JPH0840800A - Production of single crystal - Google Patents

Production of single crystal

Info

Publication number
JPH0840800A
JPH0840800A JP25602494A JP25602494A JPH0840800A JP H0840800 A JPH0840800 A JP H0840800A JP 25602494 A JP25602494 A JP 25602494A JP 25602494 A JP25602494 A JP 25602494A JP H0840800 A JPH0840800 A JP H0840800A
Authority
JP
Japan
Prior art keywords
single crystal
producing
crucible
polycrystal
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25602494A
Other languages
Japanese (ja)
Other versions
JP3595358B2 (en
Inventor
Koichi Onodera
晃一 小野寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP25602494A priority Critical patent/JP3595358B2/en
Publication of JPH0840800A publication Critical patent/JPH0840800A/en
Application granted granted Critical
Publication of JP3595358B2 publication Critical patent/JP3595358B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To stably obtain single crystal having excellent optical performance while controlling precipitation of Te by preparing polycrystal excessively premixed with Te and controlling the temperature of a crucible under specific conditions in production of the single crystal in producing specific single crystal by THM method using Te as flux. CONSTITUTION:Single crystal of the chemical formula (Cd1-x-yMnxHgy)Te, (Cd1-x-y-zMnxHgyZnz)Te and (Cd1-x-yMnxHgy)(SeuTe1-u) [(x), (y), (z) and (u) are each 0-1] is produced by a method (THM method) for moving polycrystal while melting in a belt-like state by using Te as flux under a fixed temperature gradient. In the production, Cd, Mn, Zn, Se, Hg, Te or HgTe are used as a raw material, the blending molecular ratio of the raw materials is regulated and Te is made in a ratio 1-10% higher than a fixed ratio to manufacture polycrystal. In production of the single crystal, the whole inner space of a crucible for housing the polycrystal is kept at a temperature >= the melting point of Te (450 deg.C).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、化学式(Cd1-x-y
xHgy)Te、(Cd1-x-y-zMnxHgyZnz)T
e、および(Cd1-x-yMnxHgy)(SeuTe
1-u )、(x,y,z および u はともに0〜1の値、以下
同じ)で表される単結晶の製造方法に関する。これらの
単結晶は、光通信の長距離伝送において使われる光増幅
器用励起光源(波長0.98〜1.02μm)、および半
導体レーザ(LD)励起SHG光源(波長0.83〜0.
86μm)に搭載される光アイソレータの磁気光学素子
の材料として利用される。
The present invention relates to the chemical formula (Cd 1-xy M
n x Hg y ) Te, (Cd 1-xyz Mn x Hg y Zn z ) T
e, and (Cd 1-xy Mn x Hg y ) (Se u Te
1-u ), (x, y, z and u are all values of 0 to 1, hereinafter the same). These single crystals are used as a pumping light source (wavelength 0.98 to 1.02 μm) for optical amplifiers used in long-distance transmission of optical communication, and a semiconductor laser (LD) pumping SHG light source (wavelength 0.83 to 0.83 μm).
86 μm) and is used as a material for the magneto-optical element of the optical isolator.

【0002】[0002]

【従来の技術】多くの方法がある単結晶の作製法の中
で、THM法(Travelling Heating Methodの略)と呼
ばれる方法は、フラックス(溶媒)を用い、多結晶体を
帯状に溶解しつつ移動することによって単結晶を作製す
る方法である。この方法は複雑な成分系においても適用
でき、組成の変動が少なく比較的長い単結晶を作製する
ことができる等の特徴がある。配合した原料をるつぼに
充填し、真空封入し、これを加熱溶融した後、急冷して
多結晶体を予め作製したうえで、Teをフラックスとす
るTHM法によってCd1-yHgyTe単結晶を作製でき
ることは知られている。
2. Description of the Related Art Among many methods for producing single crystals, a method called THM (Travelling Heating Method) uses a flux (solvent) to move a polycrystal while melting it in a band shape. This is a method for producing a single crystal by This method has characteristics that it can be applied to a complex component system and that a relatively long single crystal can be produced with little variation in composition. The crucible is filled with the blended raw materials, vacuum sealed, heated and melted, and then rapidly cooled to prepare a polycrystalline body, and then Cd 1-y Hg y Te single crystal is prepared by the THM method using Te as a flux. It is known that can be made.

【0003】光アイソレータ等の磁気光学素子の材料と
して使われる(Cd1-x-yMnxHgy)Te、(Cd
1-x-y-zMnxHgyZnz)Te、および(Cd1-x-y
xHgy)(SeuTe1-u )で表される単結晶の作製
にも基本的にはこの方法を適用することができる。しか
しながら、特にHgを含むこれらの系の単結晶の作製時
には、高温加熱時のHgの蒸気圧による内圧高騰によ
り、るつぼが破損しやすいという問題があり、予め多結
晶体を作製することもその対策になっていることは事実
である。それにもかかわらず、この問題は根本的な解決
に至っていないのが現状である。
(Cd 1-xy Mn x Hg y ) Te, (Cd used as a material for a magneto-optical element such as an optical isolator
1-xyz Mn x Hg y Zn z ) Te, and (Cd 1-xy M
This method can be basically applied to the production of a single crystal represented by n x Hg y ) (Se u Te 1-u ). However, there is a problem that the crucible is easily damaged due to a rise in internal pressure due to the vapor pressure of Hg during high-temperature heating, especially when producing single crystals of these systems containing Hg. Is true. Nevertheless, the current situation is that this problem has not been fundamentally resolved.

【0004】更に、この方法によって得た結晶中には、
Te相の粒子が多く析出することも問題の一つである。
これらの結晶が光アイソレータ等の磁気光学素子として
使われた場合、結晶中に析出したTe粒子は、光の散乱
の原因となり、著しい透過率の低下をもたらすという問
題がある。
Further, in the crystals obtained by this method,
One of the problems is that many Te phase particles are precipitated.
When these crystals are used as a magneto-optical element such as an optical isolator, Te particles deposited in the crystals cause light scattering, resulting in a remarkable decrease in transmittance.

