JP2004269328A - Manufacturing apparatus of single crystal - Google Patents

Manufacturing apparatus of single crystal Download PDF

Info

Publication number
JP2004269328A
JP2004269328A JP2003064962A JP2003064962A JP2004269328A JP 2004269328 A JP2004269328 A JP 2004269328A JP 2003064962 A JP2003064962 A JP 2003064962A JP 2003064962 A JP2003064962 A JP 2003064962A JP 2004269328 A JP2004269328 A JP 2004269328A
Authority
JP
Japan
Prior art keywords
crystal
heater
single crystal
heating
back side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003064962A
Other languages
Japanese (ja)
Inventor
Takuji Otsuka
拓次 大塚
Yoshiaki Haneki
良明 羽木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2003064962A priority Critical patent/JP2004269328A/en
Publication of JP2004269328A publication Critical patent/JP2004269328A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for manufacturing a single crystal that can obtain the single crystal stably in high yields by reducing heat radiation and/or heat transfer from a heater for heating a solid-liquid interface to a heater for heating a crystal. <P>SOLUTION: The manufacturing apparatus for the single crystal is provided with the heater 106 for the solid-liquid interface heating that heats at least the solid-liquid interface 128 between the raw material melt 125 and the crystal in a crystal growth furnace, the heater 107 for the crystal heating that heats the crystal after the solidification and heat retention tubes 111-120. A space 11 is arranged between the backside part of the heater 107 for the crystal heating and the heat retention tube 117 positioned at the backside of the heater for the crystal heating. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、結晶成長炉内の温度分布を制御して単結晶を製造するための装置に関し、特に化合物半導体単結晶を製造するための装置である。
【0002】
【従来の技術】
従来の単結晶の製造方法、たとえば垂直ブリッジマン法(VB法)などにおいては、一度原料と種結晶の一部分を融解させた後、るつぼを下方に移動させることにより、上方へ単結晶成長を行なっている。
【0003】
現在、単結晶の収率を向上させるために、原料融液と結晶との固液界面を加熱するヒータ(以下、固液界面加熱用ヒータという)の熱量を増加させることが提案されている(たとえば、特許文献1参照。)。これは、固液界面加熱用ヒータの熱量を増加させることにより、固液界面の形状が結晶成長方向に凸型の状態で結晶成長をさせることができ、多結晶化を防止することができるからである。
【0004】
しかし、単結晶の従来の製造方法においては、固液界面加熱用ヒータの熱量を増大させると、固化後の結晶を加熱するヒータ(以下、結晶加熱用ヒータという)に、固液界面加熱用ヒータから熱が輻射および/または伝熱で与えられるため、制御温度より上昇し原料融液と結晶との固液界面の形状を制御する条件が制限され、安定して高い収率で単結晶を得ることができなかった。
【0005】
【特許文献1】
特開平11−157981号公報
【0006】
【発明が解決しようとする課題】
本発明は、固液界面加熱用ヒータから結晶加熱用ヒータへの熱の輻射および/または伝熱を低減して、安定して高い収率で単結晶が得られる単結晶の製造装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するため、本発明にかかる単結晶の製造装置は、結晶成長炉内に少なくとも固液界面加熱用ヒータ、結晶加熱用ヒータおよび保温筒が配置されている単結晶の製造装置であって、結晶加熱用ヒータの裏側部と、結晶加熱用ヒータの裏側に位置する保温筒との間に空間を設けることを特徴とする。
【0008】
本発明にかかる単結晶の製造装置においては、空間における結晶加熱用ヒータの裏側面から結晶加熱用ヒータの裏側に位置する保温筒の表側面までの距離Aと、結晶加熱用ヒータの表側面から裏側面までの厚みBが、2B≦A≦30Bの関係にあることを特徴とすることができる。
【0009】
また、本発明にかかる単結晶の製造装置において、ヒータの材質がカーボンまたは鉄−クロム−アルミニウム合金であること、単結晶がIII−V族化合物半導体単結晶またはII−VI族化合物半導体単結晶であること、単結晶がチョクラルスキー(CZ)法、液体封止型チョクラルスキー(LEC)法、水平ブリッジマン(HB)法または垂直ブリッジマン(VB)法にしたがって製造されることを特徴とすることができる。
【0010】
【発明の実施の形態】
本発明にかかる単結晶の製造装置は、図1に示すように、結晶成長炉内に少なくとも固液界面加熱用ヒータ106、結晶加熱用ヒータ107および保温筒111〜120が配置されている単結晶の製造装置であって、結晶加熱用ヒータ107の裏側部と、結晶加熱用ヒータの裏側に位置する保温筒117との間に空間11が設けられている。本発明にかかる単結晶製造装置においては、原料融液125と単結晶127との固液界面128を加熱する固液界面加熱用ヒータ106および固化後の結晶を加熱する結晶加熱用ヒータ107が設けられており、固液界面加熱用ヒータ106は、原料融液125と単結晶127との固液界面128が該ヒータの上端106uと下端106dとの間にあるように配置されている。
