JPH04215246A - Sheet-shaped negative electrode - Google Patents

Sheet-shaped negative electrode

Info

Publication number
JPH04215246A
JPH04215246A JP3031370A JP3137091A JPH04215246A JP H04215246 A JPH04215246 A JP H04215246A JP 3031370 A JP3031370 A JP 3031370A JP 3137091 A JP3137091 A JP 3137091A JP H04215246 A JPH04215246 A JP H04215246A
Authority
JP
Japan
Prior art keywords
negative electrode
aluminum
alloy
sheet
polymer material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3031370A
Other languages
Japanese (ja)
Other versions
JP3051468B2 (en
Inventor
Toshiyuki Kahata
利幸 加幡
Toshiyuki Osawa
利幸 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Publication of JPH04215246A publication Critical patent/JPH04215246A/en
Application granted granted Critical
Publication of JP3051468B2 publication Critical patent/JP3051468B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To extend the cycle life of a sheet-shaped negative electrode by providing a composition body of a Li-Al alloy and a polymer material made by the de-halogenation reduction polymerization reaction on aluminum or an aluminum alloy. CONSTITUTION:An aluminum foil with the thickness 75mum is electrochemically etched to form numerous pits in the perpendicular direction to the plane, Li with the thickness 20mum is deposited, then it is heat-treated for 20sec to 150 deg.C to alloy the surface. This aluminum is used as a negative electrode, platinum is used as a positive electrode, and a propylene carbonate solution containing 0.1M tetrabutyl ammonium perchlorate and 50mM tetrachloroxylidine is electrolyzed at 5c/cm<2> with 10mA/cm<2> to obtain the sheet-shaped negative electrode. A current collector is made of aluminum and has excellent mechanical strength, current collection efficiency and internal impedance, and a composition body with a polymer material can completely suppress the collapse and dropping of a Li-Al alloy.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、シート状負極に関する
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sheet negative electrode.

【従来の技術】近年充放電可能な高エネルギー密度電池
としてリチウム二次電池が注目されている。このリチウ
ム二次電池の負極活物質として金属リチウムを使用した
場合、充放電によって電池負極にはデンドライトが発生
したり活性を失ったモス状リチウムが析出するなどの問
題点がある。そのため負極材料の検討が盛んに行われて
いる。例えば負極材料にポリアセチレン、ポリパラフェ
ニレン等のカチオンドープ可能な高分子材料、あるいは
LiとAl等の合金の検討が行われている。しかしなが
ら高分子材料は体積エネルギー密度が低い、充電状態が
不安定で自己放電が大きい等の問題があり、合金は充放
電を繰返すうちに合金層の崩壊、脱落が生じ、十分なサ
イクル寿命が得られていないのが実状であった。
BACKGROUND OF THE INVENTION In recent years, lithium secondary batteries have attracted attention as high energy density batteries that can be charged and discharged. When metallic lithium is used as the negative electrode active material of this lithium secondary battery, there are problems such as the formation of dendrites at the battery negative electrode and the precipitation of moss-like lithium that has lost its activity during charging and discharging. Therefore, negative electrode materials are being actively studied. For example, cation-doped polymeric materials such as polyacetylene and polyparaphenylene, or alloys of Li and Al are being investigated as negative electrode materials. However, polymer materials have problems such as low volumetric energy density, unstable charging state, and large self-discharge, and alloys have problems such as disintegration and falling off of the alloy layer as they are repeatedly charged and discharged, resulting in insufficient cycle life. The reality was that it was not.

【0002】これを解決する手段として特開昭61−2
59455ではポリアセチレンあるいはポリパラフェニ
レンとリチウムあるいはリチウム合金との複合体を用い
ることによりサイクル寿命の改善を行う提案がなされて
いる。しかしながらこの負極は粉末状のリチウムあるい
はリチウム合金と粉末状の高分子材料を混合し成型して
用いるため、負極の崩壊、脱落を抑えることは難しく、
またシート状負極を製作することは不可能であった。
[0002] As a means to solve this problem, Japanese Patent Laid-Open No. 61-2
No. 59455 proposes to improve the cycle life by using a composite of polyacetylene or polyparaphenylene and lithium or a lithium alloy. However, since this negative electrode is made by mixing powdered lithium or lithium alloy with powdered polymer material and molding it, it is difficult to prevent the negative electrode from collapsing or falling off.
Furthermore, it was impossible to produce a sheet-like negative electrode.

【発明が解決しようとする課題】本発明は、こうした実
状の下に上記した従来のシート状負極の欠点を解消し、
サイクル寿命の長いシート状負極を提供することを目的
とするものである。
SUMMARY OF THE INVENTION Under these circumstances, the present invention solves the above-mentioned drawbacks of the conventional sheet-like negative electrode, and
The purpose is to provide a sheet-like negative electrode with a long cycle life.

