JPH04362085A - Method for growing single crystal by zone melting method - Google Patents

Method for growing single crystal by zone melting method

Info

Publication number
JPH04362085A
JPH04362085A JP16235091A JP16235091A JPH04362085A JP H04362085 A JPH04362085 A JP H04362085A JP 16235091 A JP16235091 A JP 16235091A JP 16235091 A JP16235091 A JP 16235091A JP H04362085 A JPH04362085 A JP H04362085A
Authority
JP
Japan
Prior art keywords
ampoule
raw material
single crystal
vapor pressure
high vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16235091A
Other languages
Japanese (ja)
Inventor
Yoshio Fujino
芳男 藤野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP16235091A priority Critical patent/JPH04362085A/en
Publication of JPH04362085A publication Critical patent/JPH04362085A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To prevent the condensation of high vapor pressure components among spaces on the upper part of an ampul and to grow single crystals having a uniform compsn. from the upper part to the lower part. CONSTITUTION:Tellurium 10 is melted and is entered the space part of an ampul at the upper end part of a raw material, by which the spaces are filled. Next, at the time of exeucting the growing of crystals, the high vapor pressure ccaponents evaporated by heating can not escape to the upper part 9c of the ampul with a low temp., the escape of the high vapor pressure components from the raw material does not occur.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は蒸気圧の高い成分を含む
結晶材料をアンプル中に封入して、いわゆる帯溶融法に
よって単結晶を育成する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for growing a single crystal by enclosing a crystalline material containing a component having a high vapor pressure in an ampoule and using the so-called zone melting method.

【0002】0002

【従来の技術】帯溶融法による単結晶の育成方法の概略
は図2に示す如きもので、一例として蒸気圧の高い水銀
を一成分として含む多元化合物半導体材料であるHg1
−xCdxTe(1>x>0)について示してある。こ
の図は帯溶融法による単結晶育成の途中段階を示してい
るが、育成の初段階ではアンプル1の中には下から順に
種子結晶(CdTe)2、帯溶融部(テルル過剰のHg
1−yCdyTe)3,原料(多結晶体のHg1−xC
dxTe)4が配置され、アンプル1の内部を真空排気
したのち、栓5によって封止されている。このように準
備されたアンプル全体は帯溶融部3を溶融するため、固
定された環状のヒータ6の中央に上から吊り下げられ、
帯溶融部3が所定の温度で溶融したならば、図の矢印の
ように下へ向かってゆっくりと降下させられる。初段階
では種子結晶2と帯溶融部3とは接しているが、アンプ
ルが徐々に降下して帯溶融部3が種子結晶2から次第に
離れていくと、種子結晶2の上には単結晶7が成長して
いく。 図2はこの途中段階を示したものである。
[Prior Art] A method for growing single crystals using the zone melting method is shown in FIG.
-xCdxTe (1>x>0) is shown. This figure shows an intermediate stage of single crystal growth by the zone melting method, but at the initial stage of growth, in the ampoule 1, from the bottom, there is a seed crystal (CdTe) 2, a zone melting zone (excess tellurium Hg
1-yCdyTe)3, raw material (polycrystalline Hg1-xC
After evacuating the inside of the ampoule 1, the ampoule 1 is sealed with a stopper 5. The entire ampoule prepared in this way is suspended from above in the center of a fixed annular heater 6 in order to melt the band melting portion 3.
Once the melting zone 3 has melted at a predetermined temperature, it is slowly lowered downward as shown by the arrow in the figure. At the initial stage, the seed crystal 2 and the melted zone 3 are in contact with each other, but as the ampoule gradually descends and the melted zone 3 gradually separates from the seed crystal 2, the single crystal 7 is placed on top of the seed crystal 2. is growing. FIG. 2 shows this intermediate stage.