【0005】[0005]

【発明が解決しようとする課題】従って、本発明の課題
は、前記問題点を解消した、安定して単結晶を作製する
ことが可能な、かつTeの析出を抑制した光学的性能の
良好な単結晶の作製方法を提供する。
SUMMARY OF THE INVENTION Therefore, the object of the present invention is to solve the above-mentioned problems, to stably produce a single crystal, and to suppress the precipitation of Te and to have good optical performance. A method for manufacturing a single crystal is provided.

【0006】[0006]

【課題を解決するための手段】本発明は、Teをフラッ
クスとして用い、THM法によって単結晶を作製する過
程で使用する多結晶体を製作するにあたり、Cd、M
n、Zn、Se、Hg、Te、またはHgTeを原料と
して、原料の配合モル比が、それぞれ(Cd1-x- yMnx
Hgy):Te=1:1.01〜1.10、(Cd1-x-y-z
MnxHgyZnz):Te=1:1.01〜1.10、お
よび(Cd1-x-yMnxHgy):(SeuTe1-u )=
1:1.01〜1.10となるように調整した多結晶体を
作製して、化学式(Cd1-x-yMnxHgy)Te、(C
1-x-y-zMnxHgyZnz)Te、および(Cd1-x-y
MnxHgy)(SeuTe1-u )で表される単結晶の製
造方法である。
According to the present invention, when Te is used as a flux to produce a polycrystal used in the process of producing a single crystal by the THM method, Cd, M
Using n, Zn, Se, Hg, Te, or HgTe as a raw material, the blending molar ratio of the raw materials is (Cd 1-x- y Mn x
Hg y ): Te = 1: 1.01 to 1.10, (Cd 1-xyz
Mn x Hg y Zn z ): Te = 1: 1.01 to 1.10, and (Cd 1-xy Mn x Hg y ) :( Se u Te 1-u ) =
A polycrystal body adjusted to have a ratio of 1: 1.01 to 1.10 was prepared, and a polycrystal having a chemical formula (Cd 1-xy Mn x Hg y ) Te, (Cd
d 1-xyz Mn x Hg y Zn z ) Te, and (Cd 1-xy
Mn x Hg y ) (Se u Te 1-u ) is a method for producing a single crystal.

【0007】更に、本発明は、前記方法で得た多結晶体
とTeとを収容したるつぼを真空に封じ、るつぼ内の充
填空間全体を常にTeの融点以上の温度に保ちつつ、か
つ上下方向の温度勾配を5〜50℃の範囲に保ち、TH
M法によって、化学式(Cd1-x-yMnxHgy)Te、
(Cd1-x-y-zMnxHgyZnz)Te、および(Cd1
-x-yMnxHgy)(SeuTe1-u )で表される単結晶
の製造方法である。
Further, according to the present invention, the crucible containing the polycrystal obtained by the above method and Te is sealed in a vacuum, and the entire filling space in the crucible is always kept at a temperature equal to or higher than the melting point of Te, and in the vertical direction. Temperature gradient in the range of 5 to 50 ° C
According to the M method, the chemical formula (Cd 1-xy Mn x Hg y ) Te,
(Cd 1-xyz Mn x Hg y Zn z ) Te, and (Cd 1
-xy Mn x Hg y ) (Se u Te 1-u ).

【0008】本発明は、以上に加えて、少なくとも上記
の単結晶製造過程の開始時に、るつぼ内の充填空間の最
下部にあるTeの融液と、該融液の上に位置する多結晶
体との間に、所定の大きさの空間を設けて単結晶を製造
する方法である。
According to the present invention, in addition to the above, at least at the start of the above-mentioned single crystal manufacturing process, a melt of Te at the bottom of the filling space in the crucible and a polycrystalline body located above the melt. Is a method for producing a single crystal by providing a space of a predetermined size between

【0009】以上、本発明は、所定の温度勾配のもと
で、Teをフラックスとして用い、多結晶体を帯状に溶
解しつつ移動することによって、化学式が(Cd1-x-y
MnxHgy)Te、(Cd1-x-y-zMnxHgyZnz)T
e、および(Cd1-x-yMnxHgy)(SeuTe
1-u )、(x,y,z および u はともに0〜1の値)で表
される単結晶を製造する方法において、Cd、Mn、Z
n、Se、Hg、Te、またはHgTeを原料とし、前
記原料の配合モル比が、それぞれ(Cd1-x-yMnxHg
y):Te=1:1.01〜1.10、(Cd1-x-y-zMn
xHgyZnz):Te=1:1.01〜1.10、および
(Cd1-x-yMnxHgy):(SeuTe1-u )=1:
1.01〜1.10の範囲の組成を持つ多結晶体を作製す
る過程を含むことを特徴とする単結晶の製造方法であ
り、上記記載の単結晶の製造方法において、前記多
結晶体を収容するるつぼの内部空間の全体を、Teの融
点以上の温度に保つことを特徴とする単結晶の製造方法
であり、上記記載の単結晶の製造方法において、結
晶を育成する場所の近傍の上下方向の温度勾配が5〜5
0℃/cmであることを特徴とする単結晶の製造方法で
あり、上記記載の単結晶の製造方法において、少な
くとも単結晶製造過程の開始時に、るつぼ内の充填空間
の最下部に存在するTeの融液の液面と、該融液の上に
位置する多結晶体との間に空間をもうけることを特徴と
する単結晶の製造方法であり、上記記載の単結晶の
製造方法において、前記Te融液の液面と多結晶体との
間の空間の高さの範囲は、るつぼの内径相当ないし該内
径の4分の1の間であることを特徴とする単結晶の製造
方法である。
As described above, according to the present invention, the chemical formula (Cd 1-xy) is obtained by using Te as a flux under a predetermined temperature gradient and moving the polycrystal while melting it in a band shape.
Mn x Hg y ) Te, (Cd 1-xyz Mn x Hg y Zn z ) T
e, and (Cd 1-xy Mn x Hg y ) (Se u Te
1-u ), (where x, y, z and u are all values of 0 to 1), Cd, Mn, Z
n, Se, Hg, Te, or HgTe is used as a raw material, and the mixing molar ratio of the raw materials is (Cd 1 -xy Mn x Hg
y ): Te = 1: 1.01 to 1.10, (Cd 1-xyz Mn
x Hg y Zn z ): Te = 1: 1.01 to 1.10, and (Cd 1-xy Mn x Hg y ) :( Se u Te 1-u ) = 1:
A method for producing a single crystal, comprising the step of producing a polycrystal having a composition in the range of 1.01 to 1.10, wherein the polycrystal is produced in the method for producing a single crystal described above. A method for producing a single crystal, characterized in that the entire inner space of the crucible to be housed is maintained at a temperature equal to or higher than the melting point of Te, in the method for producing a single crystal described above, the upper and lower portions in the vicinity of a place where the crystal is grown. Direction temperature gradient is 5-5
The method for producing a single crystal is characterized in that the temperature is 0 ° C./cm, and in the method for producing a single crystal described above, Te existing at the bottom of the filling space in the crucible is at least at the start of the single crystal production process. A liquid surface of the melt of, and a method for producing a single crystal, characterized in that a space is provided between the polycrystalline body located on the melt, in the method for producing a single crystal described above, In the method for producing a single crystal, the height range of the space between the liquid surface of the Te melt and the polycrystal is between the inner diameter of the crucible and a quarter of the inner diameter. .

