JPS595657A - Master slice system semiconductor integrated circuit - Google Patents

Master slice system semiconductor integrated circuit

Info

Publication number
JPS595657A
JPS595657A JP11424182A JP11424182A JPS595657A JP S595657 A JPS595657 A JP S595657A JP 11424182 A JP11424182 A JP 11424182A JP 11424182 A JP11424182 A JP 11424182A JP S595657 A JPS595657 A JP S595657A
Authority
JP
Japan
Prior art keywords
wiring
window
resistance value
resistance
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11424182A
Other languages
Japanese (ja)
Other versions
JPH0422026B2 (en
Inventor
Mitsuaki Natsume
夏目 光章
Eiji Sugiyama
英治 杉山
Toshiharu Saito
斎藤 寿治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP11424182A priority Critical patent/JPS595657A/en
Priority to EP89202020A priority patent/EP0348017B1/en
Priority to DE89202021T priority patent/DE3382726D1/en
Priority to DE8383303805T priority patent/DE3381460D1/en
Priority to EP83303805A priority patent/EP0098173B1/en
Priority to DE89202020T priority patent/DE3382727D1/en
Priority to EP89202021A priority patent/EP0344873B1/en
Publication of JPS595657A publication Critical patent/JPS595657A/en
Priority to US07/229,724 priority patent/US4904887A/en
Priority to US07/325,913 priority patent/US4891729A/en
Priority to US07/325,914 priority patent/US4952997A/en
Publication of JPH0422026B2 publication Critical patent/JPH0422026B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/118Masterslice integrated circuits
    • H01L27/11801Masterslice integrated circuits using bipolar technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)
  • Logic Circuits (AREA)

Abstract

PURPOSE:To select several gate power by previously forming a plurality of resistance patterns in a diffusion process. CONSTITUTION:When a wiring 5 is brought into contact with a window 2 and a wiring 6 is brought into contact with a window 3, a resistance value obtained is 2.RC of diffusion resistor 1 itself. When the wiring 5 is extended up to a window 4, on the other hand, a resistance value obtained is half the diffusion resistor 1, RC. When the wiring 6 is brought into contact with the window 4 at a central section and the wiring 5 is brought into contact with the windows 2, 3 at both ends, the diffusion resistor 1 functions as a parallel resistor turned up at the central section, and a resistance value obtained is RC/2. A wiring 21 is connected to windows 17-19 in all cases, but a resistance value obtained is 2.RE only by a diffusion resistor 11 when a wiring 20 is connected only to a window 14. When the wiring 20 is connected to windows 14, 15 and diffusion resistors 11, 12 are used in parallel, on the other hand, a resistance value obtained is RE. When diffusion resistors 11-13 are used in parallel, a resistance value obtained is RC/2.

Description

【発明の詳細な説明】 発明の技術分野 本発明は、マスタースライス方式のゲートアレイ半導体
集積回路に関し、特に内部ゲートのパワー変更を容易に
行えるようにするものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to a master slice type gate array semiconductor integrated circuit, and in particular to a device that allows power changes of internal gates to be easily performed.

従来技術と問題点 最終の配線工程だけを残して予め多数のゲートに必要な
素子を半導体基板に形成しておくマスタースライスLS
Iでは、内部ゲートのパワーを最終配線工程で選択する
余地はない。このため回路動作上スピードの速い部分に
使用するゲートのパワーは大きくし、またスピードの遅
くともよい部分のゲートパワーは小さくする等というこ
とを最終配線工程で選択することはできない。第1図は
この種の内部ゲートの一例で、定電流型のECL (エ
ミッタ結合型ロジック)を示すものである。Ql、Q2
はカレントスイッチを構成するトランジスタ、Q3は定
電流源用のトランジスタ、Q g 。
Conventional technology and problems Master slice LS in which elements necessary for a large number of gates are formed on a semiconductor substrate in advance, leaving only the final wiring process.
In I, there is no room to select the power of the internal gate in the final wiring process. For this reason, it is not possible to select in the final wiring process, such as increasing the gate power used in parts where the circuit operation speed is high and reducing the gate power used in parts where the speed can be slow. FIG. 1 shows an example of this type of internal gate, which is a constant current type ECL (emitter-coupled logic). Ql, Q2
is a transistor constituting a current switch, Q3 is a transistor for a constant current source, and Q g .