【0011】
結晶加熱用ヒータ107の裏側部と、結晶加熱用ヒータの裏側に位置する保温筒117との間に空間11を設けることにより、固液加熱用ヒータから伝わった熱を結晶加熱用ヒータ107から逃がし、安定した温度条件を維持して安定した固液界面形状で結晶成長を行なうことができ、高い収率で単結晶を得ることができる。ここで、裏側とは固液加熱用ヒータの結晶加熱側(これを表側という)の反対側をいう。
【0012】
本発明にかかる単結晶の製造装置においては、図2に示すように、結晶加熱用ヒータ23の裏側部と、結晶加熱用ヒータの裏側に位置する保温筒22との間に設けられた空間21における結晶加熱用ヒータの裏側面23bから保温筒の表側面22aまでの距離Aと、結晶加熱用ヒータ23の表側面23aから裏側面23bまでの厚みBが、2B≦A≦30Bの関係にあることが好ましい。A<2Bであると結晶加熱用ヒータからの熱の逃げが小さく、A>30Bであると結晶加熱用ヒータからの熱の逃げが大きく、いずれの場合も安定した温度条件の維持が難しく、単結晶の収率を向上させることができない。上記観点から、2B≦A≦4Bの関係にあることがより好ましい。
【0013】
また、高温に耐えるため、本発明にかかる単結晶の製造装置に用いられる固液界面加熱用ヒータおよび結晶加熱用ヒータを含めたヒータの材質としては、窒素ガス雰囲気などの還元雰囲気中ではカーボンが、空気雰囲気などの酸化雰囲気中では鉄−クロム−アルミニウム合金が好ましく用いられる。鉄−クロム−アルミニウム合金としては、たとえばカンタルAPM、カンタルAF、カンタルDなどのカンタル合金が特に好ましく用いられる。また、本発明にかかる単結晶の製造装置に用いられる保温筒の材質としては、カーボンフェルトを内包したカーボン、ガラス繊維(たとえば、Al−SiOの組成のものが好ましい)または多孔質レンガなどが好ましく用いられる。
【0014】
また、本発明にかかる単結晶の製造装置においては、GaAs、GaP、GaSb、InAsまたはInPなどのIII−V族化合物半導体単結晶、CdTe、Hg1−xCdTeまたはZnSeなどのII−VI族化合物半導体単結晶などの単結晶を好ましく製造することができる。
【0015】
また、本発明にかかる単結晶の製造装置は、単結晶がチョクラルスキー法(CZ法)、液体封止型チョクラルスキー法(LEC法)、水平ブリッジマン法(HB法)または垂直ブリッジマン法(VB法)にしたがって製造される場合に好ましく用いることができる。
【0016】
図1に、本発明をVB法の装置に適用した具体例を示す。VB装置100において、チャンバ130内に保温筒111〜120が設けられ、該保温筒内には固液界面加熱用ヒータ106および結晶加熱用ヒータ107を含む10個の円筒形状のヒータ101〜110が配置されている。結晶加熱用ヒータ107と、結晶加熱用ヒータの裏側に位置する保温筒117との間に空間11を設けられており、熱量が増大された固液加熱用ヒータ106から結晶加熱用ヒータ107に与えられる熱を逃がすことができる。
【0017】
上記円筒形状のヒータ101〜110の内部を昇降可能なように昇降軸123上端部に固定されたステージ122上に先端部が細くなったるつぼ121が設けられている。るつぼ121の先端部には種結晶126が取付けられ、種結晶126から単結晶127が成長するようその上方に原料融液125が収容される。
【0018】
また、図3に示すように、VB装置300の設計によっては、2以上の結晶加熱用ヒータ307、308が存在する場合には、これらの結晶加熱用ヒータの裏側に位置する2以上の保温筒317、318との間に空間31を形成することができる。
【0019】
さらに、図4に示すように、VB装置400の設計によっては、個々のヒータの裏側の位置に個々の保温筒が設けられているのではなく、一体として保温筒411が設けられている場合には、該保温筒における結晶加熱用ヒータ407の裏側に位置する部分411aの形状を変更することにより、空間41を形成することもできる。
【0020】
図5に、本発明をLEC法に適用した具体例を示す。LEC装置500において、チャンバ530内には、回転可能な下軸523に支持されてサセプタ522が設けられる。サセプタ522内には、るつぼ521が設けられる。また、サセプタ522の周囲には、固液界面加熱用ヒータ502および結晶加熱用ヒータ501を含む3個のヒータ501〜503が配置されている。結晶加熱用ヒータ501と、結晶加熱用ヒータの裏側に位置する保温筒511との間に空間51を設けられており、熱量が増大された固液加熱用ヒータ502から結晶加熱用ヒータ501に与えられる熱を逃がすことができる。るつぼ521内には、原料融液525が収容されるとともに、融液上に液体封止剤529が設けられる。一方、チャンバ530内において、るつぼ521の中心上方には回転昇降可能な上軸524が設けられる。以上のように構成される装置において、単結晶の成長は、窒素およびアルゴンなどの不活性ガスの加圧雰囲気下で行なわれ、上軸524の下端に取付けられた種結晶526から単結晶527が引き上げられる。
【0021】
【実施例】
(実施例1)
図1に示されたVB装置を用いて、VB法により直径75mmのノンドープGaAs単結晶を成長させた。成長に当たって、るつぼ121は内径75mmのPBN製るつぼを使用した。るつぼの下部を円錐形に形成し、その下端に種結晶126を取付けた。次いで、るつぼ121にGaAs多結晶原料7kgを収容した。次いで、原料を収容したるつぼ121は、昇降軸123上端部に固定されたステージ122上に載置した。固液界面加熱用ヒータ106および結晶加熱用ヒータ107を含む10個のヒータ101〜110は、いずれも直径100mm、厚み20mm、上下方向(結晶成長方向)の長さ50mmのカーボン製ヒータである。
【0022】
10個のヒータの裏側には、各ヒータに対応させて10個のカーボン製保温筒が設けられている。結晶加熱用ヒータ107の裏側に位置する保温筒117は、内直径150mm、外直径410mm、上下方向(結晶成長方向)の長さが50mmのものを用いた。また、結晶加熱用ヒータ107の裏側に位置する保温筒117以外の保温筒101〜106、108〜110は、従来と同様の内直径110mm、外直径410、上下方向(結晶成長方向)の長さが50mmのものを用いた。
【0023】
固液界面加熱用ヒータ106によって加熱される固液界面の加熱温度が1240℃に、結晶加熱用ヒータ107によって加熱される結晶の加熱温度が1230℃になるように制御しながら、1回に10日(240時)間かけて1個のGaAs単結晶を成長させた。このときの単結晶の収率を表1に示す。
【0024】
(比較例1)
結晶加熱用ヒータ107の上側に位置する保温筒117についても、従来と同様の内直径110mm、外直径410mm、上下方向(結晶成長方向)の長さが50mmのものを用いた他は、実施例1と同様の条件でGaAs単結晶を成長させた。このときの単結晶の収率を表1に示す。
【0025】
(実施例2〜実施例6)
結晶加熱用ヒータ107の上側に位置する保温筒117について、外直径410、上下方向(結晶成長方向)の長さが50mmであって、表1に示す内直径のものを用いて、実施例1と同様の条件でGaAs単結晶を成長させた。このときの単結晶の収率を表1に示す。
【0026】
【表1】