【0010】[0010]

【作用】本発明が対象としている3種類の材料、(Cd
1-x-yMnxHgy)Te、(Cd1-x-y-zMnxHgyZn
z)Te、および(Cd1-x-yMnxHgy)(SeuTe
1- u )の融点はそれぞれ、1,000℃を超える。TH
M法によって単結晶を作製する過程で、これらの系の多
結晶体を作るために、単純に目標とする組成に配合した
原料を石英るつぼに充填し、真空封入した後、溶解する
ために約1,050℃の温度に加熱すると、るつぼが破
損するトラブルが多く発生する。この原因を追求した結
果、るつぼの破損はこれに充填した原料のうち、未反応
のまま残った一部のHg等の蒸気圧によることが判明し
た。本発明者はこの結果にもとづき、原料のTeを過剰
に配合することによってHgと反応させ、未反応のHg
等の存在をなくすることによって、蒸気圧による内圧の
高騰を避けることを案出するに至った。
The three types of materials targeted by the present invention, (Cd
1-xy Mn x Hg y ) Te, (Cd 1-xyz Mn x Hg y Zn
z ) Te, and (Cd 1-xy Mn x Hg y ) (Se u Te
Each of the melting points of 1- u ) exceeds 1,000 ° C. TH
In the process of producing a single crystal by the M method, in order to produce a polycrystal of these systems, a quartz crucible is simply filled with a raw material blended with a target composition, vacuum-sealed, and then melted. When heated to a temperature of 1,050 ° C, there are many problems in which the crucible is damaged. As a result of pursuing this cause, it was found that the crucible was damaged due to vapor pressure of a part of the raw materials charged in the crucible which remained unreacted. Based on this result, the present inventor reacted with Hg by excessively blending Te as a raw material, and reacted with unreacted Hg.
It was devised to avoid the rise in internal pressure due to the vapor pressure by eliminating the existence of the above.

【0011】一方、従来より多くの結晶育成報告がなさ
れている結晶のCdxHg1-xTe系の融点は、約800
℃であり、この系では、るつぼの破損はあまり問題とな
らなかった。その理由は、この材料の溶解は約850℃
の温度で行うため、その時、たとえわずかに未反応のH
gが存在していたとしても、本発明が対象とする系の溶
解温度(約1,050℃)には、ほど遠く、従って、る
つぼが破損するほどの蒸気圧の高騰に至らなかったため
と考えられる。
On the other hand, the melting point of the Cd x Hg 1-x Te system of the crystal, which has been reported to be more numerous than before, is about 800.
C., and crucible failure was less of a problem in this system. The reason is that the melting of this material is about 850 ° C.
Since it is carried out at the temperature of, the H that is slightly unreacted at that time
It is considered that even if g was present, it was far from the melting temperature (about 1,050 ° C.) of the system targeted by the present invention, and therefore the vapor pressure did not rise so high that the crucible was broken. .

【0012】次に、単結晶中のTe粒子に言及する。一
般のTHM法による単結晶作製の場合、急峻な温度勾配
のもとで狭い領域にフラックスを集中させる。しかしな
がら、一般に用いられているTHM法の装置を、本発明
の対象材料に適用すると、結晶中には多数のTe粒子が
存在する結果となった。
Next, reference will be made to Te particles in a single crystal. In the case of producing a single crystal by the general THM method, the flux is concentrated in a narrow region under a steep temperature gradient. However, application of a commonly used THM method device to the subject material of the present invention resulted in the presence of a large number of Te particles in the crystal.

【0013】その原因は、狭い領域で急峻な温度勾配が
強調された結果であろうと推論される。本発明は、従っ
て、単結晶製造過程においては、石英るつぼの内部空間
全体を常にTeの融点(450℃)以上とし、その上で
THM法を適用することによって、Te粒子の析出がな
い単結晶を製造せんとするものである。このメカニズム
は明かではないが、あえてこれを推論すれば、次のよう
になろうか。
It is inferred that the cause thereof is a result of emphasizing a steep temperature gradient in a narrow area. Therefore, according to the present invention, in the process of producing a single crystal, the entire inner space of the quartz crucible is always set to the melting point of Te (450 ° C.) or higher, and the THM method is applied on the inner space of the quartz crucible. Is to be manufactured. This mechanism is not clear, but if we infer this, would it be as follows.