Q5はエミッタホロワ接続された出力段のトランジスタ
である。このゲートのパワーはトランジスタQ41 Q
i、Q3のエミッタ抵抗REF、REに流れる電流IE
F 、IE%特にトランジスタQ3のエミッタ抵抗RE
に流れる定電流rEにより決定される。
Q5 is an output stage transistor connected as an emitter follower. The power of this gate is the transistor Q41 Q
i, emitter resistance REF of Q3, current IE flowing through RE
F, IE% especially the emitter resistance RE of transistor Q3
It is determined by the constant current rE flowing through.

電流1grは抵抗REFの値により決定され、電流■8
はコレクタ側の抵抗Rcおよびエミッタ側の抵抗R。
The current 1gr is determined by the value of the resistor REF, and the current 8
are the collector side resistance Rc and the emitter side resistance R.

の値で決定されるが、抵抗比RC/ REが出力振幅(
VOL )に影響するので通常はRC/ REが変化し
ないようにRe、 REを変えてIEを決定する。とこ
ろが従来のマスタースライス方式ではこれらの抵抗(拡
散抵抗) REF、 RC,REO値は拡散プロセスで
一義的に決定されてしまうので、個々のゲートのパワー
を最終配線で変更することはできない。
The resistance ratio RC/RE is determined by the value of the output amplitude (
VOL), so normally the IE is determined by changing Re and RE so that RC/RE does not change. However, in the conventional master slicing method, the values of these resistances (diffused resistances) REF, RC, and REO are uniquely determined by the diffusion process, so the power of each gate cannot be changed in the final wiring.

発明の目的 本発明は予め複数の抵抗パターンを拡散工程で形成して
おくことにより、個々のゲートパワーを選択可能としよ
うとするものである。
OBJECTS OF THE INVENTION The present invention attempts to make it possible to select individual gate powers by forming a plurality of resistance patterns in advance through a diffusion process.

発明の構成 本発明は、多数の外部内部各ゲートのアレイに必要な素
子を予め半導体基板に形成しておき、そして最終配線工
程で該素子間を接続して所要とする回路を構成するマス
タースライス方式の半導体集積回路において、該内部ゲ
ートのパワーを決定する抵抗素子として、2以上の抵抗
値を選択できるように、1本の拡散抵抗に中間タップ用
のコンタクト用窓を設けたもの、もしくは相互接続用コ
ンタクト窓を設けた2本以上の独立した拡散抵抗を形成
しておくことを特徴とするが、以下図示の実施例を参照
しながらこれを詳細に説明する。
Structure of the Invention The present invention provides a master slice in which elements necessary for arrays of a large number of external and internal gates are formed in advance on a semiconductor substrate, and the elements are connected in the final wiring process to form a required circuit. In this type of semiconductor integrated circuit, the resistance element that determines the power of the internal gate is a single diffused resistor with a contact window for an intermediate tap, or a mutual The present invention is characterized by forming two or more independent diffused resistors provided with connection contact windows, which will be described in detail below with reference to the illustrated embodiments.

発明の実施例 第2図および第3図は本発明の一実施例を示す平面パタ
ーンである。第2図は第1図のコレクタ抵抗Rcに関す
るもので、lは全長が2・Rcの抵抗値を持つように形
成された拡散抵抗、2〜4は該抵抗の両端および中央部
に設けられたコンタクト用の窓、5はアースGND側の
アルミニウム(Al)配線、6はコレクタ側のAJ配線
である。(alの例は配線5を窓2にコンタクトし、且
つ配線6を窓3にコンタクトしているので、得られる抵
抗値は拡散抵抗1そのものの2・Rcである。これに対
しくblは配線5を窓4まで延長しているので、得られ
る抵抗値は拡散抵抗lの半分、っまりRcである。
Embodiment of the Invention FIGS. 2 and 3 are planar patterns showing an embodiment of the invention. Figure 2 relates to the collector resistor Rc in Figure 1, where l is a diffused resistor formed to have a total length of 2·Rc, and 2 to 4 are provided at both ends and in the center of the resistor. A window for contact, 5 is an aluminum (Al) wiring on the earth GND side, and 6 is an AJ wiring on the collector side. (In the example of al, the wiring 5 is in contact with the window 2, and the wiring 6 is in contact with the window 3, so the obtained resistance value is 2·Rc of the diffused resistor 1 itself. In contrast, bl is the wiring 5 is extended to window 4, the resulting resistance value is half of the diffused resistance l, or Rc.

