JPH0422026B2 - - Google Patents

Info

Publication number
JPH0422026B2
JPH0422026B2 JP57114241A JP11424182A JPH0422026B2 JP H0422026 B2 JPH0422026 B2 JP H0422026B2 JP 57114241 A JP57114241 A JP 57114241A JP 11424182 A JP11424182 A JP 11424182A JP H0422026 B2 JPH0422026 B2 JP H0422026B2
Authority
JP
Japan
Prior art keywords
resistor
resistors
diffused
collector
emitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57114241A
Other languages
Japanese (ja)
Other versions
JPS595657A (en
Inventor
Mitsuaki Natsume
Eiji Sugyama
Toshiharu Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP11424182A priority Critical patent/JPS595657A/en
Priority to EP83303805A priority patent/EP0098173B1/en
Priority to DE89202021T priority patent/DE3382726D1/en
Priority to EP89202020A priority patent/EP0348017B1/en
Priority to EP89202021A priority patent/EP0344873B1/en
Priority to DE8383303805T priority patent/DE3381460D1/en
Priority to DE89202020T priority patent/DE3382727D1/en
Publication of JPS595657A publication Critical patent/JPS595657A/en
Priority to US07/229,724 priority patent/US4904887A/en
Priority to US07/325,913 priority patent/US4891729A/en
Priority to US07/325,914 priority patent/US4952997A/en
Publication of JPH0422026B2 publication Critical patent/JPH0422026B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/118Masterslice integrated circuits
    • H01L27/11801Masterslice integrated circuits using bipolar technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits

Description

【発明の詳細な説明】 発明の技術分野 本発明は、マスタースライス方式のゲートアレ
イ半導体集積回路に関し、特に内部ゲートのパワ
ー変更を容易に行えるようにするものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to a master slice type gate array semiconductor integrated circuit, and particularly to a device that allows power changes of internal gates to be easily performed.

従来技術と問題点 最終の配線工程だけを残した予め多数のゲート
に必要な素子を半導体基板に形成しておくマスタ
ースライスLSIでは、内部ゲートのパワーを最終
配線工程で選択する余地はない。このため回路動
作上スピードの速い部分に使用するゲートのパワ
ーは大きくし、またスピードの遅くともよい部分
のゲートパワーは小さくする等ということを最終
配線工程で選択することはできない。第1図はこ
の種の内部ゲートの一例で、定電流型のECL(エ
ミツタ結合型ロジツク)を示すものである。Q1
Q2はカレントスイツチを構成するトランジスタ、
Q3は定電流源用のトランジスタ、Q4,Q5はエミ
ツタホロワ接続された出力段のトランジスタであ
る。このゲートのパワーはトランジスタQ4,Q5
Q3のエミツタ抵抗REF,REに流れる電流IEF,IE
特にトランジスタQ3のエミツタ抵抗REに流れる
定電流IEにより決定される。電流IEFは抵抗REF
値により決定され、電流IEはコレクタ側の抵抗RC
およびエミツタ側の抵抗REの値で決定されるが、
抵抗比RC/REが出力振幅VOLに影響するので通常
はRC/REが変化しないようにRC,REを変えてIE
を決定する。ところが従来のマスタースライス方
式ではこれらの抵抗(拡散抵抗)REF,RC,RE
値は拡散プロセスで一義的に決定されてしまうの
で、個々のゲートのパワーを最終配線で変更する
ことはできない。
Prior Art and Problems In a master slice LSI in which elements necessary for a large number of gates are formed on a semiconductor substrate in advance, leaving only the final wiring process, there is no room to select the power of the internal gates in the final wiring process. For this reason, it is not possible to select in the final wiring process, such as increasing the gate power used in parts where the circuit operation speed is high and reducing the gate power used in parts where the speed can be slow. Figure 1 shows an example of this type of internal gate, which is a constant current type ECL (emitter-coupled logic). Q1 ,
Q 2 is the transistor that constitutes the current switch,
Q 3 is a constant current source transistor, and Q 4 and Q 5 are emitter follower-connected output stage transistors. The power of this gate is the transistor Q 4 , Q 5 ,
The current flowing through the emitter resistance R EF , R E of Q 3 I EF , I E ,
In particular, it is determined by the constant current I E flowing through the emitter resistor R E of the transistor Q 3 . The current I EF is determined by the value of the resistor R EF , and the current I E is determined by the value of the resistor R C on the collector side.
It is determined by the value of the resistor R E on the emitter side,
Since the resistance ratio R C /R E affects the output amplitude V OL , normally R C and R E are changed to prevent I E from changing so that R C /R E does not change.
Determine. However, in the conventional master slicing method, the values of these resistances (diffused resistances) R EF , R C , and R E are uniquely determined by the diffusion process, so it is impossible to change the power of each individual gate in the final wiring. Can not.