【課題を解決するための手段】本発明者らは鋭意検討を
重ねた結果、アルニウムあるいはアルミニウム合金上に
Li−Al合金と脱ハロゲン化還元重合反応により得ら
れる高分子材料との複合体を用いることによりサイクル
寿命の長いシート状負極を提供することができることを
見出し本発明に至った。すなわち、本発明はアルミウム
あるいはアルミニウム合金上にLi−Al合金及び脱ハ
ロゲン化還元重合反応により得られる高分子材料との複
合体を設けてなるシート状負極である。
[Means for Solving the Problems] As a result of extensive studies, the present inventors used a composite of a Li-Al alloy and a polymer material obtained by a dehalogenation reduction polymerization reaction on aluminum or an aluminum alloy. The present inventors have discovered that a sheet-like negative electrode with a long cycle life can be provided by this method, leading to the present invention. That is, the present invention is a sheet-like negative electrode in which a composite of a Li--Al alloy and a polymer material obtained by a dehalogenation reduction polymerization reaction is provided on aluminum or an aluminum alloy.

【0003】本負極はアルミニウムあるいはアルミニウ
ム合金部分が集電体となることから負極の機械的強度、
集電効率、内部インピーダンスの点で優れ、またさらに
Li−Al合金と脱ハロゲン化還元重合反応により得ら
れる高分子材料との複合体を用いることにより高分子材
料が活物質となるばかりでなく、Li−Al合金の結着
材及び導電剤となるためLi−Al合金の崩壊脱落を完
全に抑え、長いサイクル寿命と高いエネルギー密度のシ
ート状負極を提供できる。本発明のシート状負極に用い
るアルミニウムあるいはアルミニウム合金としては厚さ
10〜300μm、好ましくは50〜200μmのシー
ト状のものであり、各種材質のものが用いられるが、好
ましくは表面の結晶性が(HOO)面を主に有するもの
が好ましい。10μm以下では負極の機械的強度が十分
でなく300μm以上では製造される負極は厚いものと
なってしまう。また結晶性がそろっているアルミニウム
あるいはアルミニウム合金を用いるとLi−Al合金及
び脱ハロゲン化還元重合反応により得られる高分子材料
の複合体の積層が良好に行えるのみでなく負極の分極特
性は良好なものとすることができる。アルミニウム合金
としては、3000系、5000系合金を例示すること
ができる。
[0003] Since the aluminum or aluminum alloy part of this negative electrode serves as a current collector, the mechanical strength of the negative electrode is low.
It is excellent in terms of current collection efficiency and internal impedance, and by using a composite of a Li-Al alloy and a polymer material obtained by dehalogenation reduction polymerization reaction, the polymer material not only becomes an active material. Since it acts as a binder and a conductive agent for the Li-Al alloy, it can completely suppress the collapse and falling off of the Li-Al alloy, and provide a sheet-like negative electrode with a long cycle life and high energy density. The aluminum or aluminum alloy used in the sheet negative electrode of the present invention is a sheet with a thickness of 10 to 300 μm, preferably 50 to 200 μm, and various materials may be used, but preferably the surface crystallinity is ( Preferably, those having mainly HOO) planes are preferable. If the thickness is less than 10 μm, the mechanical strength of the negative electrode will be insufficient, and if it is more than 300 μm, the negative electrode produced will be thick. Furthermore, if aluminum or aluminum alloy with uniform crystallinity is used, not only can the composite of the Li-Al alloy and the polymer material obtained by the dehalogenation reduction polymerization reaction be laminated well, but also the polarization characteristics of the negative electrode are good. can be taken as a thing. Examples of aluminum alloys include 3000 series and 5000 series alloys.

【0004】さらにアルミニウムあるいはアルミニウム
合金の表面は研摩材等の機械的粗面化あるいは電解エッ
チングにより粗面化を行うことが好ましい。このように
粗面化したアルミニウムあるいはアルミニウム合金は活
物質の脱落が生じないばかりでなく、集電効率、内部イ
ンピーダンスの点で優れた負極を実現できる。本発明の
シート状負極を構成する高分子材料としては、脱ハロゲ
ン化還元重合反応により得られる高分子材料が用いられ
る。高分子材料としては
Furthermore, the surface of aluminum or aluminum alloy is preferably roughened by mechanical roughening using an abrasive or the like or by electrolytic etching. Aluminum or aluminum alloy whose surface has been roughened in this manner not only prevents the active material from falling off, but also makes it possible to realize a negative electrode that is excellent in terms of current collection efficiency and internal impedance. As the polymer material constituting the sheet-like negative electrode of the present invention, a polymer material obtained by a dehalogenation reduction polymerization reaction is used. As a polymer material