【0014】単結晶作製過程において、石英るつぼ内を
常にTeの融点である450℃以上の温度に保つことに
よって、るつぼ内壁にTeの析出は生ぜず、常に有効な
フラックスとして機能することとなる。更に、固体中の
Teの拡散速度は大きく、温度勾配下においてTeの移
動が容易となること等が、有効に機能するためと思われ
る。
In the process of producing a single crystal, by keeping the inside of the quartz crucible at a temperature of 450 ° C. or higher, which is the melting point of Te, Te does not precipitate on the inner wall of the crucible and always functions as an effective flux. Furthermore, it is considered that the diffusion rate of Te in the solid is high, and that Te can easily move under a temperature gradient to effectively function.

【0015】更に、結晶作製の時に、多結晶体の最下部
と、フラックスであるTeの融液の液面との間に適当な
空間を設けて加熱を開始することによって、作製された
単結晶中のTe粒子低減に効果があることも実験の結果
わかった。
Further, at the time of crystal formation, an appropriate space is provided between the lowermost portion of the polycrystal and the liquid surface of the melt of Te, which is the flux, and heating is started to produce a single crystal. It was also found as a result of the experiment that it is effective in reducing Te particles in the inside.

【0016】この場合、石英るつぼの底部に位置するT
eは溶解し、一部は蒸発し、前記多結晶体の底部に凝縮
し、これがフラックスとなって多結晶体の一部を溶解す
る。その後、石英るつぼを降下することによって、溶解
部分は帯状を形成し、順次多結晶体の上部に移動し、こ
れが通過したあとには単結晶が生成する。つまり、一定
条件のもとでは、多結晶体を溶解して帯状を形成するに
必要な量のTeがこの方法のよって再現性よく取り入れ
られることとなる。
In this case, the T located at the bottom of the quartz crucible
The e melts, a part of it evaporates, and it condenses on the bottom of the polycrystal, and this becomes a flux to melt a part of the polycrystal. After that, by descending the quartz crucible, the melted portion forms a band shape and sequentially moves to the upper part of the polycrystalline body, and after passing through this, a single crystal is formed. That is, under a certain condition, the amount of Te required for melting the polycrystalline body to form the band shape can be reproducibly incorporated by this method.

【0017】以下、実施例によって、更に、本発明の内
容を説明する。
The contents of the present invention will be further described below with reference to examples.

【0018】[0018]

【実施例1】Cd、Mn、Hg、およびTeを原料とし
て、配合組成が(Cd0.66Mn0.17Hg0.17)Te1.05
となるように、全量で約60グラムを秤量し、充填空
間の内径20mm、長さ約100mmの石英るつぼに充
填し、真空封入する。これを加圧炉によって約18気
圧、1,100℃で加熱し、るつぼに充填した原料を溶
解し、5時間保持した後加熱電源を切って急冷する。こ
の方法をとることによって、充填した原料の少なくとも
Te以外には未反応で残存することなく、従って、蒸気
圧による内圧が過大となって石英るつぼが破損するトラ
ブルはなく、冷却後の石英るつぼからは均一な多結晶体
のインゴットを取り出すことができる。こうして得た多
結晶体はその後の単結晶作製過程の出発材料とする。
Example 1 Using Cd, Mn, Hg, and Te as raw materials, the composition was (Cd 0.66 Mn 0.17 Hg 0.17 ) Te 1.05.
The total amount of about 60 g is weighed so as to obtain a quartz crucible having an inner diameter of the filling space of 20 mm and a length of about 100 mm, and vacuum-sealed. This is heated in a pressure furnace at about 18 atm and 1,100 ° C. to melt the raw material filled in the crucible, hold it for 5 hours, and then turn off the heating power source to quench it. By adopting this method, there is no unreacted residue other than at least Te in the filled raw material, and therefore there is no trouble that the quartz crucible is damaged due to an excessive internal pressure due to the vapor pressure. Can take out a uniform polycrystalline ingot. The thus obtained polycrystal is used as a starting material for the subsequent single crystal production process.

【0019】この多結晶体と約20グラムのTeを、内
側の大きさが直径20mm、長さ約100mmの石英る
つぼに充填し、真空封入し単結晶作製過程に供する。
This polycrystal and about 20 g of Te are filled in a quartz crucible having an inner size of 20 mm and a length of about 100 mm, which is vacuum-enclosed and subjected to a single crystal production process.

【0020】単結晶の作製は、石英るつぼを縦型に配置
し、大気圧のもとで加熱して行う。図1は、本実施例で
用いた単結晶育成装置を模式的に示した図である。石英
るつぼ1が、常にTeの融点である450℃を超える温
度にあって、局部的には最高約860℃で、かつ800
℃付近となる場所では、約25℃/cmの温度勾配とな
る温度プロファイルを形成する電気炉2,3と、るつぼ
移動機構5とによって単結晶を作製する。
The single crystal is produced by arranging a quartz crucible vertically and heating it under atmospheric pressure. FIG. 1 is a diagram schematically showing the single crystal growth apparatus used in this example. The quartz crucible 1 is always at a temperature higher than 450 ° C., which is the melting point of Te, and locally has a maximum temperature of about 860 ° C. and 800 ° C.
In the vicinity of ° C, a single crystal is produced by the electric furnaces 2 and 3 that form a temperature profile having a temperature gradient of about 25 ° C / cm and the crucible moving mechanism 5.

【0021】比較的平坦な温度プロファイルをもつ電気
炉2,3と、局部的な加熱をするための比較的急峻な温
度プロファイルを有する電気炉4とを組み合わせれば、
このような温度プロファイルを得ることができる。
If the electric furnaces 2 and 3 having a relatively flat temperature profile and the electric furnace 4 having a relatively steep temperature profile for local heating are combined,
Such a temperature profile can be obtained.