【0003】この帯溶融法(THM=Travelin
g Heater Method と呼ばれることもあ
る。)による単結晶育成に関してはいくつかの論文が発
表されている。例えば、ジャーナル・オブ・バキューム
・サイエンス・アンド・テクノロジー誌(1985年1
月/2月、米国真空学会発行){J. Vac. Sc
i. Technol. A3(1),Jan/Feb
,1985}の第95〜99頁,R.Triboule
t (トゥリプル)著,「THM,a breakth
rough in HgCdTe bulk meta
llugy」、ならびに同誌A6(4),Jul/Au
g,1988年の第2795〜2799頁,L.Col
ombo 他著,「Growth of Hg−bas
ed alloys by thetraveling
 Heater Method」などである。
[0003] This band melting method (THM=Travelin
It is also called g Heater Method. ) Several papers have been published regarding single crystal growth using For example, Journal of Vacuum Science and Technology (1985, 1
(Mon./February, published by the American Vacuum Society) {J. Vac. Sc
i. Technol. A3(1), Jan/Feb
, 1985}, pp. 95-99, R. Triboule
THM, a breakth
rough in HgCdTe bulk meta
llugy” and the same magazine A6 (4), Jul/Au
g, 1988, pp. 2795-2799, L. Col
ombo et al., “Growth of Hg-bas
ed alloys by thetraveling
Heater Method”, etc.

【0004】これらの論文、あるいは図2からは、アン
プル上端における真空封入のための栓の下部においては
、アンプルの内壁と栓と原料との三者は互いに密着して
いるように見える。しかしながら、実際のアンプルアセ
ンブリーにおいては、栓によってアンプルを密閉するに
はアンプルの外側から酸水素バーナーを用いてアンプル
の内側にセットされた栓とアンプルの内壁とを1500
℃もの高温で溶接する方法がとられる。Hg1−xCd
xTeは融点が700℃程度であり、どの成分も蒸気圧
は比較的高く、特に水銀は常温でさえ蒸発している程の
高い蒸気圧をもっている。従って、こうした成分からな
る材料に酸水素バーナーのような高温炎を近付けること
は材料の分解や蒸発の原因となる。このため溶接の際に
は図3に示すように、溶接部8と原料4の上端は数cm
の間隔をあけることが必要である。さらにアンプルの材
料である石英の熱膨張率はHg1−xCdxTeよりも
小さいので、結晶育成において原料4が膨張するとき栓
5との間に隙間9a(1〜2mm)が無いとアンプルが
破損する。こうした事情から実際のアセンブリにおいて
は図3の如く三者の間には必ず斜線で示した隙間9a,
9cが存在する。また、アンプル内壁と原料4の間にも
多少の隙間9bが存在する。何故なら原料は別のアンプ
ル中で合成されるので、育成用アンプルに収容するには
隙間が必要だからである。
From these articles and FIG. 2, it appears that the inner wall of the ampoule, the stopper, and the raw material are in close contact with each other at the lower part of the stopper for vacuum sealing at the upper end of the ampoule. However, in actual ampoule assembly, in order to seal the ampoule with the stopper, an oxyhydrogen burner is used from outside the ampoule to seal the stopper set inside the ampoule and the inner wall of the ampoule at a temperature of 1,500 mm.
A method of welding at temperatures as high as ℃ is used. Hg1-xCd
xTe has a melting point of about 700° C., and all components have relatively high vapor pressures, especially mercury, which has such a high vapor pressure that it evaporates even at room temperature. Therefore, bringing a high-temperature flame such as an oxyhydrogen burner close to a material made of these components may cause decomposition or evaporation of the material. Therefore, when welding, as shown in Fig. 3, the welding part 8 and the upper end of the raw material 4 are separated by several centimeters.
It is necessary to leave an interval between Furthermore, since the coefficient of thermal expansion of quartz, which is the material of the ampoule, is smaller than that of Hg1-xCdxTe, when the raw material 4 expands during crystal growth, if there is no gap 9a (1 to 2 mm) between it and the stopper 5, the ampoule will be damaged. Due to these circumstances, in the actual assembly, there is always a gap 9a shown with diagonal lines between the three parts as shown in Figure 3.
9c exists. Further, there is also some gap 9b between the inner wall of the ampoule and the raw material 4. This is because the raw materials are synthesized in separate ampoules, so a gap is required to accommodate them in the growth ampule.

【0005】[0005]

【発明が解決しようとする課題】このように必然的に隙
間をもつアンプルアセンブリを用いて帯溶融法によって
蒸気圧の高い成分を含む結晶材料の単結晶化を行ってい
くと、以下のような問題が起きる。即ち、帯溶融部はア
センブリ中で最も温度が高いので、当然のことながら、
その上部に位置する原料も温度が高くなっている。従っ
て、原料からも蒸気圧の高い成分、即ちこの場合は水銀
が次第に蒸発してくる。そしてアンプル1の内壁と原料
4との隙間9bを通ってより温度の低い上部へ集まり、
凝縮する。その最終的な場所が隙間9の中でも特に溶接
されていない栓とアンプルとの隙間9cである。一つの
実験において、蒸発してこの部分に凝縮した水銀の量は
約200mgであったが、この量は原料4の全重量50
gのうちの水銀の量の1%に近い値となる。この材料は
よく知られているように、赤外線の検出材料である。そ
してHgが1%失われると検出可能な赤外線波長は短い
方に相当ずれることが分かっている。このため、この様
な組成ずれを起こした材料を用いると、目的の検出波長
から外れた特性の検出器しか得られない。さらに水銀は
すでに述べたように帯溶融部の移動と共に次第に蒸発量
が多くなっていくのであるから、育成された結晶の最初
と最後では組成のずれかたは一様ではない。従って蒸発
すると予想される水銀をあらかじめ補償しておくことは
有効でない。本発明は、以上のような従来技術の問題点
を解決し、帯溶融法によって、上部から下部まで均一に
目的組成の単結晶を育成する方法を提供することを目的
とする。
[Problem to be Solved by the Invention] When monocrystallizing a crystalline material containing a component with high vapor pressure by the zone melting method using an ampoule assembly that inevitably has gaps, the following problems occur. A problem arises. That is, since the band melting zone has the highest temperature in the assembly, it is natural that
The temperature of the raw material located above it is also high. Therefore, components with high vapor pressure, ie, mercury in this case, gradually evaporate from the raw material. Then, it passes through the gap 9b between the inner wall of the ampoule 1 and the raw material 4, and gathers at the upper part where the temperature is lower.
Condense. The final location is the gap 9c between the stopper and the ampoule, which is not welded, among the gaps 9. In one experiment, the amount of mercury that evaporated and condensed in this area was approximately 200 mg;
The value is close to 1% of the amount of mercury in g. As is well known, this material is an infrared detection material. It is known that when 1% of Hg is lost, the detectable infrared wavelength shifts considerably to shorter wavelengths. For this reason, if a material with such compositional deviation is used, only a detector with characteristics deviating from the target detection wavelength can be obtained. Furthermore, as mentioned above, the amount of evaporation of mercury gradually increases as the melt zone moves, so the compositional shift is not uniform between the beginning and the end of the grown crystal. Therefore, it is not effective to compensate in advance for the mercury that is expected to evaporate. An object of the present invention is to solve the problems of the prior art as described above and to provide a method for growing a single crystal having a desired composition uniformly from the upper part to the lower part by a zone melting method.

【0006】[0006]

【課題を解決するための手段】本発明は、蒸気圧の高い
成分を含む原料をアンプルに挿入し、垂直式の帯溶融法
によって単結晶を育成する方法において、原料の上端部
における原料とアンプルの間の隙間を融解テルルによっ
て塞いだ後、単結晶育成を行うことを特徴とする帯溶融
法による単結晶の育成方法である。
[Means for Solving the Problems] The present invention provides a method for growing a single crystal by a vertical zone melting method in which a raw material containing a component with a high vapor pressure is inserted into an ampoule. This is a method for growing a single crystal using a zone melting method, which is characterized in that the single crystal is grown after the gaps between the two are filled with molten tellurium.

【0007】[0007]

【作用】アンプル中で蒸発した高蒸気圧成分(例えば水
銀)は、温度の最も低いアンプル上端の石英の隙間部分
に凝縮するのであるから、その下部、即ち原料の上端部
の隙間を何らかの手段で密閉すれば、その部分で高蒸気
圧成分を阻止することができる。これを実現するために
、本発明においては原料の上端部と栓との間に少量のテ
ルルを入れておき、通常のようにアンプルを真空封入し
たのち、外部から加熱することによってこのテルルを融
解し、隙間に流れ込ませることによって隙間を塞ぐよう
にしている。これにより、蒸発した高蒸気圧成分は原料
の上端近辺に凝縮するようになるが、原料の上端部は下
部の溶融部からの熱伝導で、ある程度温度が上がってい
るので高蒸気圧成分の蒸気圧も高くなっており飽和に近
いため、従来法における如き量の成分が凝縮することは
ない。さらに、原料上端に凝縮した成分は従来法と異な
り、いずれは結晶成長過程に取り込まれる。従って育成
された結晶の組成に著しい誤差や偏差は起こらない。
[Effect] High vapor pressure components (for example, mercury) that evaporate in the ampoule condense in the gap between the quartz at the top of the ampoule, where the temperature is lowest. If the area is sealed, high vapor pressure components can be blocked. In order to achieve this, in the present invention, a small amount of tellurium is placed between the upper end of the raw material and the stopper, and after the ampoule is vacuum sealed as usual, this tellurium is melted by heating from the outside. Then, by letting it flow into the gap, it closes the gap. As a result, the evaporated high vapor pressure components will condense near the upper end of the raw material, but the temperature at the upper end of the raw material has risen to some extent due to heat conduction from the melting zone at the bottom, so the high vapor pressure components will vaporize. Since the pressure is also high and close to saturation, the components do not condense in the same amount as in conventional methods. Furthermore, unlike conventional methods, the components condensed at the top of the raw material will eventually be incorporated into the crystal growth process. Therefore, no significant errors or deviations occur in the composition of the grown crystals.

【0008】[0008]

【実施例】次に本発明の実施例について述べる。アンプ
ルのアセンブリ手段としては、まず従来通り既に述べた
ように、石英アンプルの中に種子結晶、帯溶融部、原料
の順に下から積み重ねた。次に図1(a)のように、従
来とは異なって原料4の上にテルル10を少量のせ、更
にその上に栓5を置いた。この後は再び従来通り真空排
気装置によってアンプルの中を排気し、所定の真空度に
なったならば栓5の上部をアンプルの外側から酸水素バ
ーナー炎によって加熱し、栓5とアンプル1とを溶接す
ることによってアンプルを真空封入した。栓の封止部(
溶接部8)より上のアンプル材を切り落としたあと吊り
輪11を溶接し、下降装置に吊り下げた。次に図1(b
)に示すように、ヒータ6がテルル10の位置に来るよ
うに高さ調節し、ヒータ6にテルルが融解する最低限の
電力を供給した。そして同図の如く、融けて液状となっ
たテルル10aが隙間9bの上部をちょうど塞ぐように
した。これはテルル10が融解して横に広がり、アンプ
ル1の内壁に接触する状態になれば自然に隙間が塞がれ
るので特別の操作は不要である。このあと通常の通り1
時間当り150μmの長さを降下させる速さで単結晶を
育成した。育成中に原料4の上部、即ちテルルで隙間を
塞いだ部分より下のところで少量の水銀の凝縮が認めら
れたが、テルルより上の隙間では全く認められなかった
。次に、育成された単結晶を縦方向に板状に切り出し、
通常の手段で組成分布を調べた結果、結晶の上部と下部
とで組成に有意差はなく、このことから水銀の過度の蒸
発による結晶組成のずれは起こっていないことが判明し
た。
[Example] Next, an example of the present invention will be described. As for assembling the ampoule, first, as previously described, the seed crystal, the melted zone, and the raw material were stacked in this order from below in a quartz ampoule. Next, as shown in FIG. 1(a), unlike the conventional method, a small amount of tellurium 10 was placed on top of the raw material 4, and a stopper 5 was placed on top of it. After this, the inside of the ampoule is evacuated again using the conventional vacuum evacuation device, and when the predetermined degree of vacuum is reached, the upper part of the stopper 5 is heated from the outside of the ampoule with an oxyhydrogen burner flame, and the stopper 5 and ampoule 1 are separated. The ampoule was vacuum sealed by welding. The sealing part of the stopper (
After cutting off the ampoule material above the welding part 8), a hanging ring 11 was welded and the ampoule material was suspended from a lowering device. Next, Figure 1(b)
), the height of the heater 6 was adjusted so that it was located at the position of the tellurium 10, and the minimum power needed to melt the tellurium was supplied to the heater 6. Then, as shown in the figure, the melted tellurium 10a that became liquid was made to just close the upper part of the gap 9b. This is because the tellurium 10 melts and spreads laterally, and when it comes into contact with the inner wall of the ampoule 1, the gap is naturally closed, so no special operation is required. After this, as usual 1
A single crystal was grown at a rate of dropping a length of 150 μm per hour. During the growth, a small amount of mercury condensation was observed in the upper part of raw material 4, that is, below the part where the gap was filled with tellurium, but no condensation was observed in the gap above the tellurium. Next, the grown single crystal is cut into plate shapes in the vertical direction.
As a result of examining the composition distribution using conventional means, it was found that there was no significant difference in the composition between the upper and lower parts of the crystal, indicating that no shift in crystal composition occurred due to excessive evaporation of mercury.

【0009】[0009]

【発明の効果】以上詳述した如く、本発明の方法を用い
れば、帯溶融法によって高蒸気圧成分を含む材料を用い
て単結晶育成を行ってもその成分の蒸発による組成ずれ
が起こらず、全体として組成の均一な良好な単結晶を育
成することができる。
[Effects of the Invention] As detailed above, if the method of the present invention is used, even if a single crystal is grown using a material containing a high vapor pressure component by the zone melting method, compositional deviation due to evaporation of the component will not occur. , it is possible to grow a good single crystal with a uniform composition as a whole.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の方法を説明するための説明図である。FIG. 1 is an explanatory diagram for explaining the method of the present invention.

【図2】帯溶融法の原理を示す説明図である。FIG. 2 is an explanatory diagram showing the principle of the zone melting method.

【図3】アンプルの封止部と隙間との関係を示す説明図
である。
FIG. 3 is an explanatory diagram showing the relationship between the sealing part of the ampoule and the gap.

【符号の説明】[Explanation of symbols]

1  アンプル            2  種子結
晶3  帯溶融部            4  原料
5  栓                  6  
ヒータ7  単結晶              8 
 アンプルと栓との溶接部9a,9b,9c  隙間 
 10,10a  テルル11  吊り輪
1 Ampoule 2 Seed crystal 3 Melting zone 4 Raw material 5 Stopper 6
Heater 7 Single crystal 8
Welded parts 9a, 9b, 9c between ampoule and plug
10,10a Tellurium 11 Hanging ring

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  蒸気圧の高い成分を含む原料をアンプ
ルに挿入し、垂直式の帯溶融法によって単結晶を育成す
る方法において、原料の上端部における原料とアンプル
の間の隙間を融解テルルによって塞いだ後、単結晶育成
を行うことを特徴とする帯溶融法による単結晶の育成方
法。
Claim 1: In a method of inserting a raw material containing a component with high vapor pressure into an ampoule and growing a single crystal by a vertical zone melting method, the gap between the raw material and the ampoule at the upper end of the raw material is filled with molten tellurium. A method for growing a single crystal using a zone melting method, which is characterized in that single crystal growth is performed after sealing.
JP16235091A 1991-06-07 1991-06-07 Method for growing single crystal by zone melting method Pending JPH04362085A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16235091A JPH04362085A (en) 1991-06-07 1991-06-07 Method for growing single crystal by zone melting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16235091A JPH04362085A (en) 1991-06-07 1991-06-07 Method for growing single crystal by zone melting method

Publications (1)

Publication Number Publication Date
JPH04362085A true JPH04362085A (en) 1992-12-15

Family

ID=15752895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16235091A Pending JPH04362085A (en) 1991-06-07 1991-06-07 Method for growing single crystal by zone melting method

Country Status (1)

Country Link
JP (1) JPH04362085A (en)

Similar Documents

Publication Publication Date Title
US3615203A (en) Method for the preparation of groups iii{14 v single crystal semiconductors
US2921905A (en) Method of preparing material for semiconductor applications
Holton et al. Synthesis and melt growth of doped ZnSe crystals
US3853487A (en) Method of forming crystals by the control of volatile constituent diffusion path distances through a melt
JPH04362085A (en) Method for growing single crystal by zone melting method
JP2734205B2 (en) Single crystal growth method by zone melting method
JPS623096A (en) Growth of compound semiconductor single crystal having high dissociation pressure
JPS5983915A (en) Method of growing poly crystal and single crystal of volatile compound
US4299649A (en) Vapor transport process for growing selected compound semiconductors of high purity
JPH0142919B2 (en)
JP2800713B2 (en) Method for manufacturing compound semiconductor single crystal
KR19980031986A (en) Single crystal manufacturing device by vapor crystal growth method
JPS63274691A (en) Method and device for growing single crystal
JP3125681B2 (en) Method for growing ZnSe single crystal
Holland Combined distillation and normal freezing to purify elements of groups II and VI
JP2700123B2 (en) Liquid phase epitaxy growth method and apparatus for HgCdTe
JPH03257034A (en) Liquid phase epitaxial growth system
JP2536201B2 (en) Method for manufacturing compound semiconductor crystal
JP2000327496A (en) Production of inp single crystal
JPH0445463B2 (en)
RU2199614C1 (en) Method of growing crystals
JPH01122995A (en) Growth of compound semiconductor single crystal
JPH01242489A (en) Single crystal growth apparatus
JPS6395194A (en) Production of compound single crystal
JPS6389489A (en) Crystal growth method