(C1は配線6を中央部の窓4にコンタクトし、且つ配
線5は両端の窓2,3にコンタクトしているため、拡散
抵抗lが中央部で折り返された並列抵抗として機能し、
得られる抵抗値はRe/2となる。
(Since C1 contacts the wiring 6 with the window 4 at the center, and the wiring 5 contacts the windows 2 and 3 at both ends, the diffused resistance l functions as a parallel resistance folded back at the center,
The resulting resistance value is Re/2.

第3図はエミッタ抵抗REに関するもので、11〜13
はそれぞれ2・REの抵抗値を持つ3本の拡散抵抗、1
4〜16および17〜19は両端のコンタクト用窓、2
0はトランジスタQ3のエミッタ側に接続するAl配線
、21は負電源VEE側のAl配線である。全てのケー
スで配線21は窓17〜19に接続されているが、(8
)では配線2oが窓14にしか接続されていないので、
得られる抵抗値は拡散抵抗11のみにょる2・REであ
る。これに対しくb)は配線2oを窓14.15に接続
して拡散抵抗11.12を並列に用いているので、得ら
れる抵抗値はR,である、さらに(C1は拡散抵抗11
〜13を並列に用いているので、得られる抵抗値はRe
/2となる。
Figure 3 relates to the emitter resistor RE, 11 to 13.
are three diffused resistors each having a resistance value of 2 RE, 1
4 to 16 and 17 to 19 are contact windows at both ends;
0 is an Al wiring connected to the emitter side of the transistor Q3, and 21 is an Al wiring on the negative power supply VEE side. In all cases, wire 21 is connected to windows 17-19, but (8
), wiring 2o is only connected to window 14, so
The resistance value obtained is 2.RE, which depends only on the diffused resistor 11. On the other hand, in b), the wiring 2o is connected to the window 14.15 and the diffused resistor 11.12 is used in parallel, so the obtained resistance value is R, and (C1 is the diffused resistor 11.12).
~13 are used in parallel, so the obtained resistance value is Re
/2.

第2図(b)と第3図(b)の組合せを標準的なものと
考えると、第2図(alのようにコレクタ抵抗を増加し
てゲートパワーを減するときはエミッタ側を第、3図(
alのようにすることで抵抗比RC/REを一定に保つ
ことができる。また第2図+c+のようにコレクタ抵抗
を減らしてゲートパワーを増すときはエミッタ側を第3
図(C1のようにすることで抵抗比Rc/旺を一定に保
つことができる。このようにエミッタ側の抵抗幅(値)
の変更は、電流IEの変化に伴なうトランジスタQ3の
VBg変動を補正する上で不可欠である。これによりパ
ワー変更をしても出力レベルを変動させずに済む。尚、
コレクタ抵抗はそれぞれが抵抗値Rcの2本の拡散抵抗
を用いることでも実現できるが、そのようにしないのは
抵抗の寄性容量が変化してスイッチングスピードに影響
を与えることを避けるためである。即ち、第2図の(a
lと(C1はいずれも拡散抵抗1の全体を使用するが、
(blは本来その半分だけでよい。従って2本の拡散抵
抗を用いる場合は(al、 (0)が2本、(blが1
本ということになり、Ta)、 (e)の寄性容量はl
b)の2倍になる。本例ではこれを避けるために(b)
の配線5を本来必要な窓4の他に窓2にもコンタクトさ
せ、これにより寄性容量をTa) (c+と等しくして
いる。
Considering the combination of Fig. 2(b) and Fig. 3(b) as standard, when increasing the collector resistance and reducing the gate power as shown in Fig. 2(al), the emitter side is Figure 3 (
By making it like al, the resistance ratio RC/RE can be kept constant. Also, as shown in Figure 2 +c+, when increasing the gate power by decreasing the collector resistance, the emitter side is
The resistance ratio Rc/O can be kept constant by making it as shown in Figure (C1).In this way, the resistance width (value) on the emitter side
This change is essential for correcting the VBg fluctuation of transistor Q3 due to changes in current IE. This allows the output level to remain unchanged even if the power is changed. still,
The collector resistance can also be realized by using two diffused resistors, each with a resistance value Rc, but this is not done in order to avoid changing the parasitic capacitance of the resistors and affecting the switching speed. That is, (a
l and (C1 both use the entire diffused resistor 1,
(Originally, only half of bl is required. Therefore, when using two diffused resistors, (al, (0) is 2, (bl is 1)
Since it is a book, the parasitic capacitance of Ta) and (e) is l
It will be twice as much as b). In this example, to avoid this, (b)
The wiring 5 is brought into contact with the window 2 in addition to the originally necessary window 4, thereby making the parasitic capacitance equal to Ta) (c+).