【0022】単結晶作製開始時点には、フラックスであ
るTeの融液がある石英るつぼ1の最下部が最も温度が
高くなるように、上記温度プロファイルの中で、石英る
つぼの位置を調整する。多結晶体の最下部はTeによっ
て部分的に溶解する。その後、石英るつぼを8mm/日
の速度で連続的に降下することによって、溶解部分は帯
状を形成し、順次多結晶体の上部に移動し、これが通過
したあとには単結晶が生成する。図2(a)は、石英る
つぼ1内での単結晶13が作製されつつある状態を模式
的に示す。石英るつぼが十分な距離を移動した後、室温
まで降温し単結晶を回収する。
At the time of starting the production of the single crystal, the position of the quartz crucible is adjusted in the above temperature profile so that the lowest temperature of the quartz crucible 1 containing the melt of Te, which is the flux, becomes the highest. The lowermost part of the polycrystalline body is partially dissolved by Te. After that, by continuously descending the quartz crucible at a speed of 8 mm / day, the melted portion forms a band shape and sequentially moves to the upper portion of the polycrystalline body, and a single crystal is formed after passing through the polycrystalline body. FIG. 2A schematically shows a state in which the single crystal 13 is being produced in the quartz crucible 1. After the quartz crucible has moved a sufficient distance, the temperature is lowered to room temperature and the single crystal is collected.

【0023】単結晶の上端部にはフラックスのTeが残
留するが、この部分を除けば、ほぼ全域にわたって一様
な組成の単結晶で、かつ、その内部に、ほとんどTe粒
子は見当たらず、光学素子としての用途に十分耐えられ
るものが得られた。
Te of the flux remains at the upper end of the single crystal. Except for this portion, the single crystal has a uniform composition over almost the entire area, and almost no Te particles are found inside the single crystal. The one that can sufficiently withstand the use as an element was obtained.

【0024】[0024]

【実施例2】Cd,Mn,Zn,HgおよびTeを原料
として、配合組成が(Cd0.64Mn0.16Hg0.15Zn
0.05)Te1.05となるように、全量で約60グラムを秤
量し、前記実施例1記載と同様の方法によって、多結晶
体を作製する。
Example 2 Using Cd, Mn, Zn, Hg and Te as raw materials, the composition was (Cd 0.64 Mn 0.16 Hg 0.15 Zn
A total amount of about 60 g was weighed so as to be 0.05 ) Te 1.05, and a polycrystal was prepared by the same method as described in Example 1.

【0025】この多結晶体と約20グラムのTeを、内
側の大きさが直径20mm、長さ約100mmの石英る
つぼに充填し、真空封入し単結晶作製過程に供する。
This polycrystal and about 20 g of Te are filled in a quartz crucible having an inner size of 20 mm and a length of about 100 mm, which is vacuum-enclosed to be used in a single crystal production process.

【0026】単結晶の作製は、石英るつぼを縦型に配置
し、大気圧のもとで加熱して行う。図1は、本実施例で
用いた単結晶育成装置を模式的に示した図である。石英
るつぼ1が、常にTeの融点である450℃を超える温
度にあって、局部的には最高約850℃で、かつ800
℃付近となる場所では、約30℃/cmの温度勾配とな
る温度プロファイルを形成する電気炉2,3と、るつぼ
移動機構5とによって単結晶を作製する。
The single crystal is produced by arranging the quartz crucible vertically and heating it under atmospheric pressure. FIG. 1 is a diagram schematically showing the single crystal growth apparatus used in this example. The quartz crucible 1 is always at a temperature higher than the melting point of Te, 450 ° C., and locally has a maximum temperature of about 850 ° C. and 800 ° C.
In the vicinity of ° C, a single crystal is produced by the electric furnaces 2 and 3 that form a temperature profile having a temperature gradient of about 30 ° C / cm and the crucible moving mechanism 5.

【0027】比較的平坦な温度プロファイルをもつ電気
炉2,3と、局部的な加熱をするための比較的急峻な温
度プロファイルを有する電気炉4とを組み合わせれば、
このような温度プロファイルを得ることができる。
If the electric furnaces 2 and 3 having a relatively flat temperature profile and the electric furnace 4 having a relatively steep temperature profile for local heating are combined,
Such a temperature profile can be obtained.

【0028】単結晶作製開始時点には、フラックスであ
るTeの融液がある石英るつぼ1の最下部が最も温度が
高くなるように、上記温度プロファイルの中で、石英る
つぼの位置を調整する。多結晶体の最下部はTeによっ
て部分的に溶解する。その後、石英るつぼを7mm/日
の速度で連続的に降下することによって、溶解部分は帯
状を形成し、順次多結晶体の上部に移動し、これが通過
したあとには単結晶が生成する。図2(a)は、石英る
つぼ1内での単結晶13が作製されつつある状態を模式
的に示す。石英るつぼが十分な距離を移動した後、室温
まで降温し単結晶を回収する。
At the start of single crystal production, the position of the quartz crucible is adjusted in the temperature profile so that the lowest temperature of the quartz crucible 1 containing the melt of Te, which is the flux, becomes the highest. The lowermost part of the polycrystalline body is partially dissolved by Te. After that, by continuously descending the quartz crucible at a speed of 7 mm / day, the melted portion forms a band shape, sequentially moves to the upper portion of the polycrystalline body, and a single crystal is formed after passing through the polycrystalline body. FIG. 2A schematically shows a state in which the single crystal 13 is being produced in the quartz crucible 1. After the quartz crucible has moved a sufficient distance, the temperature is lowered to room temperature and the single crystal is collected.

【0029】単結晶の上端部にはフラックスのTeが残
留するが、この部分を除けば、ほぼ全域にわたって一様
な組成の単結晶で、かつ、その内部にTe粒子は、ほと
んど見当たらず、光学素子としての用途に十分耐えられ
るものが得られた。
Te of the flux remains at the upper end of the single crystal. Except for this portion, the single crystal has a uniform composition over almost the entire area, and Te particles are almost absent inside the single crystal. The one that can sufficiently withstand the use as an element was obtained.

