90重量
部と、エポキシ当量が210〜400のα−ナフトール
ノボラツクグリシジルエーテル95〜10重量部とか
らなるエポキシ混合物を主体として用いることを
特徴とするプリント回路用基板の製造方法であ
る。 本発明方法に用いられるα−ナフトールノボラ
ツク・グリシジルエーテル系エポキシ化合物は、
フエノールの代りにα−ナフトールを用いてフエ
ノールノボラツクを得るのと同様の条件下でホル
ムアルデヒドと酸性触媒の共存下に反応せしめる
事によつて得られたα−ナフトールノボラツク
を、これも一般的なアリールグリシジルエーテル
を製造する方法に従つて、酸受容体の共存下に、
エピクロルヒドリン反応せしめる事によつて得ら
れる。酸性触媒としては、シウユ酸、リン酸、塩
酸等が好適に用いられ、ホルムアルデヒドとして
は、ホルマリンのかたちのものが好適に用いられ
る。α−ナフトールノボラツクの縮合度は、用い
るα−ナフトールとホルムアルデヒドのモル比や
反応条件によつて調節する事が出来る。α−ナフ
トールの一部をフエノール、クレゾール、ヒドロ
キシベンツアルデヒド等におきかえて用いる事も
出来る。一般に、1分子中に平均してα−ナフト
ール核が2〜12、より好ましくは、3〜10含まれ
るノボラツクが好適に用いられる。かかるα−ナ
フトールノボラツクとエピクロルヒドリンの反応
において、副生する塩化水素の受容体しては、苛
性ソーダ等が好適に用いられる。 かくして、得られたα−ナフトールノボラツク
グリシジルエーテル系化合物はエポキシ当量が
210〜400g/eq.のものが用いられる。特にエポ
キシ当量が210〜300g/eq.のものが好ましい。 一方の必須成分であるビスフエノールA−グリ
シジルエーテル系エポキシ化合物は、ビスフエノ
ールAとエピクロルヒドリンの酸受容体共存下に
おける反応によつて得られるが、各種のエポキシ
当量のものが、市販されており容易に入手出来
る。 本発明においては、エポキシ当量が170〜3500
g/eq.のものが用いられるが、特に200〜1000
g/eq.のものが好ましい。 所定割合のかかるエポキシ化合物、エポキシ硬
化剤を適当な共通溶媒に溶解し、ワニスを作成
し、それを繊維性基材例えば補強繊維布に含浸
し、乾燥、熱処理してB−ステージ状態のエポキ
シ樹脂として、いわゆるプリプレグを作成する。
エポキシ硬化剤としては、ジシアンジアミドや、
4,4′−ジアミノジフエニルスルホン(DDS)、
4,4′−ジアミノジフエニルメタン、m−フエニ
レンジアミンの如き、芳香族アミン系の硬化剤が
特に好適に用いられる。就中、DDS及びジシア
ンジアミドが、B−ステージ・プリプレグのポツ
トライフや硬化物のTgの見地から好適である。 エポキシ樹脂と化学的に反応する硬化剤以外
に、硬化の速度を調節する硬化促進剤も適宜選択
して用いる事が出来る。かかる促進剤はカチオン
系及びアニオン系が知られているが、酸フツ化ホ
ウ素モノエチルアミン錯塩等も好適に用いる事が
出来る。エポキシ化合物と硬化剤の使用割合は、
一般に両者の化学反応当量付近の割合が用いられ
る。 かかるエポキシ化合物と硬化剤のワニスを作成
するのに用いられる溶媒としては、テトラヒドロ
フラン、ジオキサン等のエーテル系溶媒、アセト
ン、メチルエチルケトン、メチルイソブチルケト
ン等のケトン系溶媒、酢酸エチル、酢酸ブチル等
のエステル系溶媒、ジメチルホルムアミド、ジメ
チルアセトンアミド等のアミド系溶媒等の極性溶
媒が主溶媒として用いられる。溶媒の選定及び濃
度の選定についてはワニスの含浸時の粘度及び溶
媒の蒸発速度を考慮して適当に選べばよい。 繊維性基材となる補強用繊維布としては、一般
にはエポキシシラン等のいわゆるシランカプラー
で処理したガラス繊維織布が用いられるが、ガラ
ス繊維マツトも単独或はガラス繊維織布と組合せ
て用いる事が出来る。それ以外の繊維例えばアラ
ミド繊維のマツト及び/又は不織布も、該繊維が
繊維軸方向への熱膨張率が極めて小さい事を利用
して用いる事も出来る。これらのアラミドより得
られるフイブリツド及び/又はこれらのアラミド
繊維をすきこんだ紙も用いる事が出来る。通常の
セルロース系の紙も使用する事が出来る。 かかる繊維布への上記ワニスの含浸、乾燥及び
B−ステージ化のための熱処理は、周知の各種方
法によつて実施する事が出来る。即ち、長尺の繊
維布を用いて、連続的に処理を順次施す方式およ
及びバツチ式に一定大きさの繊維を順次処理して
いく方式等いかなる方式をもとる事が出来る。 乾燥、B−ステージ化の処理条件については、
使用する溶媒、硬化剤の種類によつてその反応条
件は異なるが簡単な実験によつて、その条件を決
める事が出来る。 かくして得られたプリプレグを製造しようとす
る積層板の厚さに応じて、適当枚数重ね合わせ、
いわゆるサブストラクテイブ法に用いる銅張積層
板を得ようとする場合には両面又は片面に銅箔を
重ねて、加熱プレスにより積層板とする事が出来
る。 かかる銅張り積層板に用いる銅箔は、圧延銅箔
及び電解銅箔が用いられ、プリプレグへの接着面
は粗面でかつ接着増進処理をおこなつたものが用
いられる。 多層板を得る場合には、かかる銅張積層板を配
線処理した後、さらにプリプレグをはさんで一体
化処理されるため、銅箔の両面が樹脂との接着に
用いられる事になる。 サブストラクテイブ法用銅張積層板の形以外
に、プリプレグの積層のみによつて、積層板を作
成し、表面又は樹脂内に無電解メツキ用の核剤を
付着させ、接着促進処理をほどこした後、レジス
トにより回路パターンを作成、無電解メツキ処理
によりレジストの付着していない部分に、銅等に
よる回路を作成せしめるいわゆるアデイテイブ法
による基板として用いる事が出来る。さらに、銀
や銅の粉末を多量に含むいわゆる電導性ペイント
を用いてスクリーン印刷等によつて該積層板上に
回路を作成せしめる方法によつてもよい。 e 発明の効果 いずれの導体回路作成法によつても、本発明に
よるエポキシ化合物の混合物を用いて得た回路基
板は、そのすぐれた耐熱性、寸法安定性、低級湿
性によつて従来のエポキシ樹脂積層板をこえた優
れた実用性能を発揮し、高密度用多層板用として
優れたものである。 f 実施例 以下に、実施例、比較例をあげて本発明を詳述
する。実施例は説明のためであつてそれに限定す
るものではない。 実施例1、2及び比較例1、2 (1) 使用材料 (イ) α−ナフトールノボラツクグリシジルエー
テル型エポキシ化合物については、本分中の
説明の如き製法により調製したエポキシ当量
250g/eq.融点65〜93℃のものを使用 (ロ) ビスフエノールA−グリシジルエーテル型
エポキシ化合物はエピコート1001として市販
のものを使用(エポキシ当量450〜500g/
eq.) (ハ) 比較のためのフエノールノボラツクグリシ
ジルエーテル型エポキシ化合物としては、エ
ピコート154(エポキシ当量176〜181)として
市販のものを使用 (ニ) ガラスクロスとしては、日東紡製
WE18K105BZ−2(目付量205g/m2)を使
用 (ホ) 銅箔3μmの日鉱グレード製電解銅箔を使
用 (ヘ) ジアミノフエニルスルホン(DDS)、三フ
ツ化ホウ素モノエチルアミン錯塩、メチルエ
チルケトン等は市販のものを使用 (2) 銅張り積層板試作条件 表1にしめした如き条件にて、銅張り積層板
試作を行なつた。 (3) 得られた銅張り積層板性能測定 結果は表2にまとめた如くである。
a Field of Industrial Application The present invention relates to a method for manufacturing an epoxy resin printed circuit board that has a good balance between heat resistance, dimensional stability, and workability that are superior to conventional ones. This is a manufacturing method that attempts to achieve the above object by using a compound composition. b. Prior Art As the density of large-scale integrated circuits increases and electronic components become smaller, the printed wiring boards that receive them are also becoming more dense and multilayered. By the way, epoxy resin is generally used as a matrix resin for manufacturing printed circuit boards. That is, epoxy resins generally have excellent electrical properties, excellent adhesion to glass fibers and copper plates, excellent curing workability, etc., and have come to be widely used for printed circuit boards.
As the epoxy resin for such printed circuit boards, a combination of a bisphenol A-glycidyl ether type epoxy compound and an amine curing agent including dicyandiamide is generally used. However, as higher density and multilayer technology progresses, it has become clear that the above-mentioned general epoxy resins lack performance in terms of heat resistance, dimensional stability, etc., and improvements in these are strongly desired. It has reached the point where For this reason, for example, polyimide resins, which have better heat resistance than epoxy resins, are beginning to be used for this purpose, but they are inevitably inferior to epoxy resins in terms of workability and adhesion. c Problems to be Solved by the Invention Therefore, the present invention solves the above-mentioned drawbacks of conventional printed circuit boards, and develops an epoxy resin-based material that has a good balance between heat resistance, dimensional stability, and workability. The present invention seeks to provide a method for manufacturing a substrate. d. Means for Solving the Problems As a result of extensive research into heat-resistant epoxy resins that can be used for such purposes, the inventors focused on α-naphthol novolak glycidyl ether type epoxy compounds. In such compounds, by replacing phenol with naphthol having a larger aromatic ring, an epoxy resin can be obtained which has heat resistance and low moisture absorption that are numerically superior to epoxy resins derived from the corresponding phenol novolak glycidyl ether compounds. It will be done. However, if such an epoxy compound is used alone, the epoxy resin after curing becomes too hard, causing problems in terms of flexibility, adhesiveness, and workability when used as a printed circuit board. However, not only when a specific bisphenol A-diglycidyl ether type epoxy compound is used alone, but also when a phenol novolac glycidyl ether type epoxy compound is used in addition to it to improve its heat resistance. do,
The present invention was achieved by discovering that better heat resistance can be exhibited. That is, the present invention provides a method for manufacturing a printed circuit board, which includes a step of impregnating and laminating a fibrous base material with an epoxy resin composition and a step of combining a conductive object therewith, as the epoxy resin composition:
Bisphenol A- with an epoxy equivalent of 170 to 3500
A printed circuit board characterized in that an epoxy mixture consisting of 5 to 90 parts by weight of a glycidyl ether type epoxy compound and 95 to 10 parts by weight of α-naphthol novolak glycidyl ether having an epoxy equivalent of 210 to 400 is used as a main component. This is the manufacturing method. The α-naphthol novolac glycidyl ether type epoxy compound used in the method of the present invention is
α-Naphthol novolak is obtained by reacting formaldehyde in the presence of an acidic catalyst under the same conditions as when α-naphthol is used instead of phenol to obtain phenol novolak, which is also commonly used. According to the method for producing aryl glycidyl ether, in the presence of an acid acceptor,
Obtained by epichlorohydrin reaction. As the acidic catalyst, citric acid, phosphoric acid, hydrochloric acid, etc. are preferably used, and as the formaldehyde, formalin is preferably used. The degree of condensation of α-naphthol novolak can be adjusted by adjusting the molar ratio of α-naphthol and formaldehyde used and the reaction conditions. It is also possible to use a part of α-naphthol by replacing it with phenol, cresol, hydroxybenzaldehyde, etc. In general, novolaks containing on average 2 to 12, more preferably 3 to 10 α-naphthol nuclei in one molecule are preferably used. In the reaction between α-naphthol novolac and epichlorohydrin, caustic soda or the like is preferably used as a receptor for hydrogen chloride produced as a by-product. Thus, the obtained α-naphthol novolak glycidyl ether compound has an epoxy equivalent of
210 to 400 g/eq. is used. Particularly preferred are those having an epoxy equivalent of 210 to 300 g/eq. The bisphenol A-glycidyl ether epoxy compound, which is one of the essential components, can be obtained by the reaction of bisphenol A and epichlorohydrin in the presence of an acid acceptor. It can be obtained at In the present invention, the epoxy equivalent is 170 to 3500.
g/eq. is used, especially 200 to 1000
g/eq. is preferred. A predetermined proportion of such epoxy compound and epoxy curing agent are dissolved in a suitable common solvent to prepare a varnish, which is impregnated into a fibrous base material such as a reinforcing fiber cloth, dried and heat treated to form an epoxy resin in a B-stage state. As a result, so-called prepreg is created.
As an epoxy curing agent, dicyandiamide,
4,4′-diaminodiphenylsulfone (DDS),
Aromatic amine curing agents such as 4,4'-diaminodiphenylmethane and m-phenylenediamine are particularly preferably used. Among these, DDS and dicyandiamide are preferred from the viewpoint of the pot life of the B-stage prepreg and the Tg of the cured product. In addition to the curing agent that chemically reacts with the epoxy resin, a curing accelerator that adjusts the curing speed can also be appropriately selected and used. Cationic and anionic accelerators are known, but acid fluoride boron monoethylamine complex salts and the like can also be suitably used. The ratio of epoxy compound and curing agent used is
Generally, a ratio near the chemical reaction equivalent of both is used. Solvents used to create a varnish containing such an epoxy compound and a hardening agent include ether solvents such as tetrahydrofuran and dioxane, ketone solvents such as acetone, methyl ethyl ketone, and methyl isobutyl ketone, and ester solvents such as ethyl acetate and butyl acetate. A polar solvent such as an amide solvent such as dimethylformamide or dimethylacetonamide is used as the main solvent. The selection of the solvent and the concentration may be appropriately selected in consideration of the viscosity of the varnish during impregnation and the evaporation rate of the solvent. Glass fiber woven cloth treated with a so-called silane coupler such as epoxy silane is generally used as the reinforcing fiber cloth serving as the fibrous base material, but glass fiber matte can also be used alone or in combination with glass fiber woven cloth. I can do it. Other fibers such as aramid fiber mat and/or nonwoven fabric can also be used by taking advantage of the fact that the fibers have an extremely small coefficient of thermal expansion in the fiber axis direction. Fibrids obtained from these aramids and/or paper in which these aramid fibers are inserted can also be used. Ordinary cellulose paper can also be used. Impregnation of the varnish into the fiber cloth, drying, and heat treatment for B-staging can be carried out by various well-known methods. That is, any method can be used, such as a method in which a long fiber cloth is used and the treatment is applied continuously, or a method in which fibers of a certain size are sequentially treated in a batch manner. Regarding the processing conditions for drying and B-staging,
The reaction conditions vary depending on the type of solvent and curing agent used, but they can be determined by simple experiments. Depending on the thickness of the laminate to be manufactured from the thus obtained prepreg, an appropriate number of sheets are stacked,
When trying to obtain a copper-clad laminate for use in the so-called substructive method, a laminate can be obtained by overlapping copper foil on both sides or one side and hot pressing. The copper foil used in such a copper-clad laminate is a rolled copper foil or an electrolytic copper foil, and the surface to be bonded to the prepreg is rough and has been subjected to an adhesion enhancement treatment. When obtaining a multilayer board, after the copper-clad laminate is processed for wiring, it is further integrated with prepreg, so both sides of the copper foil are used for adhesion to the resin. In addition to the form of copper-clad laminates for the substructive method, laminates were created only by laminating prepregs, a nucleating agent for electroless plating was attached to the surface or within the resin, and adhesion promotion treatment was applied. Thereafter, a circuit pattern is created using a resist, and a circuit made of copper or the like is created in the areas where the resist is not adhered by electroless plating processing, so that it can be used as a substrate using the so-called additive method. Furthermore, a method may be employed in which a circuit is formed on the laminate by screen printing or the like using a so-called conductive paint containing a large amount of silver or copper powder. e Effects of the Invention Regardless of the conductor circuit manufacturing method, the circuit board obtained using the epoxy compound mixture according to the present invention is superior to that of conventional epoxy resin due to its excellent heat resistance, dimensional stability, and low moisture resistance. It exhibits excellent practical performance that exceeds that of laminated plates, and is excellent for high-density multilayer plates. f Examples The present invention will be described in detail below with reference to Examples and Comparative Examples. The examples are illustrative and not limiting. Examples 1 and 2 and Comparative Examples 1 and 2 (1) Materials used (a) For the α-naphthol novolac glycidyl ether type epoxy compound, the epoxy equivalent prepared by the manufacturing method as explained in this article
250g/eq. Use a compound with a melting point of 65 to 93℃ (b) Use a commercially available bisphenol A-glycidyl ether type epoxy compound as Epicote 1001 (epoxy equivalent 450 to 500g/
eq.) (c) As a phenol novolac glycidyl ether type epoxy compound for comparison, a commercially available one as Epicoat 154 (epoxy equivalent: 176-181) was used. (d) As a glass cloth, Nittobo's
Use WE18K105BZ-2 (basis weight 205g/ m2 ) (e) Use 3μm copper foil made by Nikko grade electrolytic copper foil (f) Use diaminophenyl sulfone (DDS), boron trifluoride monoethylamine complex salt, methyl ethyl ketone, etc. Commercially available products were used (2) Conditions for trial production of copper-clad laminates A trial production of copper-clad laminates was carried out under the conditions shown in Table 1. (3) Performance measurement of the obtained copper-clad laminate The results are summarized in Table 2.

【表】【table】

【表】 以上の結果より判る通り、実施例1及び実施例
2は従来の耐熱エポキシ組成物である比較例1並
みの作業性を維持しており、かつα−ナフトール
ノボラツクグリシジルエーテル型エポキシ単独使
用の比較例2に比較して、よく改良されている事
が判る。 得られた積層板の耐熱性は、比較例2に近く比
較例1に比し大巾に改良されており、ひきはがし
強さや半田耐熱性の如く、積層板の可撓性に関係
する測定項目については比較例1に近く、比較例
2よりも大巾に改良されている事が判る。
[Table] As can be seen from the above results, Examples 1 and 2 maintain workability comparable to Comparative Example 1, which is a conventional heat-resistant epoxy composition, and α-naphthol novolac glycidyl ether type epoxy alone It can be seen that this is much improved compared to Comparative Example 2. The heat resistance of the obtained laminate is close to Comparative Example 2, and is greatly improved compared to Comparative Example 1, and measurement items related to the flexibility of the laminate, such as peel strength and soldering heat resistance, are similar to Comparative Example 2. It can be seen that it is close to Comparative Example 1, and is significantly improved over Comparative Example 2.

Claims (1)

【特許請求の範囲】[Claims] 1 繊維性基材にエポキシ樹脂組成物を含浸・積
層する工程及びそれに電導性物体を組合せる工程
を有するプリント回路用基板の製造方法におい
て、当該エポキシ樹脂組成物として、エポキシ当
量が170〜3500のビスフエノールA−グリシジル
エーテル系エポキシ化合物5〜90重量部と、エポ
キシ当量が210〜400のα−ナフトールノボラツク
グリシジルエーテル95〜10重量部とからなるエポ
キシ混合物を主体として用いることを特徴とする
プリント回路用基板の製造方法。
1. In a method for manufacturing a printed circuit board, which includes a step of impregnating and laminating a fibrous base material with an epoxy resin composition and a step of combining a conductive object therewith, the epoxy resin composition has an epoxy equivalent of 170 to 3,500. A print characterized in that an epoxy mixture consisting of 5 to 90 parts by weight of a bisphenol A-glycidyl ether epoxy compound and 95 to 10 parts by weight of α-naphthol novolak glycidyl ether having an epoxy equivalent of 210 to 400 is used as a main component. A method for manufacturing circuit boards.
JP984186A 1986-01-22 1986-01-22 Production of substrate for printed circuit Granted JPS62169828A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP984186A JPS62169828A (en) 1986-01-22 1986-01-22 Production of substrate for printed circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP984186A JPS62169828A (en) 1986-01-22 1986-01-22 Production of substrate for printed circuit

Publications (2)

Publication Number Publication Date
JPS62169828A JPS62169828A (en) 1987-07-27
JPH0423654B2 true JPH0423654B2 (en) 1992-04-22

Family

ID=11731347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP984186A Granted JPS62169828A (en) 1986-01-22 1986-01-22 Production of substrate for printed circuit

Country Status (1)

Country Link
JP (1) JPS62169828A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003018675A1 (en) * 2001-08-31 2003-03-06 Sumitomo Bakelite Company Limited Resin composition, prepreg, laminated sheet and semiconductor package
US8394911B2 (en) 2010-02-03 2013-03-12 Dic Corporation Phenol resin composition, production method therefor, curable resin composition, cured product thereof, and printed circuit board
CN102363891B (en) * 2011-11-18 2013-09-25 山东金宝电子股份有限公司 Double photoelectrolysis copper foil replacing rolled copper foil and used for production of flexible copper clad laminate, and production process of double photoelectrolysis copper foil

Also Published As

Publication number Publication date
JPS62169828A (en) 1987-07-27

Similar Documents

Publication Publication Date Title
JPS59210946A (en) Flame resistant laminate board
JP2692508B2 (en) Manufacturing method of laminated board
JPH05239238A (en) Production of prepreg and laminate made therefrom
JPH0423654B2 (en)
JPH0722718A (en) Epoxy resin composition for printed wiring board, manufacture of prepreg for printed wiring board, and manufacture of composite laminated sheet
JPH0959346A (en) Epoxy resin composition for laminate
JP2720726B2 (en) Composite laminate
JPH09143247A (en) Resin composition for laminate, prepreg and laminate
JP3412572B2 (en) Epoxy resin composition, prepreg, metal foil with resin, adhesive sheet, laminated board and multilayer board
JP3735911B2 (en) Epoxy resin composition and laminate using the same
JP3033335B2 (en) Manufacturing method of laminated board
JP3906547B2 (en) Copper-clad laminate, multilayer laminate
JPH09316178A (en) Prepreg and copper-clad laminate prepared by using the same
JPH1177892A (en) Manufacture of copper-card laminate
JP3383440B2 (en) Copper clad laminate
JPH05286074A (en) Copper-clad laminate
JPS61179221A (en) Epoxy glass/copper laminate
JPH09141781A (en) Manufacture of laminated plate for printed circuit
JP3546594B2 (en) Epoxy resin composition, prepreg and laminate
JP2591543B2 (en) Aramid substrate copper clad laminate etching method
JP3013500B2 (en) Metal foil clad laminate
JPS6298793A (en) Epoxy resin compound for printed circuit substrate
JPH10329294A (en) Laminated sheet for printed wiring board according to additive method
JPH0748586B2 (en) Method for manufacturing multilayer printed wiring board
JPH10182946A (en) Epoxy resin composition for printed wiring board and prepreg using the same

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term