発明の効果 以上述べたように本発明によれば、ゲートアレイ方式の
マスタースライスLSIで最終配線工程による内部ゲー
トパワーに選択性を持たせることができるので、最適な
パワー配分が可能になる利点がある。
Effects of the Invention As described above, according to the present invention, it is possible to give selectivity to the internal gate power in the final wiring process in a gate array type master slice LSI, so that there is an advantage that optimum power distribution is possible. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はゲートアレイの内部ゲートとして用いられるE
CLゲートの等価回路図、第2図および第3図は本発明
の一実施例を示す平面パターン図である。 図中、1.11〜13は拡散抵抗、2〜4はコンタクト
用窓、5. 6. 20. 21はAl配線である。 出願人 富士通株式会社 代理人弁理士  青  柳    稔
Figure 1 shows E used as an internal gate of a gate array.
The equivalent circuit diagram of the CL gate, FIGS. 2 and 3 are plane pattern diagrams showing one embodiment of the present invention. In the figure, 1.11-13 are diffused resistors, 2-4 are contact windows, and 5. 6. 20. 21 is an Al wiring. Applicant Fujitsu Limited Representative Patent Attorney Minoru Aoyagi

Claims (1)

【特許請求の範囲】[Claims] 多数の外部内部各ゲートのアレイに必要な素子を予め半
導体基板に形成しておき、そして最終配線工程で該素子
間を接続して所要とする回路を構成するマスタースライ
ス方式の半導体集積回路において、該内部ゲートのパワ
ーを決定する抵抗素子として、2以上の抵抗値を選択で
きるように、1本の拡散抵抗に中間タップ用のコンタク
ト用窓を設けたもの、もしくは相互接続用コンタクト窓
を設けた2本以上の独立した拡散抵抗を形成しておくこ
とを特徴とするマスタースライス方式の半導体集積回路
In a master slice type semiconductor integrated circuit, in which elements necessary for arrays of a large number of external and internal gates are formed in advance on a semiconductor substrate, and the required circuits are constructed by connecting the elements in the final wiring process, As the resistance element that determines the power of the internal gate, one diffused resistor is provided with a contact window for an intermediate tap, or a contact window is provided for interconnection, so that two or more resistance values can be selected. A master slice type semiconductor integrated circuit characterized by forming two or more independent diffused resistors.
JP11424182A 1982-06-30 1982-07-01 Master slice system semiconductor integrated circuit Granted JPS595657A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP11424182A JPS595657A (en) 1982-07-01 1982-07-01 Master slice system semiconductor integrated circuit
DE89202020T DE3382727D1 (en) 1982-06-30 1983-06-30 Integrated semiconductor circuit arrangement.
DE89202021T DE3382726D1 (en) 1982-06-30 1983-06-30 Integrated semiconductor circuit arrangement.
DE8383303805T DE3381460D1 (en) 1982-06-30 1983-06-30 INTEGRATED SEMICONDUCTOR CIRCUIT ARRANGEMENT.
EP83303805A EP0098173B1 (en) 1982-06-30 1983-06-30 Semiconductor integrated-circuit apparatus
EP89202020A EP0348017B1 (en) 1982-06-30 1983-06-30 Semiconductor integrated-circuit apparatus
EP89202021A EP0344873B1 (en) 1982-06-30 1983-06-30 Semiconductor integrated-circuit apparatus
US07/229,724 US4904887A (en) 1982-06-30 1988-08-04 Semiconductor integrated circuit apparatus
US07/325,913 US4891729A (en) 1982-06-30 1989-03-20 Semiconductor integrated-circuit apparatus
US07/325,914 US4952997A (en) 1982-06-30 1989-03-20 Semiconductor integrated-circuit apparatus with internal and external bonding pads