【0030】[0030]

【実施例3】Cd、Mn、Hg、Te、およびSeを原
料として、配合組成が(Cd0.66Mn0.17Hg0.17
(Se0.05Te0.951.05 となるように、全量で約6
0グラムを秤量し、前記実施例1記載と同様の方法によ
って、多結晶体を作製する。
Example 3 Using Cd, Mn, Hg, Te, and Se as raw materials, the composition was (Cd 0.66 Mn 0.17 Hg 0.17 ).
(Se 0.05 Te 0.95 ) 1.06 in total so that it becomes 1.05
0 gram is weighed, and a polycrystal is produced by the same method as described in Example 1.

【0031】図2(b)に示すように、内側の大きさが
直径20mm、長さ約100mmで、下端から約20m
mの内壁に、全周にわたって1〜2mmの鍔11を予め
そなえた石英るつぼ1を単結晶製作に使う。石英るつぼ
1の底部に約50グラムのTe12を、前記多結晶体1
5を順次充填する。多結晶体15は前記の鍔の存在のた
めに、Te12との間に空間が形成され、これらは互い
に直接は接しない(加熱されてTeが融液となった時、
液面と多結晶体の底部との間には約10mmの空間が形
成されることとなる)。その上で、石英るつぼを真空封
入し、単結晶作製過程に供する。
As shown in FIG. 2B, the inner size is 20 mm in diameter and about 100 mm in length, and about 20 m from the lower end.
A quartz crucible 1 having a collar 11 of 1 to 2 mm preliminarily provided on the inner wall of m for the entire circumference is used for producing a single crystal. About 50 grams of Te12 was added to the bottom of the quartz crucible 1, and
Fill 5 sequentially. Due to the presence of the brim, the polycrystalline body 15 has a space formed between it and the Te 12, which do not directly contact with each other (when Te is melted to form a melt,
A space of about 10 mm will be formed between the liquid surface and the bottom of the polycrystalline body). Then, the quartz crucible is vacuum-sealed and subjected to a single crystal production process.

【0032】単結晶の作製は、石英るつぼを縦型に配置
し、大気圧のもとで加熱して行う。図1は、単結晶の作
製の状況を模式的に示した図である。石英るつぼ1が、
常にTeの融点である450℃を超える温度にあって、
局部的には最高約840℃で、かつ800℃付近となる
場所では、約35℃/cmの温度勾配となる温度プロフ
ァイルを形成する電気炉と、るつぼ移動機構5とによっ
て単結晶13を作製する。
A single crystal is produced by placing a quartz crucible vertically and heating it under atmospheric pressure. FIG. 1 is a diagram schematically showing a situation of producing a single crystal. The quartz crucible 1
Always at a temperature above 450 ° C, the melting point of Te,
A single crystal 13 is produced by an electric furnace that forms a temperature profile having a temperature gradient of about 35 ° C./cm and a crucible moving mechanism 5 at a location locally at a maximum of about 840 ° C. and near 800 ° C. .

【0033】比較的平坦な温度プロファイルをもつ電気
炉2,3と、局部的な加熱をするための比較的急峻な温
度プロファイルを有する電気炉4とを組み合わせれば、
このような温度プロファイルを得ることができる。
If the electric furnaces 2 and 3 having a relatively flat temperature profile and the electric furnace 4 having a relatively steep temperature profile for local heating are combined,
Such a temperature profile can be obtained.

【0034】単結晶作製開始時点には、フラックスであ
るTeの融液12がある石英るつぼ1の最下部が最も温
度が高くなるように、上記温度プロファイルの中で、石
英るつぼ1の位置を調整する。
At the time of starting the production of the single crystal, the position of the quartz crucible 1 is adjusted in the above temperature profile so that the lowermost part of the quartz crucible 1 having the melt 12 of Te, which is the flux, has the highest temperature. To do.

【0035】この位置で5時間保持した後、石英るつぼ
1を7mm/日の速度で連続的に降下することによっ
て、単結晶13を作製する。石英るつぼ1が十分な距離
を移動した後、室温まで降温し単結晶を回収する。
After holding at this position for 5 hours, the quartz crucible 1 is continuously lowered at a speed of 7 mm / day to produce a single crystal 13. After the quartz crucible 1 has moved a sufficient distance, the temperature is lowered to room temperature to collect the single crystal.

【0036】単結晶の上端部にはフラックスのTeが残
留するが、この部分を除けば、ほぼ全域にわたって一様
な組成の単結晶で、かつ、その内部にTe粒子は見られ
ない。光学素子としての用途として、非常に優秀なもの
が得られた。
Te of the flux remains at the upper end of the single crystal. Except for this portion, the single crystal has a uniform composition over almost the entire area, and no Te particles are found inside the single crystal. As a use as an optical element, a very excellent one was obtained.

【0037】以上の実施例において、Cd1-x-uMnx
u,Cd1-x-u-zMnxHguZnzに対するTe、もし
くは(SeuTe1-u)のモル比は、1:1.05である
が、種々のモル比について実験を行った結果、Teもし
くは(SeuTe1-u)のモル比の範囲は、1:1.01
〜1.10の領域が適当であることが判明した。1.01
より小さいと、未反応のHgが発生し、1.10より大
きいと、Hgの偏析が生じた。
In the above examples, Cd 1-xu Mn x H
g u, the molar ratio of Te with respect to Cd 1-xuz Mn x Hg u Zn z or, (Se u Te 1-u ) is 1: results 1.05, of an experiment conducted for various molar ratios, The range of the molar ratio of Te or (Se u Te 1-u ) is 1: 1.01.
The region of ˜1.10 has been found to be suitable. 1.01
When it is smaller than this, unreacted Hg is generated, and when it is larger than 1.10, Hg segregation occurs.