Figure 2004269328
【0027】
表1の実施例1〜6と比較例1との対比において示されるように、単結晶製造装置において、結晶加熱用ヒータの裏側部と、結晶加熱用ヒータの裏側に位置する保温筒との間に空間を設けることにより、単結晶の収率を向上することができた。
【0028】
特に、実施例1、3〜6に示されるように、空間における結晶加熱用ヒータの裏側面から結晶加熱用ヒータの裏側に位置する保温筒表側面までの距離Aと、結晶加熱用ヒータの表側面から裏側面までの厚みBとの比を2≦(A/B)≦30すなわち2B≦A≦30Bとすることにより、単結晶の収率をより向上させることができた。特に、上記AとBの関係が2≦(A/B)≦4すなわち2B≦A≦4Bである実施例1、3においては単結晶の収率は80%まで向上した。
【0029】
今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明でなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内のすべての変更が含まれることが意図される。
【0030】
【発明の効果】
以上のように、本発明にかかる単結晶の製造装置によれば、結晶加熱用ヒータの裏側部と、結晶加熱用ヒータの裏側に位置する保温筒との間に空間を設けることにより、固液界面加熱用ヒータから結晶加熱用ヒータへの熱の輻射および/または伝熱を低減することができ、安定して高い収率で単結晶が得られる。
【図面の簡単な説明】
【図1】本発明をVB法の装置に適用した一の具体例を示す模式図である。
【図2】本発明にかかる結晶加熱用ヒータの裏面部と、結晶加熱用ヒータの裏側に位置する保温筒との間に設けられる空間を説明する図である。
【図3】本発明をVB法の装置に適用した別の具体例を示す模式図である。
【図4】本発明をVB法の装置に適用したさらに別の具体例を示す模式図である。
【図5】本発明をLEC法の装置に適用した一の具体例を示す模式図である。
【符号の説明】
11,21,31,41,51 空間、22,117,317,318 結晶加熱用ヒータの裏側に位置する保温筒、22a 保温筒の表側面、23,107,307,308,407,501 結晶加熱用ヒータ、23a 表側面、23b 裏側面、100,300,400 VB装置、101〜105,108〜110,301〜305,309,310,401〜405,408〜410,503 ヒータ、106,306,406,502 固液界面界面加熱用ヒータ、106u 上端、106d 下端、111〜116,118〜120,311〜316,319,320,411 保温筒、411a 保温筒における結晶加熱用ヒータの裏側に位置する部分、121,321,421,521 るつぼ、122,322,422 ステージ、123,323,423 昇降軸、125,325,425,525 原料融液、126,326,426,526 種結晶、127,327,427,527単結晶、128,328,428,528 固液界面、130,330,430,530 チャンバ、523 下軸、524
上軸、529 液体封止剤。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an apparatus for manufacturing a single crystal by controlling a temperature distribution in a crystal growth furnace, and particularly to an apparatus for manufacturing a compound semiconductor single crystal.
[0002]
[Prior art]
In a conventional method for producing a single crystal, for example, a vertical Bridgman method (VB method), a single crystal is grown upward by melting a raw material and a part of a seed crystal and then moving the crucible downward. ing.
[0003]
At present, in order to improve the yield of single crystals, it has been proposed to increase the amount of heat of a heater for heating a solid-liquid interface between a raw material melt and a crystal (hereinafter, referred to as a solid-liquid interface heating heater) ( For example, see Patent Document 1.) This is because, by increasing the amount of heat of the heater for heating the solid-liquid interface, the crystal can be grown in a state where the shape of the solid-liquid interface is convex in the crystal growth direction, and polycrystallization can be prevented. It is.
[0004]
However, in the conventional method for producing a single crystal, when the heat of the solid-liquid interface heating heater is increased, a heater for heating the solidified crystal (hereinafter referred to as a crystal heating heater) is replaced with a solid-liquid interface heating heater. Since heat is applied by radiation and / or heat transfer from the furnace, conditions for raising the control temperature and controlling the shape of the solid-liquid interface between the raw material melt and the crystal are limited, and a single crystal is stably obtained at a high yield. I couldn't do that.
[0005]
[Patent Document 1]
JP-A-11-157981
[Problems to be solved by the invention]
The present invention provides an apparatus for producing a single crystal in which a single crystal can be stably obtained at a high yield by reducing heat radiation and / or heat transfer from the solid-liquid interface heating heater to the crystal heating heater. The purpose is to:
[0007]
[Means for Solving the Problems]
In order to achieve the above object, a single crystal manufacturing apparatus according to the present invention is a single crystal manufacturing apparatus in which at least a heater for solid-liquid interface heating, a heater for crystal heating, and a heat retaining cylinder are arranged in a crystal growth furnace. Further, a space is provided between the back side of the crystal heating heater and the heat retaining cylinder located on the back side of the crystal heating heater.
[0008]
In the apparatus for producing a single crystal according to the present invention, the distance A from the back surface of the crystal heating heater to the front surface of the heat retaining cylinder located on the back side of the crystal heating heater in the space, and from the front surface of the crystal heating heater. The thickness B up to the back side surface may be characterized by a relationship of 2B ≦ A ≦ 30B.
[0009]