【0005】[0005]

【化1】 (前記式においてXはCl、Br;nは2又は3)、キ
ノリンのハロゲン誘導体を化学的あるいは電気化学的に
脱ハロゲン化還元重合したものが用いられる。このよう
な高分子材料は脱ハロゲン化還元重合反応を用いずに、
酸化重合反応を利用しても合成可能であるが、脱ハロゲ
ン化還元重合反応により得られる高分子材料は直ちに負
極に用いることが可能な状態で得られるため、負極に用
いる場合には処理工程が簡便であるばかりでなく、カチ
オンドーピング(充電)に対しても安定で、サイクル寿
命でも酸化重合反応により得られる高分子材料にくらべ
、格段に長くすることができる。
embedded image (In the above formula, X is Cl, Br; n is 2 or 3), and a halogen derivative of quinoline which is chemically or electrochemically dehalogenated and reductively polymerized is used. Such polymer materials can be produced without using dehalogenation reduction polymerization reactions.
Although it can be synthesized by using an oxidative polymerization reaction, the polymer material obtained by a dehalogenation reduction polymerization reaction is obtained in a state that can be used immediately for the negative electrode, so if it is used for the negative electrode, a processing step is required. Not only is it convenient, but it is also stable against cation doping (charging), and its cycle life can be significantly longer than that of polymeric materials obtained through oxidative polymerization reactions.

【0006】本発明のシート状負極に用いる高分子材料
の合成方法としては化学的あるいは電気化学的方法によ
り行われる。化学的方法によれば一度に多量の高分子材
料を粉末として合成することが可能である。合成後は適
当な溶媒による塗布あるいは結着材とともに混練、成型
をすることにより電極として用いることができる。電気
化学的方法によれば適当な溶媒に上記モノマー及び電解
質を溶解し、陰極還元により高分子材料を電解電極上に
膜状に合成することができる。本発明のシート状負極を
得る方法としては、(1)AlとLi−Alの積層体を
作製後、電気化学的手法により高分子材料を被覆する方
法、(2)Al上に化学的に重合した高分子材料を積層
、あるいは電気化学的手法によりAl上に高分子材料を
積層後、Liを電気化学的あるいは物理的に積層し、合
金化処理を行うことにより負極を得る方法、(3)Al
を電解用電極として上記モノマー及びLiイオンを含有
する電解液を電解し、Al上にLi−Al合金と高分子
材料の複合体を得る方法が例示できる。本発明のシート
状負極のLi−Al合金及び脱ハロゲン化還元反応によ
り得られる高分子材料の複合体の厚さとしては25〜2
50μm、好ましくは50〜200μmである。25μ
m未満ではエネルギー容量の点で十分でなく、250μ
mを越えると負極は厚くなり、機械的強度の点で不十分
となる。本発明の負極は、各種電気化学素子に応用可能
であるが非水二次電池用負極として優れた性能を示す。
The polymer material used in the sheet negative electrode of the present invention can be synthesized by chemical or electrochemical methods. According to chemical methods, it is possible to synthesize large amounts of polymeric materials in the form of powder at one time. After synthesis, it can be used as an electrode by coating with a suitable solvent or kneading and molding with a binder. According to the electrochemical method, the above monomer and electrolyte are dissolved in a suitable solvent, and a polymer material can be synthesized in the form of a film on an electrolytic electrode by cathodic reduction. Methods for obtaining the sheet-like negative electrode of the present invention include (1) a method in which a laminate of Al and Li-Al is prepared and then coated with a polymer material by an electrochemical method; (2) a method in which a polymer material is chemically polymerized on Al; (3) A method of obtaining a negative electrode by laminating a polymer material on Al, or laminating a polymer material on Al using an electrochemical method, then electrochemically or physically layering Li, and performing an alloying treatment. Al
An example of a method is to electrolyze an electrolytic solution containing the monomer and Li ions using the above as an electrode for electrolysis to obtain a composite of a Li-Al alloy and a polymer material on Al. The thickness of the composite of the Li-Al alloy of the sheet-like negative electrode of the present invention and the polymer material obtained by the dehalogenation reduction reaction is 25 to 2.
It is 50 μm, preferably 50 to 200 μm. 25μ
If it is less than 250μ, the energy capacity is insufficient.
If it exceeds m, the negative electrode becomes thick and its mechanical strength becomes insufficient. The negative electrode of the present invention can be applied to various electrochemical devices, and exhibits excellent performance as a negative electrode for non-aqueous secondary batteries.