【0038】又、実施例中の育成時の上下方向の温度勾
配は、25〜35℃/cmであるが、これに関して種々
の実験の結果、5〜50℃/cmの範囲が適当であるこ
とが判った。この範囲より小さいか、あるいは大きい温
度勾配では、育成された結晶内にTeの析出が認められ
た。実施例3において、Te融液の液面と多結晶体底部
の間の空間の高さは、種々の実験の結果、内径と等しい
か、あるいは内径の1/4の間の範囲が適当であること
が明かであった。空間の高さが内径よりも高いと、多結
晶体の溶解が困難となり、内径の1/4よりも低いと、
結晶内にTeの析出が認められた。
The temperature gradient in the vertical direction during growth in the examples is 25 to 35 ° C./cm, but various experiments have shown that the range of 5 to 50 ° C./cm is appropriate. I understood. At a temperature gradient smaller than or larger than this range, Te precipitation was observed in the grown crystal. In Example 3, the height of the space between the liquid surface of the Te melt and the bottom of the polycrystalline body is, as a result of various experiments, equal to the inner diameter, or a range between 1/4 of the inner diameter is suitable. It was clear. If the height of the space is higher than the inner diameter, it becomes difficult to melt the polycrystalline body, and if it is lower than 1/4 of the inner diameter,
Precipitation of Te was observed in the crystal.

【0039】[0039]

【発明の効果】以上述べたように、本発明は、(Cd
1-x-yMnxHgy)Te、(Cd1-x-y-zMnxHgyZn
z)Te、および(Cd1-x-yMnxHgy)(SeuTe
1-u )系の単結晶において切望されていた、Te粒子の
析出を抑制した単結晶の作製を可能とした。
As described above, according to the present invention, (Cd
1-xy Mn x Hg y ) Te, (Cd 1-xyz Mn x Hg y Zn
z ) Te, and (Cd 1-xy Mn x Hg y ) (Se u Te
It has made it possible to produce a single crystal that suppresses the precipitation of Te particles, which has long been desired for a 1-u ) single crystal.

【0040】このため、これらの単結晶を、光通信の長
距離伝送において使われる光増幅器用励起光源(波長
0.98〜1.02μm)、および半導体レーザ(LD)
励起SHG光源(波長0.83〜0.86μm)に搭載さ
れる光アイソレータ等の磁気光学素子として今後十分な
品質の単結晶の供給が可能となった。
Therefore, these single crystals are used as a pumping light source for an optical amplifier (wavelength 0.98 to 1.02 μm) used in long-distance transmission of optical communication, and a semiconductor laser (LD).
As a magneto-optical element such as an optical isolator mounted on an excitation SHG light source (wavelength 0.83 to 0.86 μm), it becomes possible to supply a single crystal of sufficient quality in the future.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例で用いた単結晶育成装置の概略
と温度プロファイルを示す説明図。図1(a)は炉体の
中央断面図で、図1(b)は炉内の中央部の温度分布を
示す図。
FIG. 1 is an explanatory diagram showing an outline and a temperature profile of a single crystal growth apparatus used in an example of the present invention. 1 (a) is a central cross-sectional view of the furnace body, and FIG. 1 (b) is a view showing a temperature distribution in the central part of the furnace.

【図2】本発明を実施するために使った石英るつぼを示
す断面図。図2(a)は、従来の充填方法で充填した本
実施例で用いた石英るつぼを示す図で、図2(b)は、
本発明の充填方法で充填した本実施例で用いた石英るつ
ぼを示す図。
FIG. 2 is a sectional view showing a quartz crucible used for carrying out the present invention. FIG. 2 (a) is a diagram showing a quartz crucible used in this example, which is filled by a conventional filling method, and FIG. 2 (b) is
The figure which shows the quartz crucible used by the present Example filled with the filling method of this invention.

【符号の説明】[Explanation of symbols]

1 石英るつぼ 2 電気炉 3 電気炉 4 電気炉(局部加熱用) 5 るつぼ昇降機構 6 るつぼ支持具 11 鍔 12 Te融液 13 単結晶 14 溶融帯 15 多結晶体 1 quartz crucible 2 electric furnace 3 electric furnace 4 electric furnace (for local heating) 5 crucible lifting mechanism 6 crucible support 11 collar 12 Te melt 13 single crystal 14 melting zone 15 polycrystal