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11424182A JPS595657A (en) 1982-07-01 1982-07-01 Master slice system semiconductor integrated circuit

Publications (2)

Publication Number Publication Date
JPS595657A true JPS595657A (en) 1984-01-12
JPH0422026B2 JPH0422026B2 (en) 1992-04-15

Family

ID=14632802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11424182A Granted JPS595657A (en) 1982-06-30 1982-07-01 Master slice system semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPS595657A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59172249A (en) * 1983-03-18 1984-09-28 Nec Corp Monolithic integrated circuit
JPH02172257A (en) * 1988-12-25 1990-07-03 Nec Corp Master-slice method integrated circuit device
US10460567B2 (en) 2008-08-20 2019-10-29 Cfph, Llc Game of chance systems and methods
US10515517B2 (en) 2006-08-31 2019-12-24 Cfph, Llc Game of chance systems and methods
US10535230B2 (en) 2008-08-20 2020-01-14 Cfph, Llc Game of chance systems and methods

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56158465A (en) * 1980-05-09 1981-12-07 Hitachi Ltd Formation of resistance for integrated circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56158465A (en) * 1980-05-09 1981-12-07 Hitachi Ltd Formation of resistance for integrated circuit

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59172249A (en) * 1983-03-18 1984-09-28 Nec Corp Monolithic integrated circuit
JPH02172257A (en) * 1988-12-25 1990-07-03 Nec Corp Master-slice method integrated circuit device
US10515517B2 (en) 2006-08-31 2019-12-24 Cfph, Llc Game of chance systems and methods
US10460567B2 (en) 2008-08-20 2019-10-29 Cfph, Llc Game of chance systems and methods
US10535230B2 (en) 2008-08-20 2020-01-14 Cfph, Llc Game of chance systems and methods

Also Published As

Publication number Publication date
JPH0422026B2 (en) 1992-04-15

Similar Documents

Publication Publication Date Title
US4412241A (en) Multiple trim structure
JPH08340243A (en) Bias circuit
US4388755A (en) Structure for and method of manufacturing a semiconductor device by the master slice method
JPS595657A (en) Master slice system semiconductor integrated circuit
JPS6124251A (en) Semiconductor device
JPS6151421B2 (en)
US4757368A (en) Semiconductor device having electric contacts with precise resistance values
JPH0795590B2 (en) Semi-custom semiconductor integrated circuit design method
JPH0120538B2 (en)
JP2639599B2 (en) Semiconductor integrated circuit device
JPS61230335A (en) Bipolar semiconductor integrated circuit by master slice method
JPS643054B2 (en)
JPH036858A (en) Master-slice type semiconductor integrated circuit device
JPS6237538B2 (en)
JPH01214044A (en) Semiconductor integrated circuit device
JP2910456B2 (en) Master slice type integrated circuit device
JP2808754B2 (en) Gate array type integrated circuit
JPH03218668A (en) Semiconductor integrated circuit device
JPS61248440A (en) Master slice type logic integrated circuit
JPH0376585B2 (en)
JPH0513685A (en) Resistor structure of base-fixed-type semi-customized lsi
JPH04318965A (en) Semiconductor integrated circuit device
JPS5924195Y2 (en) transistor circuit
JPS59172249A (en) Monolithic integrated circuit
JPH10107635A (en) Two segment ladder circuit and digital-to-analog converter