In the apparatus for producing a single crystal according to the present invention, the material of the heater is carbon or an iron-chromium-aluminum alloy, and the single crystal is a III-V compound semiconductor single crystal or a II-VI compound semiconductor single crystal. The single crystal is manufactured according to the Czochralski (CZ) method, the liquid-sealed Czochralski (LEC) method, the horizontal Bridgman (HB) method or the vertical Bridgman (VB) method. can do.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
As shown in FIG. 1, the apparatus for producing a single crystal according to the present invention has a single crystal in which at least a solid-liquid interface heating heater 106, a crystal heating heater 107, and a heat retaining cylinder 111 to 120 are disposed in a crystal growth furnace. The space 11 is provided between the back side of the heater for crystal heating 107 and the heat retaining cylinder 117 located on the back side of the heater for crystal heating. In the single crystal production apparatus according to the present invention, a solid-liquid interface heating heater 106 for heating a solid-liquid interface 128 between the raw material melt 125 and the single crystal 127 and a crystal heating heater 107 for heating the crystal after solidification are provided. The solid-liquid interface heater 106 is arranged such that a solid-liquid interface 128 between the raw material melt 125 and the single crystal 127 is located between the upper end 106u and the lower end 106d of the heater.
[0011]
By providing the space 11 between the back side of the crystal heating heater 107 and the heat retaining cylinder 117 located on the back side of the crystal heating heater, heat transmitted from the solid-liquid heating heater is released from the crystal heating heater 107. Crystal growth can be performed in a stable solid-liquid interface shape while maintaining stable temperature conditions, and a single crystal can be obtained with a high yield. Here, the back side is the side opposite to the crystal heating side (this is called the front side) of the solid-liquid heating heater.
[0012]
In the apparatus for producing a single crystal according to the present invention, as shown in FIG. 2, a space 21 provided between a back side of a crystal heating heater 23 and a heat retaining cylinder 22 located on the back side of the crystal heating heater. The distance A from the back side surface 23b of the crystal heating heater to the front side surface 22a of the heat retaining cylinder and the thickness B from the front side surface 23a to the back side surface 23b of the crystal heating heater 23 in the relation of 2B ≦ A ≦ 30B Is preferred. When A <2B, the escape of heat from the heater for crystal heating is small, and when A> 30B, the escape of heat from the heater for crystal heating is large. In each case, it is difficult to maintain a stable temperature condition. The yield of crystals cannot be improved. From the above viewpoint, it is more preferable that the relationship of 2B ≦ A ≦ 4B is satisfied.
[0013]
Further, in order to withstand high temperatures, as a material of a heater including a solid-liquid interface heating heater and a crystal heating heater used in the single crystal manufacturing apparatus according to the present invention, carbon is used in a reducing atmosphere such as a nitrogen gas atmosphere. In an oxidizing atmosphere such as an air atmosphere, an iron-chromium-aluminum alloy is preferably used. As the iron-chromium-aluminum alloy, a Kanthal alloy such as Kanthal APM, Kanthal AF or Kanthal D is particularly preferably used. Further, as the material of the heat retaining cylinder used in the apparatus for producing a single crystal according to the present invention, carbon containing carbon felt, glass fiber (for example, preferably having a composition of Al 2 O 3 —SiO) or porous brick is preferable. And the like are preferably used.
[0014]
In the apparatus for manufacturing a single crystal according to the present invention, a III-V compound semiconductor single crystal such as GaAs, GaP, GaSb, InAs or InP, or a II-VI compound such as CdTe, Hg 1-x Cd x Te or ZnSe may be used. A single crystal such as a group compound semiconductor single crystal can be preferably produced.
[0015]
Further, in the single crystal manufacturing apparatus according to the present invention, the single crystal may be a Czochralski method (CZ method), a liquid-sealed Czochralski method (LEC method), a horizontal Bridgman method (HB method), or a vertical Bridgman method. It can be preferably used when manufactured according to the method (VB method).
[0016]