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 所定の温度勾配のもとで、Teをフラッ
クスとして用い、多結晶体を帯状に溶解しつつ移動する
ことによって、化学式が(Cd1-x-yMnxHgy)T
e、(Cd1-x-y-zMnxHgyZnz)Te、および(C
1-x-yMnxHgy)(SeuTe1-u )、(x,y,z およ
び u はともに0〜1の値)で表される単結晶を製造す
る方法において、Cd、Mn、Zn、Se、Hg、T
e、またはHgTeを原料とし、前記原料の配合モル比
が、それぞれ(Cd1-x-yMnxHgy):Te=1:1.
01〜1.10、(Cd1-x-y-zMnxHgyZnz):T
e=1:1.01〜1.10、および(Cd1-x-yMnx
y):(SeuTe1-u )=1:1.01〜1.10の範
囲の組成を持つ多結晶体を作製する過程を含むことを特
徴とする単結晶の製造方法。
1. A chemical formula of (Cd 1-xy Mn x Hg y ) T is obtained by using Te as a flux under a predetermined temperature gradient to move a polycrystalline body while melting it in a band shape.
e, (Cd 1-xyz Mn x Hg y Zn z ) Te, and (C
d 1-xy Mn x Hg y ) (Se u Te 1-u ), (where x, y, z and u are each a value of 0 to 1), Cd, Mn, Zn, Se, Hg, T
e or HgTe as a raw material, and the blending molar ratio of the raw materials is (Cd 1-xy Mn x Hg y ): Te = 1: 1.
01~1.10, (Cd 1-xyz Mn x Hg y Zn z): T
e = 1: 1.01 to 1.10, and (Cd 1-xy Mn x H
g y ) :( Se u Te 1-u ) = 1: 1.01 to 1.10, which is a method for producing a single crystal.
【請求項2】 請求項1記載の単結晶の製造方法におい
て、前記多結晶体を収容するるつぼの内部空間の全体
を、Teの融点以上の温度に保つことを特徴とする単結
晶の製造方法。
2. The method for producing a single crystal according to claim 1, wherein the entire inner space of the crucible for containing the polycrystalline body is maintained at a temperature equal to or higher than the melting point of Te. .
【請求項3】 請求項2記載の単結晶の製造方法におい
て、結晶を育成する場所の近傍の上下方向の温度勾配が
5〜50℃/cmであることを特徴とする単結晶の製造
方法。
3. The method for producing a single crystal according to claim 2, wherein the temperature gradient in the vertical direction near the place where the crystal is grown is 5 to 50 ° C./cm.
【請求項4】 請求項2記載の単結晶の製造方法におい
て、少なくとも単結晶製造過程の開始時に、るつぼ内の
充填空間の最下部に存在するTeの融液の液面と、該融
液の上に位置する多結晶体との間に空間をもうけること
を特徴とする単結晶の製造方法。
4. The method for producing a single crystal according to claim 2, wherein at least at the start of the single crystal production process, the surface of the melt of Te existing at the bottom of the filling space in the crucible and the melt. A method for producing a single crystal, characterized in that a space is provided between the polycrystal located above.
【請求項5】 請求項4記載の単結晶の製造方法におい
て、前記Te融液の液面と多結晶体との間の空間の高さ
の範囲は、るつぼの内径相当ないし該内径の4分の1の
間であることを特徴とする単結晶の製造方法。
5. The method for producing a single crystal according to claim 4, wherein the range of the height of the space between the liquid surface of the Te melt and the polycrystal is equivalent to the inner diameter of the crucible or 4 minutes of the inner diameter. 1. The method for producing a single crystal, characterized in that
JP25602494A 1994-07-28 1994-07-28 Single crystal manufacturing method Expired - Fee Related JP3595358B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25602494A JP3595358B2 (en) 1994-07-28 1994-07-28 Single crystal manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25602494A JP3595358B2 (en) 1994-07-28 1994-07-28 Single crystal manufacturing method

Publications (2)

Publication Number Publication Date
JPH0840800A true JPH0840800A (en) 1996-02-13
JP3595358B2 JP3595358B2 (en) 2004-12-02

Family

ID=17286862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25602494A Expired - Fee Related JP3595358B2 (en) 1994-07-28 1994-07-28 Single crystal manufacturing method

Country Status (1)

Country Link
JP (1) JP3595358B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6241820B1 (en) 1998-03-31 2001-06-05 Ngk Insulators, Ltd. Single crystal-manufacturing equipment and a method for manufacturing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101871123B (en) * 2010-06-12 2012-11-07 上海大学 Method and device for growing cadmium zinc telluride crystals in mobile tellurium solvent melting zone

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6241820B1 (en) 1998-03-31 2001-06-05 Ngk Insulators, Ltd. Single crystal-manufacturing equipment and a method for manufacturing the same
US6368407B2 (en) 1998-03-31 2002-04-09 Ngk Insulators, Ltd. Single crystal-manufacturing equipment and a method for manufacturing the same

Also Published As

Publication number Publication date
JP3595358B2 (en) 2004-12-02

Similar Documents

Publication Publication Date Title
KR101979130B1 (en) Method for growing beta phase of gallium oxide (β-Ga2O3) single crystals from the melt contained within a metal crucible
JPWO2008114822A1 (en) Manufacturing method and manufacturing apparatus for silicon ingot
KR100876925B1 (en) CdTe SINGLE CRYSTAL AND CdTe POLYCRYSTAL, AND METHOD FOR PREPARATION THEREOF
US20090072205A1 (en) Indium phosphide substrate, indium phosphide single crystal and process for producing them
KR20040089737A (en) Apparatus for growing monocrystalline group II-VI and III-V compounds
EP1132505B1 (en) Method for producing single-crystal silicon carbide
JPH0840800A (en) Production of single crystal
US3494730A (en) Process for producing cadmium telluride crystal
JP2003206200A (en) p-TYPE GaAs SINGLE CRYSTAL AND METHOD FOR PRODUCING THE SAME
JPH07206597A (en) Method for producing znse bulk single crystal
KR100816764B1 (en) Synthetic apparatus of semiconductor polycrystal compound and synthetic method of the same
ITMI992423A1 (en) INDIO PHOSPHIDE DIRECT SYNTHESIS PROCEDURE
JP3513046B2 (en) Single crystal manufacturing equipment
JP2887978B2 (en) Method for synthesizing III-V compound semiconductor composition
JPH07206598A (en) Device for producing cd1-x-ymnxhgyte single crystal
JPH08217589A (en) Production of single crystal
JPH1036198A (en) Production of cdmnhgte single crystal
JP2022101937A (en) Method of manufacturing oxide single crystal by solvent movement/flotation zone melting method, and cobaltic acid lithium single crystal
JPH0782075A (en) Method for growing oxide single crystal
JPS63270392A (en) Production of compound semiconductor crystal
JP2000119011A (en) High-purity metal phosphide polycrystal and its synthesis
JPH09241091A (en) Device for growing single crystal and method for growing the same
JP2004269328A (en) Manufacturing apparatus of single crystal
JP2002029881A (en) Method of producing compound semiconductor single crystal
JPH06279198A (en) Production of semi-insulating gallium arsenide semiconductor single crystal

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040518

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20040608

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040831

A61 First payment of annual fees (during grant procedure)

Effective date: 20040903

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees