JPH04224188A - Method for growing single crystal by zone melting method - Google Patents

Method for growing single crystal by zone melting method

Info

Publication number
JPH04224188A
JPH04224188A JP41428790A JP41428790A JPH04224188A JP H04224188 A JPH04224188 A JP H04224188A JP 41428790 A JP41428790 A JP 41428790A JP 41428790 A JP41428790 A JP 41428790A JP H04224188 A JPH04224188 A JP H04224188A
Authority
JP
Japan
Prior art keywords
single crystal
heater
ampoule
gap
ampule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP41428790A
Other languages
Japanese (ja)
Other versions
JP2734205B2 (en
Inventor
Yoshio Fujino
芳男 藤野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP41428790A priority Critical patent/JP2734205B2/en
Publication of JPH04224188A publication Critical patent/JPH04224188A/en
Application granted granted Critical
Publication of JP2734205B2 publication Critical patent/JP2734205B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To grow a single crystal uniform in composition from the upper part to the lower part by continuously heating a part of the ampule adjacent to the terminal part not contg. a polycrystal material throughout the crystal growth. CONSTITUTION:A heater 10 is wound around the gap 9' between an ummelted ampule 1 and a plug 5 in the length equivalent to that of the gap to cover the gap. The temp. of the heater 10 is set at the same temp. as a single crystal growth heater, and the heater is energized at the same time that a power is supplied to the growth heater. The entire ampule is then lowered with respect to the growth heater, and the molten part is moved from the front end of the rod-shaped polycrystal material sealed into the ampule to the terminal end to grow a single crystal. As a result, a high-vapor-pressure component is not condensed on the upper part of the ampule at low temp., the high-vapor-pressure component is not escaped from the polycrystal material, and a single crystal uniform in composition from the lower part to the upper part is grown.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は蒸気圧の高い成分を含む
結晶イオン材料をアンプル中に封入し、いわゆる帯溶融
法によって単結晶を育成する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of growing a single crystal by sealing a crystalline ionic material containing a component with a high vapor pressure in an ampoule and using the so-called zone melting method.

【0002】0002

【従来の技術】帯溶融法の概略は図2に示す如きもので
、図は、一例として蒸気圧の高いHgを一成分として含
む多元半導体材料であるHgCdTeについて示してあ
る。この図は、帯溶融法による単結晶育成の途中段階を
示しているが、育成の初段階ではアンプル1の中には下
から順に種子結晶(CdTe)2、帯溶融部(Te過剰
のHgCdTe)3、多結晶材料(HgCdTe)4が
配置され、アンプル1の内部を真空排気したのち、栓5
によって封止されている。このように準備されたアンプ
ル全体は、帯溶融部3を溶融するための固定されている
環状の育成用ヒーター6の中央に上から吊られて置かれ
、帯溶融部3が所定の温度で溶融したならば、図の矢印
のように下へ向かってゆっくりと降下させられる。初段
階では、種子結晶2と帯溶融部3とは接しているが、ア
ンプルが徐々に降下して帯溶融部3が種子結晶2から次
第に離れていくと種子結晶2の上には単結晶7が成長し
ていく。図2は、この途中段階を示している。この帯溶
融法(THM=Traveling・Heater・M
ethodと呼ばれることもある)による単結晶育成に
関してはいくつかの論文が発表されている。例えば、ジ
ャーナル・オブ・サイエンス・アンド・テクノロジー誌
(1985年1月/2月,米国真空学会発行)=J.V
ac,Sci.Technol.A3(1),Jan/
Feb1985年の第95〜99頁,R.Tribou
let(トゥリブル)著,「THM,a・breakt
hrongh・in・HgCdTe・bulk・met
allugy」,ならびに同誌A6(4),Jul/A
ug・1988年の第2795〜2799頁,L.Co
lombo他著「Growth・of・Hg−base
d・alloys・by・the・traveling
・heater・method」などである。
2. Description of the Related Art The outline of the zone melting method is as shown in FIG. 2, which shows, as an example, HgCdTe, which is a multi-component semiconductor material containing Hg as one component, which has a high vapor pressure. This figure shows an intermediate stage of single crystal growth by the zone melting method, but at the initial stage of growth, in the ampoule 1, from the bottom, there is a seed crystal (CdTe) 2, a zone melting part (HgCdTe with excess Te), 3. After the polycrystalline material (HgCdTe) 4 is placed and the inside of the ampoule 1 is evacuated, the stopper 5 is removed.
is sealed by. The entire ampoule prepared in this way is suspended from above in the center of a fixed annular growth heater 6 for melting the band melting part 3, and the band melting part 3 is melted at a predetermined temperature. Once you do that, it will slowly descend downwards as shown by the arrow in the figure. At the initial stage, the seed crystal 2 and the melted zone 3 are in contact with each other, but as the ampoule gradually descends and the melted zone 3 gradually separates from the seed crystal 2, the single crystal 7 is placed on top of the seed crystal 2. is growing. FIG. 2 shows this intermediate stage. This zone melting method (THM=Traveling・Heater・M
Several papers have been published regarding single crystal growth using the method. For example, Journal of Science and Technology (January/February 1985, published by the Vacuum Society of America) = J. V
ac, Sci. Technol. A3(1), Jan/
Feb 1985, pp. 95-99, R. Tribou
THM, a break, written by let (Trible)
long・in・HgCdTe・bulk・met
allugy'', as well as the same magazine A6 (4), Jul/A
ug. 1988, pp. 2795-2799, L. Co
“Growth of Hg-base” by Lombo et al.
d・alloys・by・the・traveling
・heater・method”, etc.