FIG. 1 shows a specific example in which the present invention is applied to a VB method apparatus. In the VB apparatus 100, the heat retaining cylinders 111 to 120 are provided in the chamber 130, and ten cylindrical heaters 101 to 110 including the solid-liquid interface heating heater 106 and the crystal heating heater 107 are provided in the heat retaining cylinder. Are located. A space 11 is provided between the crystal heating heater 107 and the heat retaining cylinder 117 located on the back side of the crystal heating heater. The space 11 is supplied from the solid-liquid heating heater 106 with an increased amount of heat to the crystal heating heater 107. Heat can be dissipated.
[0017]
A crucible 121 having a thin tip is provided on a stage 122 fixed to the upper end of the elevating shaft 123 so that the inside of the cylindrical heaters 101 to 110 can be raised and lowered. A seed crystal 126 is attached to the tip of the crucible 121, and a raw material melt 125 is accommodated above the seed crystal 126 so that a single crystal 127 grows from the seed crystal 126.
[0018]
As shown in FIG. 3, depending on the design of the VB device 300, if there are two or more crystal heaters 307 and 308, two or more heat insulating cylinders located on the back side of these crystal heaters A space 31 can be formed between 317 and 318.
[0019]
Further, as shown in FIG. 4, depending on the design of the VB device 400, instead of providing the individual heat retaining cylinders at the positions on the back side of the individual heaters, when the heat retaining cylinders 411 are provided integrally. The space 41 can also be formed by changing the shape of a portion 411a located on the back side of the crystal heating heater 407 in the heat retaining cylinder.
[0020]
FIG. 5 shows a specific example in which the present invention is applied to the LEC method. In the LEC device 500, a susceptor 522 is provided in the chamber 530, supported by a rotatable lower shaft 523. A crucible 521 is provided in the susceptor 522. Around the susceptor 522, three heaters 501 to 503 including a solid-liquid interface heating heater 502 and a crystal heating heater 501 are arranged. A space 51 is provided between the heater 501 for heating the crystal and the heat retaining cylinder 511 located on the back side of the heater for heating the crystal. The solid-liquid heater 502 having an increased amount of heat is supplied to the heater 501 for heating the crystal. Heat can be dissipated. The raw material melt 525 is accommodated in the crucible 521, and a liquid sealant 529 is provided on the melt. On the other hand, in the chamber 530, an upper shaft 524 that can rotate and move up and down is provided above the center of the crucible 521. In the apparatus configured as described above, the single crystal is grown under a pressurized atmosphere of an inert gas such as nitrogen and argon, and the single crystal 527 is separated from the seed crystal 526 attached to the lower end of the upper shaft 524. Will be raised.
[0021]
【Example】
(Example 1)
Using the VB apparatus shown in FIG. 1, a non-doped GaAs single crystal having a diameter of 75 mm was grown by the VB method. For growth, a crucible made of PBN having an inner diameter of 75 mm was used as the crucible 121. The lower part of the crucible was formed in a conical shape, and the seed crystal 126 was attached to the lower end. Next, the crucible 121 contained 7 kg of the GaAs polycrystalline raw material. Next, the crucible 121 containing the raw material was placed on a stage 122 fixed to the upper end of the elevating shaft 123. Each of the ten heaters 101 to 110 including the heater 106 for heating a solid-liquid interface and the heater 107 for heating a crystal is a carbon heater having a diameter of 100 mm, a thickness of 20 mm, and a length of 50 mm in the vertical direction (crystal growth direction).
[0022]
On the back side of the ten heaters, ten carbon insulated cylinders are provided corresponding to each heater. The heat retaining cylinder 117 located on the back side of the crystal heating heater 107 used had an inner diameter of 150 mm, an outer diameter of 410 mm, and a length in the vertical direction (crystal growth direction) of 50 mm. Insulation cylinders 101 to 106 and 108 to 110 other than the insulation cylinder 117 located on the back side of the crystal heating heater 107 have an inner diameter 110 mm, an outer diameter 410, and a length in the vertical direction (crystal growth direction) as in the conventional case. Used was 50 mm.
[0023]
While controlling the heating temperature of the solid-liquid interface heated by the heater 106 for solid-liquid interface to 1240 ° C. and the heating temperature of the crystal heated by the heater 107 for crystal heating to 1230 ° C., One GaAs single crystal was grown over the day (240 hours). Table 1 shows the yield of the single crystal at this time.
[0024]
(Comparative Example 1)
The heat retaining cylinder 117 located above the crystal heating heater 107 was also the same as the conventional one except that the inner diameter was 110 mm, the outer diameter was 410 mm, and the length in the vertical direction (crystal growth direction) was 50 mm. A GaAs single crystal was grown under the same conditions as in Example 1. Table 1 shows the yield of the single crystal at this time.
[0025]
(Examples 2 to 6)
Example 1 A heat retaining cylinder 117 positioned above the crystal heating heater 107 has an outer diameter 410, a length in the up-down direction (crystal growth direction) of 50 mm, and an inner diameter shown in Table 1. A GaAs single crystal was grown under the same conditions as described above. Table 1 shows the yield of the single crystal at this time.
[0026]
[Table 1]
Figure 2004269328
[0027]
As shown in the comparison between Examples 1 to 6 and Comparative Example 1 in Table 1, in the single crystal manufacturing apparatus, between the back side of the crystal heating heater and the heat retaining cylinder located on the back side of the crystal heating heater. By providing a space in, the yield of single crystal could be improved.
[0028]
In particular, as shown in Examples 1 and 3 to 6, the distance A from the back surface of the crystal heating heater to the front surface of the heat retaining cylinder located on the back side of the crystal heating heater in the space, and the table of the crystal heating heater. By setting the ratio to the thickness B from the side surface to the back surface to be 2 ≦ (A / B) ≦ 30, that is, 2B ≦ A ≦ 30B, the single crystal yield could be further improved. In particular, in Examples 1 and 3 in which the relationship between A and B was 2 ≦ (A / B) ≦ 4, that is, 2B ≦ A ≦ 4B, the yield of single crystals was improved to 80%.
[0029]
The embodiments and examples disclosed this time are to be considered in all respects as illustrative and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
[0030]
【The invention's effect】
As described above, according to the single crystal manufacturing apparatus of the present invention, by providing a space between the back side of the heater for crystal heating and the heat retaining cylinder located on the back side of the heater for crystal heating, Heat radiation and / or heat transfer from the interface heating heater to the crystal heating heater can be reduced, and a single crystal can be obtained stably with a high yield.
[Brief description of the drawings]
FIG. 1 is a schematic view showing one specific example in which the present invention is applied to a VB method apparatus.
FIG. 2 is a diagram illustrating a space provided between a back surface portion of the crystal heating heater according to the present invention and a heat retaining cylinder located on the back side of the crystal heating heater.
FIG. 3 is a schematic view showing another specific example in which the present invention is applied to a VB method apparatus.
FIG. 4 is a schematic diagram showing still another specific example in which the present invention is applied to a VB method apparatus.
FIG. 5 is a schematic diagram showing one specific example in which the present invention is applied to an apparatus of the LEC method.
[Explanation of symbols]
11, 21, 31, 41, 51 space, 22, 117, 317, 318 Heat insulation tube located on the back side of crystal heating heater, 22a Front surface of heat insulation tube, 23, 107, 307, 308, 407, 501 Crystal heating Heater, 23a front side, 23b back side, 100, 300, 400 VB device, 101 to 105, 108 to 110, 301 to 305, 309, 310, 401 to 405, 408 to 410, 503 heater, 106, 306, 406, 502 Heater for solid-liquid interface heating, 106u upper end, 106d lower end, 111-116, 118-120, 311-316, 319, 320, 411 Heat insulating cylinder, 411a Located on the back side of the crystal heater in the heat insulating cylinder. Part, 121, 321, 421, 521 crucible, 122, 322, 422 stage, 123, 23,423 Vertical axis, 125,325,425,525 Raw material melt, 126,326,426,526 Seed crystal, 127,327,427,527 single crystal, 128,328,428,528 Solid-liquid interface, 130, 330, 430, 530 Chamber, 523 Lower shaft, 524
Upper shaft, 529 Liquid sealant.

Claims (5)

結晶成長炉内に少なくとも原料融液と結晶の固液界面を加熱する固液界面加熱用ヒータ、固化後の結晶を加熱する結晶加熱用ヒータおよび保温筒が配置されている単結晶の製造装置であって、
結晶加熱用ヒータの裏側部と、結晶加熱用ヒータの裏側に位置する保温筒との間に空間を設けることを特徴とする単結晶の製造装置。
A single crystal manufacturing device in which a solid-liquid interface heating heater for heating at least a solid-liquid interface between a raw material melt and a crystal, a crystal heating heater for heating a crystal after solidification, and a heat retaining cylinder are arranged in a crystal growth furnace. So,
An apparatus for producing a single crystal, wherein a space is provided between a back side of a heater for heating a crystal and a heat retaining cylinder located on a back side of the heater for heating a crystal.
空間における結晶加熱用ヒータの裏側面から結晶加熱用ヒータの裏側に位置する保温筒の表側面までの距離Aと、結晶加熱用ヒータの表側面から裏側面までの厚みBが、2B≦A≦30Bの関係にあることを特徴とする請求項1に記載の単結晶の製造装置。In the space, the distance A from the back side surface of the crystal heating heater to the front side surface of the heat retaining cylinder located on the back side of the crystal heating heater and the thickness B from the front side surface to the back side surface of the crystal heating heater are 2B ≦ A ≦ The apparatus for producing a single crystal according to claim 1, wherein the apparatus has a relationship of 30B. ヒータの材質がカーボンまたは鉄−クロム−アルミニウム合金であることを特徴とする請求項1または請求項2に記載の単結晶の製造装置。3. The apparatus for producing a single crystal according to claim 1, wherein a material of the heater is carbon or an iron-chromium-aluminum alloy. 単結晶がIII−V族化合物半導体単結晶またはII−VI族化合物半導体単結晶であることを特徴とする請求項1〜請求項3のいずれかに記載の単結晶の製造装置。The single crystal production apparatus according to any one of claims 1 to 3, wherein the single crystal is a group III-V compound semiconductor single crystal or a group II-VI compound semiconductor single crystal. 単結晶が、チョクラルスキー法、液体封止型チョクラルスキー法、水平ブリッジマン法または垂直ブリッジマン法にしたがって製造されることを特徴とする請求項1〜請求項4のいずれかに記載の単結晶の製造装置。The single crystal according to claim 1, wherein the single crystal is produced according to a Czochralski method, a liquid-sealed Czochralski method, a horizontal Bridgman method or a vertical Bridgman method. Single crystal manufacturing equipment.
JP2003064962A 2003-03-11 2003-03-11 Manufacturing apparatus of single crystal Withdrawn JP2004269328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003064962A JP2004269328A (en) 2003-03-11 2003-03-11 Manufacturing apparatus of single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003064962A JP2004269328A (en) 2003-03-11 2003-03-11 Manufacturing apparatus of single crystal

Publications (1)

Publication Number Publication Date
JP2004269328A true JP2004269328A (en) 2004-09-30

Family

ID=33126115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003064962A Withdrawn JP2004269328A (en) 2003-03-11 2003-03-11 Manufacturing apparatus of single crystal

Country Status (1)

Country Link
JP (1) JP2004269328A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104165898A (en) * 2014-08-21 2014-11-26 共慧冶金设备科技(苏州)有限公司 Large-temperature-gradient Bridgman furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104165898A (en) * 2014-08-21 2014-11-26 共慧冶金设备科技(苏州)有限公司 Large-temperature-gradient Bridgman furnace

Similar Documents

Publication Publication Date Title
CA2620293C (en) System and method for crystal growing
CN102628184B (en) Method for growing gem crystals by way of vacuum induction heating and device realizing method
JP2003277197A (en) CdTe SINGLE CRYSTAL, CdTe POLYCRYSTAL AND METHOD FOR PRODUCING THE SINGLE CRYSTAL
US8647433B2 (en) Germanium ingots/wafers having low micro-pit density (MPD) as well as systems and methods for manufacturing same
JP2010260747A (en) Method for producing semiconductor crystal
CN102639763A (en) Device for producing single crystals and method for producing single crystals
JP4144349B2 (en) Compound semiconductor manufacturing equipment
CN115198350A (en) Thermal field system capable of reducing oxygen content of silicon crystal and process method
JP2004269328A (en) Manufacturing apparatus of single crystal
KR20130007354A (en) Apparatus for growing silicon crystal and method for growing silicon crystal using the same
JP2004099390A (en) Method of manufacturing compound semiconductor single crystal and compound semiconductor single crystal
CN105970286B (en) A kind of method of more crucible liquid phase epitaxy SiC crystals
US20120285373A1 (en) Feed Tool For Shielding A Portion Of A Crystal Puller
JP3567662B2 (en) Single crystal growth method and apparatus
JP2001080987A (en) Device for producing compound semiconductor crystal and production process using the same
JP3700397B2 (en) Method for producing compound semiconductor crystal
JPH11274537A (en) Manufacture of polycrystalline silicon of large grain size
JP4549111B2 (en) GaAs polycrystal production furnace
JP2004345888A (en) Production method for compound semiconductor single crystal
JP2000247780A (en) Single crystal puller
JPH11130579A (en) Production of compound semiconductor single crystal and apparatus for producing the same
JP2004107099A (en) Method of manufacturing semi-insulative gallium arsenide single crystal
JPH08319189A (en) Production of single crystal and device therefor
JP4155085B2 (en) Method for producing compound semiconductor single crystal
JP2004010467A (en) Method for growing compound semiconductor single crystal

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060606