発明の目的 本発明は予め複数の抵抗パターンを拡散工程で
形成しておくことにより、個々のゲートパワーを
選択可能としようとするものである。
OBJECTS OF THE INVENTION The present invention attempts to make it possible to select individual gate powers by forming a plurality of resistance patterns in advance through a diffusion process.

発明の構成 本発明は、多数の外部内部各ゲートのアレイに
必要な素子を予め半導体基板に形成しておき、そ
して最終配線工程で該素子間を接続して所要とす
る回路を構成するマスタースライス方式の半導体
集積回路において、該ゲートが第1の電源と、第
2の電源と、エミツタが共通に接続され、一方の
ベースに入力信号が印加される1対のトランジス
タと、コレクタが該1対のトランジスタのエミツ
タに接続された定電流源用のトランジスタと、該
第1の電源と1対のトランジスタのコレクタとの
間に接続されるコレクタ側抵抗と、該第2の電源
と該定電流源用のトランジスタとの間に接続され
るエミツタ側抵抗とを有し、該コレクタ側抵抗と
エミツタ側抵抗の素子として、複数の抵抗値を選
択できるように、該コレクタ側抵抗値は1本の拡
散抵抗に中間タツプ用のコンタクト用窓を設けた
もの、該エミツタ側抵抗は、前記1本の拡散抵抗
に中間タツプ用のコンタクト窓を設けたものもし
くは相互接続用コンタクト窓を設けた2本以上の
独立した拡散抵抗を形成しておき、該ゲートに必
要なパワーに応じて前記複数の抵抗値のうちいず
れかを選択し、且つ、該コレクタ側抵抗と該エミ
ツタ側抵抗の比がほぼ一定になるよう両抵抗の組
合を選択するよう該抵抗が接続されていることを
特徴とするが、以下図示の実施例を参照しながら
これを詳細に説明する。
Structure of the Invention The present invention provides a master slice in which elements necessary for an array of a large number of external and internal gates are formed in advance on a semiconductor substrate, and the elements are connected in the final wiring process to form a required circuit. In the semiconductor integrated circuit of the above-mentioned method, a pair of transistors whose gates are commonly connected to a first power supply, a second power supply, and an emitter, and an input signal is applied to one base; a transistor for a constant current source connected to the emitter of the transistor; a collector side resistor connected between the first power source and the collectors of the pair of transistors; and the second power source and the constant current source. The collector side resistor has an emitter side resistor connected between the transistor and the emitter side resistor. A resistor with a contact window for an intermediate tap is provided in the resistor, and the emitter side resistor is a resistor with a contact window for an intermediate tap in the single diffused resistor, or two or more resistors provided with a contact window for interconnection. An independent diffused resistance is formed, one of the plurality of resistance values is selected depending on the power required for the gate, and the ratio of the collector side resistance to the emitter side resistance is approximately constant. This feature is characterized in that the resistors are connected so as to select a combination of both resistors, which will be described in detail below with reference to the illustrated embodiment.

発明の実施例 第2図および第3図は本発明の一実施例を示す
平面パターンであ。第2図は第1図のコレクタ抵
抗RCに関するもので、1は全長が2・RCの抵抗
値を持つように形成された拡散抵抗、2〜4は該
抵抗の両端および中央部に設けられたコンタクト
用の窓、5はアースGND側のアルミニウム
(Al)配線、6はコレクタ側のAl配線である。a
の例は配線5を窓2にコンタクトし、且つ配線6
を窓3にコンタクトしているので、得られる抵抗
値は拡散抵抗1そのものの2・RCである。これ
に対しbは配線5を窓4まで延長しているので、
得られる抵抗値は拡散抵抗1の半分、つまりRC
である。cは配線6を中央部の窓4にコンタクト
し、且つ配線5は両端の窓2,3にコンタクトし
ているため、拡散抵抗1が中央部で折り返された
並列抵抗として機能し、得られる抵抗値はRC
2となる。
Embodiment of the Invention FIGS. 2 and 3 are planar patterns showing an embodiment of the invention. Figure 2 relates to the collector resistor R C in Figure 1, where 1 is a diffused resistor formed so that the total length has a resistance value of 2 R C , and 2 to 4 are provided at both ends and the center of the resistor. 5 is an aluminum (Al) wiring on the earth GND side, and 6 is an Al wiring on the collector side. a
In this example, the wiring 5 is in contact with the window 2, and the wiring 6 is in contact with the window 2.
Since it is in contact with the window 3, the resistance value obtained is 2·R C of the diffused resistor 1 itself. On the other hand, in b, the wiring 5 is extended to the window 4, so
The resulting resistance value is half of the diffused resistance 1, that is, R C
It is. Since the wire 6 is in contact with the window 4 in the center and the wire 5 is in contact with the windows 2 and 3 at both ends, the diffused resistor 1 functions as a parallel resistor folded back in the center, and the resulting resistance is The value is R C /
It becomes 2.

第3図はエミツタ抵抗REに関するもので、1
1〜13,22はそれぞれ2・REの抵抗値を持
つ4本の拡散抵抗、14〜16,23および17
〜19,24は両端のコンタクト用窓、20はト
ランジスタQ3のエミツタ側に接続するAl配線、
21は負電源VEE側のAl配線である。全てのケー
スで配線21は窓17〜19,24に接続されて
いるが、aでは配線20が窓14にしか接続され
ていないので、得られる抵抗値は拡散抵抗11の
みによる2・REである。これに対しbは配線2
0を窓14,15に接続して拡散抵抗11,12
を並列に用いているので、得られる抵抗値はRE
である。さらにcは拡散抵抗11〜13,22を
並列に用いているので、得られる抵抗値はRE
2となる。
Figure 3 is about the emitter resistance R E , 1
1 to 13, 22 are four diffused resistors each having a resistance value of 2・R E , 14 to 16, 23, and 17
~19, 24 are contact windows at both ends, 20 is Al wiring connected to the emitter side of transistor Q3 ,
21 is an Al wiring on the negative power supply V EE side. In all cases, the wiring 21 is connected to the windows 17 to 19 and 24, but in case a, the wiring 20 is connected only to the window 14, so the obtained resistance value is 2・R E due only to the diffused resistance 11. be. On the other hand, b is wiring 2
0 to the windows 14 and 15 and the diffused resistors 11 and 12
are used in parallel, the resulting resistance value is R E
It is. Furthermore, since the diffused resistors 11 to 13 and 22 are used in parallel for c, the obtained resistance value is R E /
It becomes 2.

第2図bと第3図bの組合せを標準的なものと
考えると、第2図aのようにコレクタ抵抗を増加
してゲートパワーを減ずるときはエミツタ側を第
3図aのようにすることで抵抗比RC/REを一定
に保つことができる。また第2図cのようにコレ
クタ抵抗を減らしてゲートパワーを増すときはエ
ミツタ側を第3図cのようにすることで抵抗比
RC/REを一定に保つことができる。このように
エミツタ側の抵抗幅(値)の変更は、電流IEの変
化に伴なうトランジスタQ3のVEE変動を補正する
上で不可欠である。これによりパワー変更をして
も出力レベルを変動させずに済む。
Considering the combination of Figures 2b and 3b as standard, when increasing the collector resistance and reducing the gate power as in Figure 2a, the emitter side should be as shown in Figure 3a. This allows the resistance ratio R C /R E to be kept constant. Also, when increasing the gate power by reducing the collector resistance as shown in Figure 2c, the resistance ratio can be increased by changing the emitter side as shown in Figure 3c.
R C /R E can be kept constant. In this way, changing the resistance width (value) on the emitter side is essential to correcting the V EE fluctuation of transistor Q 3 due to changes in current I E. This allows the output level to remain unchanged even if the power is changed.

発明の効果 以上述べたように本発明によれば、ゲートアレ
イ方式のマスタースライスLSIで最終配線工程に
よる内部ゲートパワーに選択性を持たせることが
できるので、最適なパワー配分が可能となる利点
がある。
Effects of the Invention As described above, according to the present invention, selectivity can be given to the internal gate power in the final wiring process in a gate array type master slice LSI, which has the advantage of enabling optimal power distribution. be.

またコレクタ側抵抗RCとエミツタ側抵抗RE
の比RC/REを一定に保つて抵抗値調整をするの
で、パワー変更しても出力レベルを変動させずに
済む利点が得られる。
Furthermore, since the resistance value is adjusted while keeping the ratio R C /R E between the collector side resistance R C and the emitter side resistance R E constant, there is an advantage that the output level does not fluctuate even if the power is changed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はゲートアレイの内部ゲートとして用い
られるECLゲートの等価回路図、第2図および
第3図は本発明の一実施例を示す平面パターン図
である。 図中、1,11〜13は拡散抵抗、2〜4はコ
ンタクト用窓、5,6,20,21はAl配線で
ある。
FIG. 1 is an equivalent circuit diagram of an ECL gate used as an internal gate of a gate array, and FIGS. 2 and 3 are planar pattern diagrams showing an embodiment of the present invention. In the figure, 1, 11 to 13 are diffused resistors, 2 to 4 are contact windows, and 5, 6, 20, and 21 are Al wirings.

Claims (1)

【特許請求の範囲】 1 多数の外部内部各ゲートのアレイに必要な素
子を予め半導体基板に形成しておき、そして最終
配線工程で該素子間を接続して所要とする回路を
構成するマスタースライス方式の半導体集積回路
において、 該ゲートが、 第1の電源GNDと、 第2の電源VEEと、 エミツタが共通に接続され、一方のベースに入
力信号が印加される1対のトランジスタQ1,Q2
と、 コレクタが該1対のトランジスタのエミツタに
接続された定電流源用のトランジスタQ3と、 該第1の電源と1対のトランジスタのコレクタ
との間に接続されるコレクタ側抵抗RCと、 該第2の電源と該定電流源用のトランジスタと
の間に接続されるエミツタ側抵抗REとを有し、 該コレクタ側抵抗とエミツタ側抵抗の素子とし
て、複数の抵抗値を選択できるように、該コレク
タ側抵抗値は1本の拡散抵抗に中間タツプ用のコ
ンタクト用窓を設けたもの、該エミツタ側抵抗
は、前記1本の拡散抵抗に中間タツプ用のコンタ
クト窓を設けたものもしくは相互接続用コンタク
ト窓を設けた2本以上の独立した拡散抵抗を形成
しておき、 該ゲートに必要なパワーに応じて前記複数の抵
抗値のうちいずれかを選択し、且つ、該コレクタ
側抵抗と該エミツタ側抵抗の比がほぼ一定になる
よう両抵抗の組合を選択するよう該抵抗が接続さ
れていることを特徴とするマスタースライス方式
の半導体集積回路。
[Claims] 1. A master slice in which elements necessary for arrays of a large number of external and internal gates are formed in advance on a semiconductor substrate, and the elements are connected in the final wiring process to form a required circuit. In this type of semiconductor integrated circuit, a pair of transistors Q 1 , whose gates are commonly connected to a first power supply GND, a second power supply V EE , and whose emitters are connected in common, and whose base is applied with an input signal, Q 2
, a constant current source transistor Q 3 whose collector is connected to the emitters of the pair of transistors, and a collector side resistor R C connected between the first power source and the collectors of the pair of transistors. , has an emitter side resistor R E connected between the second power supply and the constant current source transistor, and a plurality of resistance values can be selected as elements of the collector side resistor and the emitter side resistor. As shown, the collector side resistance value is one diffused resistor with a contact window for the intermediate tap, and the emitter side resistor is one diffused resistor with a contact window for the intermediate tap. Alternatively, two or more independent diffused resistors provided with contact windows for interconnection are formed, one of the plurality of resistance values is selected depending on the power required for the gate, and the collector side 1. A master slice type semiconductor integrated circuit, characterized in that the resistors are connected so that a combination of the resistors is selected so that the ratio of the resistors to the emitter side resistors is approximately constant.
JP11424182A 1982-06-30 1982-07-01 Master slice system semiconductor integrated circuit Granted JPS595657A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP11424182A JPS595657A (en) 1982-07-01 1982-07-01 Master slice system semiconductor integrated circuit
DE8383303805T DE3381460D1 (en) 1982-06-30 1983-06-30 INTEGRATED SEMICONDUCTOR CIRCUIT ARRANGEMENT.
DE89202021T DE3382726D1 (en) 1982-06-30 1983-06-30 Integrated semiconductor circuit arrangement.
EP89202020A EP0348017B1 (en) 1982-06-30 1983-06-30 Semiconductor integrated-circuit apparatus
EP89202021A EP0344873B1 (en) 1982-06-30 1983-06-30 Semiconductor integrated-circuit apparatus
EP83303805A EP0098173B1 (en) 1982-06-30 1983-06-30 Semiconductor integrated-circuit apparatus
DE89202020T DE3382727D1 (en) 1982-06-30 1983-06-30 Integrated semiconductor circuit arrangement.
US07/229,724 US4904887A (en) 1982-06-30 1988-08-04 Semiconductor integrated circuit apparatus
US07/325,913 US4891729A (en) 1982-06-30 1989-03-20 Semiconductor integrated-circuit apparatus
US07/325,914 US4952997A (en) 1982-06-30 1989-03-20 Semiconductor integrated-circuit apparatus with internal and external bonding pads

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11424182A JPS595657A (en) 1982-07-01 1982-07-01 Master slice system semiconductor integrated circuit

Publications (2)

Publication Number Publication Date
JPS595657A JPS595657A (en) 1984-01-12
JPH0422026B2 true JPH0422026B2 (en) 1992-04-15

Family

ID=14632802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11424182A Granted JPS595657A (en) 1982-06-30 1982-07-01 Master slice system semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPS595657A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59172249A (en) * 1983-03-18 1984-09-28 Nec Corp Monolithic integrated circuit
JPH02172257A (en) * 1988-12-25 1990-07-03 Nec Corp Master-slice method integrated circuit device
US9595169B2 (en) 2006-08-31 2017-03-14 Cfph, Llc Game of chance systems and methods
US8758111B2 (en) 2008-08-20 2014-06-24 Cfph, Llc Game of chance systems and methods
US8142283B2 (en) 2008-08-20 2012-03-27 Cfph, Llc Game of chance processing apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56158465A (en) * 1980-05-09 1981-12-07 Hitachi Ltd Formation of resistance for integrated circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56158465A (en) * 1980-05-09 1981-12-07 Hitachi Ltd Formation of resistance for integrated circuit

Also Published As

Publication number Publication date
JPS595657A (en) 1984-01-12

Similar Documents

Publication Publication Date Title
JPH0422026B2 (en)
JPS6349376B2 (en)
JPH0434307B2 (en)
JPS6151421B2 (en)
JPS5836501B2 (en) Semiconductor integrated circuit device
JP2811740B2 (en) Integrated circuit
JPH05235279A (en) Semiconductor integrated circuit device
JPH0120538B2 (en)
EP0073608A2 (en) Masterslice integrated circuit device and method for manufacturing the same
JP3237304B2 (en) Semiconductor integrated circuit
JPH0419810Y2 (en)
JP2910456B2 (en) Master slice type integrated circuit device
JP2639599B2 (en) Semiconductor integrated circuit device
JPH03218668A (en) Semiconductor integrated circuit device
JPS61230335A (en) Bipolar semiconductor integrated circuit by master slice method
JPH0513685A (en) Resistor structure of base-fixed-type semi-customized lsi
JPS61248440A (en) Master slice type logic integrated circuit
JPH0376585B2 (en)
JPS5860561A (en) Semiconductor ic circuit device
JPH0516698B2 (en)
JPS63252442A (en) Integrated circuit
JPH04318965A (en) Semiconductor integrated circuit device
JPS59172249A (en) Monolithic integrated circuit
JPS648466B2 (en)
JPH01125952A (en) Master slice integrated circuit