【0003】これらの論文の図や本明細書の図2を見る
と分かるように、アンプル上端における真空封入のため
の栓の下部においては、アンプル内壁と栓と多結晶材料
との三者が互いに密着しているように見える。
As can be seen from the drawings in these papers and FIG. 2 of this specification, at the bottom of the stopper for vacuum sealing at the upper end of the ampoule, the inner wall of the ampoule, the stopper, and the polycrystalline material touch each other. It looks like they are in close contact.

【0004】しかしながら、実際のアンプルアセンブリ
ーにおいて、栓によってアンプルを密閉するには、アン
プルの外側から酸水素バーナーを用いてアンプルの内側
にセットされた栓とアンプルの内壁とを1500℃もの
高温で溶接する方法がとられる。HgCdTeは、融点
が700℃程度であり、どの成分も蒸気圧は比較的高く
、特にHgは、常温でさえ蒸発している程の高い蒸気圧
をもっている。従って、こうした成分からなる材料に酸
水素バーナーのような高温炎を近付けることは、材料の
分解や蒸発の原因となる。このため溶接部8と多結晶材
料は、数cmの間隔をあけることが必要である。さらに
アンプルの材料である石英の熱膨張率は、HgCdTe
よりも小さいので結晶育成において多結晶材料4が膨張
するとき、栓5との間に隙間(1〜2mm)がないとア
ンプルが破損する。こうした事情から実際のアセンブリ
ーにおいては、図3の如く、三者の間には必ず斜線で示
した隙間9が存在する。また、アンプル内壁1′と多結
晶材料4との間にも多少の隙間が存在する。何故なら、
多結晶材料は、別のアンプル中で合成されるので育成用
アンプルに挿入するには隙間が必要だからである。
However, in actual ampoule assembly, in order to seal the ampoule with a stopper, an oxyhydrogen burner is used from outside the ampoule to heat the stopper set inside the ampoule and the inner wall of the ampoule at a high temperature of 1500°C. A method of welding is used. HgCdTe has a melting point of about 700° C., and all components have relatively high vapor pressures, with Hg in particular having such a high vapor pressure that it evaporates even at room temperature. Therefore, bringing a high-temperature flame such as an oxyhydrogen burner close to a material made of these components may cause decomposition or evaporation of the material. For this reason, it is necessary to leave a gap of several cm between the welded portion 8 and the polycrystalline material. Furthermore, the coefficient of thermal expansion of quartz, which is the material of the ampoule, is
When the polycrystalline material 4 expands during crystal growth, the ampoule will be damaged unless there is a gap (1 to 2 mm) between it and the plug 5. Due to these circumstances, in an actual assembly, there is always a gap 9 shown with diagonal lines between the three parts, as shown in FIG. Further, there is also some gap between the ampoule inner wall 1' and the polycrystalline material 4. Because,
This is because the polycrystalline material is synthesized in a separate ampoule, so a gap is required to insert it into the growth ampoule.

【0005】[0005]

【発明が解決しようとする課題】このように必然的に隙
間をもつアンプルアセンブリーを用い、帯溶融法によっ
て蒸気圧の高い成分をもつ結晶材料の単結晶化を行って
いくと以下のような問題が起きる。帯溶融部は、アセン
ブリー中で最も温度が高いので当然であるが、その上部
に位置する多結晶材料も温度は高くなっているのでそこ
からも蒸気圧の高い成分、すなわちこの場合はHgが次
第に蒸発してくる。そして、アンプルの内壁1と多結晶
材料4との隙間を通ってより温度の低い上部へ集まり、
凝縮する。その最終的な場所が隙間9の中でも特に溶接
されていない栓とアンプルの隙間9′である。一つの実
験において、蒸発してこの部分に凝縮したHgの量は、
約200mgであったが、この量は、多結晶材料の全重
量50gのうちのHgの量の1%に近い値となる。
[Problem to be solved by the invention] When a crystalline material containing a component with a high vapor pressure is single-crystallized by the band melting method using an ampoule assembly that inevitably has gaps as described above, the following occurs. A problem arises. Naturally, the temperature of the melt zone is the highest in the assembly, but the temperature of the polycrystalline material located above it is also high, so the components with high vapor pressure, in this case Hg, gradually It evaporates. Then, it passes through the gap between the inner wall 1 of the ampoule and the polycrystalline material 4 and gathers at the upper part where the temperature is lower.
Condense. The final location is the gap 9' between the stopper and the ampoule, which is not welded, among the gaps 9. In one experiment, the amount of Hg that evaporates and condenses in this area is
The amount was about 200 mg, which is close to 1% of the amount of Hg in the 50 g total weight of the polycrystalline material.

【0006】この材料はよく知られているように赤外線
の検出材料である。Hgが1%失われると検出可能な赤
外線波長は、短い方に相当ずれることが分かっている。 このため、このような組成ずれを起こした材料を用いる
と目的の検出波長から外れた特性の検出器しか得られな
い。さらにHgは、既に述べたように帯溶融部の移動と
共に次第に蒸発量が多くなっていくのであるから、育成
され多結晶の最初と最後とでは組成のずれ方は一様では
ない。従って蒸発すると予想されるHgをあらかじめ補
償しておくことは有効でない。
[0006] As is well known, this material is an infrared detection material. It has been found that when 1% of Hg is lost, the detectable infrared wavelength shifts considerably to shorter wavelengths. For this reason, if a material with such compositional deviation is used, only a detector with characteristics deviating from the target detection wavelength can be obtained. Furthermore, as mentioned above, the amount of Hg evaporated gradually increases as the melt zone moves, so the composition shift is not uniform between the beginning and end of the grown polycrystal. Therefore, it is not effective to compensate in advance for Hg that is expected to evaporate.

【0007】本発明の目的は、アンプル上部の隙間での
高蒸気圧成分の凝縮を防ぎ、上部から下部に至るまで組
成が均一な単結晶の育成を可能ならしめた帯溶融法によ
る単結晶の育成方法を提供することにある。
The object of the present invention is to prevent condensation of high vapor pressure components in the gap at the top of the ampoule, and to grow a single crystal using a zone melting method, which makes it possible to grow a single crystal with a uniform composition from the top to the bottom. The purpose is to provide a training method.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
、本発明による帯溶融法による単結晶の育成方法におい
ては、アンプルに封入された棒状の多結晶材料の一部の
みを溶融し、この溶融部を棒状多結晶材料の先端から終
端まで移動させることによってこの材料を単結晶化する
単結晶の育成方法であって、終端部の隣の多結晶材料が
存在しないアンプルの一部を、単結晶の育成期間中を通
して溶融部と同じ温度で加熱し続けるものである。
[Means for Solving the Problems] In order to achieve the above object, in the method of growing a single crystal by the zone melting method according to the present invention, only a part of the rod-shaped polycrystalline material sealed in an ampoule is melted, and this A method for growing a single crystal in which a molten part is moved from the tip of a rod-shaped polycrystalline material to a terminal end to form a single crystal. Heating is continued at the same temperature as the molten part throughout the crystal growth period.

【0009】[0009]

【作用】蒸発した高蒸気圧成分(例えばHg)は、温度
の低い部分に凝縮するのであるから、その部分を加熱し
て高温化すれば凝縮は起こらないことになる。従って本
発明においては、多結晶材料の終端部の隣の部分、すな
わち図3における溶接されない栓と、アンプルとの隙間
9′の部分を加熱するようにヒーターを巻き、高蒸気圧
成分が凝縮しないようにしている。凝縮が起こらなけれ
ばこの成分の隙間9全体での蒸気圧が高まり、蒸発量は
僅少となり、かつ一定となる。従って、育成された結晶
の組成に著しい誤差や偏差は起らなくなる。
[Operation] Evaporated high vapor pressure components (for example, Hg) condense in low-temperature areas, so if that area is heated to a high temperature, no condensation will occur. Therefore, in the present invention, a heater is wound so as to heat the part next to the terminal end of the polycrystalline material, that is, the gap 9' between the unwelded stopper and the ampoule in FIG. 3, so that high vapor pressure components do not condense. That's what I do. If condensation does not occur, the vapor pressure of this component across the gap 9 will increase, and the amount of evaporation will be small and constant. Therefore, no significant errors or deviations occur in the composition of the grown crystal.

【0010】0010

【実施例】次に本発明の実施例を述べる。アンプルのア
センブリーとしては既に述べたように石英アンプルの中
に種子結晶,帯溶融部,多結晶材料の順に下から積み重
ね、多結晶材料の上端と栓の間を約1mmに保つよう仮
止めしたあと、真空排気装置によってアンプルの中を排
気し、所定の真空度になったならば栓の上部をアンプル
の外側から酸水素バーナー炎によって加熱し、栓とアン
プルを溶接することによってアンプルを真空封止した。 栓の封止部より上のアンプル材を切り落したあと吊り環
を溶接し、下降装置に吊り下げ、さらに育成用ヒーター
が正しく帯溶融部の位置に来るよう高さ調節を行った。 ここ迄は従来の工程と全く同一である。
[Example] Next, an example of the present invention will be described. To assemble the ampoule, as described above, stack the seed crystal, melted zone, and polycrystalline material in this order from the bottom in the quartz ampoule, and temporarily secure the ampule so that the distance between the top of the polycrystalline material and the stopper is approximately 1 mm. The inside of the ampoule is evacuated using a vacuum evacuation device, and once the specified degree of vacuum is reached, the upper part of the stopper is heated from the outside of the ampoule with an oxyhydrogen burner flame, and the ampoule is vacuum-sealed by welding the stopper and the ampoule. did. After cutting off the ampoule material above the sealing part of the stopper, we welded a hanging ring and hung it from a lowering device, and then adjusted the height of the growth heater so that it was positioned correctly at the melting zone. The process up to this point is completely the same as the conventional process.

【0011】次に図1に示すごとく、溶接されていない
アンプル1と栓5の間の隙間9′の部分にこの部分を覆
うように丁度この長さに相当する長さをもった加熱用ヒ
ーター10を巻きつけた。この加熱用ヒーター10の設
定温度は、単結晶育成用ヒーターと同じ温度(約500
℃)にし、その加熱は育成用ヒーターへの電力供給開始
と同時に開始した。このあと、通常の如く一時間当り1
50μmの長さを降下させる速さで単結晶育成を行った
。終了後、隙間9′の部分を観察したところ、凝縮した
Hgは全く認められなかった。さらに育成した単結晶を
縦方向に板状に切り出し、通常の手段で組成分布を調べ
た結果、結晶の上部と下部とで組成に有意差はなく、こ
のことからHgの過度の蒸発による結晶組成のずれは起
っていないことが判明した。
Next, as shown in FIG. 1, a heating heater with a length exactly corresponding to the gap 9' between the unwelded ampoule 1 and the stopper 5 is placed so as to cover this area. I wrapped it around 10. The set temperature of this heating heater 10 is the same temperature as that of the single crystal growth heater (approximately 500
℃), and heating was started at the same time as power supply to the growth heater started. After this, 1 hour per hour as usual.
Single crystal growth was performed at a rate of descending the length of 50 μm. When the gap 9' was observed after completion, no condensed Hg was observed. Furthermore, as a result of cutting the grown single crystal into plates in the longitudinal direction and examining the composition distribution using conventional means, we found that there was no significant difference in composition between the upper and lower parts of the crystal. It was found that no deviation occurred.

【0012】0012

【発明の効果】以上詳述したごとく本発明によるときに
は、帯溶融法により、高蒸気圧成分を含む材料を用いて
単結晶育成を行ってもその成分の蒸発による組成ずれが
起らず、全体として組成の均一な良好な単結晶を育成す
ることができる。
Effects of the Invention As detailed above, according to the present invention, even if a single crystal is grown using a material containing a high vapor pressure component by the zone melting method, no deviation in composition due to evaporation of the component occurs, and the overall As a result, a good single crystal with a uniform composition can be grown.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明を説明するための加熱される部分とヒー
ターとの位置関係を示す図である。
FIG. 1 is a diagram showing the positional relationship between a heated portion and a heater for explaining the present invention.

【図2】帯溶融法の原理を示す図である。FIG. 2 is a diagram showing the principle of the zone melting method.

【図3】アンプルの封止部の詳細図である。FIG. 3 is a detailed view of the sealing part of the ampoule.

【符号の説明】[Explanation of symbols]

1  アンプル 2  種子結晶 3  帯溶融部 4  多結晶材料 5  栓 6  育成用ヒーター 7  単結晶 8  アンプルと栓との溶接部 9  隙間 9′  溶接されない栓とアンプルの隙間10  加熱
用ヒーター
1 Ampoule 2 Seed crystal 3 Melting zone 4 Polycrystalline material 5 Plug 6 Growth heater 7 Single crystal 8 Welded part between ampoule and stopper 9 Gap 9' Gap between unwelded stopper and ampoule 10 Heating heater

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  アンプルに封入された棒状の多結晶材
料の一部のみを溶融し、この溶融部を棒状多結晶材料の
先端から終端まで移動させることによってこの材料を単
結晶化する単結晶の育成方法であって、終端部の隣の多
結晶材料が存在しないアンプルの一部を、単結晶の育成
期間中を通して溶融部と同じ温度で加熱し続けることを
特徴とする帯溶融法による単結晶の育成方法。
Claim 1: A single-crystalline method in which only a part of a rod-shaped polycrystalline material sealed in an ampoule is melted, and the melted part is moved from the tip of the rod-shaped polycrystalline material to the end to form a single crystal. A single crystal growth method using a zone melting method, which is characterized in that a part of the ampoule where no polycrystalline material is present next to the terminal end is continuously heated at the same temperature as the melting part throughout the single crystal growth period. How to cultivate.
JP41428790A 1990-12-26 1990-12-26 Single crystal growth method by zone melting method Expired - Lifetime JP2734205B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP41428790A JP2734205B2 (en) 1990-12-26 1990-12-26 Single crystal growth method by zone melting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP41428790A JP2734205B2 (en) 1990-12-26 1990-12-26 Single crystal growth method by zone melting method

Publications (2)

Publication Number Publication Date
JPH04224188A true JPH04224188A (en) 1992-08-13
JP2734205B2 JP2734205B2 (en) 1998-03-30

Family

ID=18522782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP41428790A Expired - Lifetime JP2734205B2 (en) 1990-12-26 1990-12-26 Single crystal growth method by zone melting method

Country Status (1)

Country Link
JP (1) JP2734205B2 (en)

Also Published As

Publication number Publication date
JP2734205B2 (en) 1998-03-30

Similar Documents

Publication Publication Date Title
JP2021510139A (en) Quartz tube and equipment for crystal growth by VB / VGF method
US5895527A (en) Single crystal pulling apparatus
JPH04224188A (en) Method for growing single crystal by zone melting method
EP0132618B1 (en) Process for preparing znse single crystal
EP0102130A1 (en) Method of growing monocrystalline bodies of volatile compounds
KR20040018250A (en) Crystal puller and method for growing single crystal semiconductor material
JPH04362085A (en) Method for growing single crystal by zone melting method
US4439266A (en) Vapor transport process for growing selected compound semiconductors of high purity
JP2517803B2 (en) Method for synthesizing II-VI compound semiconductor polycrystal
JP3725700B2 (en) Compound single crystal growth apparatus and method
JPS58197270A (en) Crucible for evaporating source
ITMI992423A1 (en) INDIO PHOSPHIDE DIRECT SYNTHESIS PROCEDURE
RU2189405C1 (en) METHOD OF PREPARING COMPOUND LiInS2 MONOCRYSTALS
JPH01183499A (en) Production of high-purity znse single crystal and apparatus therefor
JP3945073B2 (en) Single crystal manufacturing method
US4249987A (en) Method of growing large Pb1-x -Snx -Te single crystals where 0<X<1
JPS62197397A (en) Production of single crystal
JPH01242489A (en) Single crystal growth apparatus
JPH069025Y2 (en) Compound semiconductor single crystal manufacturing equipment
JPH0459690A (en) Device for lifting single crystal of compound semiconductor having high dissociation pressure
JPH0840800A (en) Production of single crystal
JPS62292690A (en) Boat for growing ii-vi compound single crystal
EP0214350B1 (en) Method for preparing a polycrystalline alloy for making single crystals by a travelling solvent zone
JPH0867593A (en) Method for growing single crystal
JPH03257034A (en) Liquid phase epitaxial growth system