【0007】本発明の負極を使用してリチウム二次電池
とすることができるが、このリチウム二次電池の基本構
成は、前記負極と正極及び電解液からなり必要に応じて
セパレータ、固体電解質を用いることができる。非水電
解液としては電解質塩を非水溶媒に溶解させたものが用
いられ、電解質塩としては通常の非水電解液電池に用い
るものであれば特に制限はないが、例えばLiClO4
、LiBF4、LiAsF6、LiPF6、LiSbF
6、LiCF3SO3、CF3COLi、NaClO4
、NaBF4、NaSCN、KBF4、  (Bu)4
NBF4、(Et)4−NBF4、(Bu)4NClO
4、(Bu)4NClO4等の一種あるいは二種以上の
塩を用いることができる。本負極との組合せにおいては
LiClO4、CF3SO3Liが特に好ましく充放電
効率を飛躍的に上昇せしめることが可能である。非水溶
媒としては、プロピレンカーボネート、γ−ブチルラク
トン、エチレンカーボネート、スルホラン、ジオキソラ
ン、テトラヒドロフラン、2メチルテトラヒドロフラン
、ジメチルスルホキシド、及び1,2−ジメトキシエタ
ン、1,2−エトキシメトキシエタン、メチルジグライ
ム、メチルトリグライム、メチルテトラグライム、エチ
ルグライム、エチルジグライム、ブチルジグライムを例
示することができるが、プロピレンカーボネート、γ−
ブチルラクトン及び又はグライム類の組み合わせが電気
伝導度、無機塩の溶解性の点で最も好ましく、本負極と
の組合せにおいてはγ−ブチルラクトンを主体とした溶
媒組成が充放電効率を高める上で特に好ましい。電解質
塩の濃度は0.5M〜7M、好ましくは1M〜5Mであ
る。
[0007] The negative electrode of the present invention can be used to make a lithium secondary battery, and the basic structure of this lithium secondary battery consists of the negative electrode, positive electrode, and electrolyte, and a separator and a solid electrolyte are added as necessary. Can be used. The non-aqueous electrolyte used is an electrolyte salt dissolved in a non-aqueous solvent, and the electrolyte salt is not particularly limited as long as it is used in normal non-aqueous electrolyte batteries, but for example, LiClO4
, LiBF4, LiAsF6, LiPF6, LiSbF
6, LiCF3SO3, CF3COLi, NaClO4
, NaBF4, NaSCN, KBF4, (Bu)4
NBF4, (Et)4-NBF4, (Bu)4NClO
4. One or more salts such as (Bu)4NClO4 can be used. In combination with the present negative electrode, LiClO4 and CF3SO3Li are particularly preferred since they can dramatically increase charge/discharge efficiency. Examples of non-aqueous solvents include propylene carbonate, γ-butyl lactone, ethylene carbonate, sulfolane, dioxolane, tetrahydrofuran, 2methyltetrahydrofuran, dimethylsulfoxide, and 1,2-dimethoxyethane, 1,2-ethoxymethoxyethane, methyl diglyme, Examples include methyl triglyme, methyl tetraglyme, ethyl glyme, ethyl diglyme, and butyl diglyme, but propylene carbonate, γ-
A combination of butyllactone and/or glymes is most preferable in terms of electrical conductivity and solubility of inorganic salts, and in combination with this negative electrode, a solvent composition mainly composed of γ-butyllactone is particularly effective in increasing charge/discharge efficiency. preferable. The concentration of the electrolyte salt is 0.5M to 7M, preferably 1M to 5M.

【0008】本発明における電池用正極活物質としては
、TiS2、Nb3S4、MoS2、Mo3S4、Co
S2、FeS2、V2O5、Cr2O5、MnO2、C
oO2等のカルコゲナイト化合物、ポリアニリン、ポリ
ピロール、ポリ3メチルチオフェン、ポリジフェニルベ
ンジン等の導電性高分子を挙げることができる。高分子
の活物質においては電解液中の電解質はドーピング量に
相当する以上溶解せしめる必要があり、高濃度でかつ液
の含有量も高いことが望まれる。セパレータとしては、
電解質溶液のイオン移動に対して低抵抗であり、かつ、
溶液保持性に優れたものが用いられる。例えばガラス繊
維フィルタ:ポリエステル、テフロン、ポリフロン、ポ
リプロピレン等の高分子ポアフィルタ、不織布;あるい
はガラス繊維とこれらの高分子からなる混抄紙等を用い
ることができる。また、セパレータ電解液に代るものと
して固体電解質を使用することができ、例えば無機系で
はAgCl、AgBr、AgI、LiIなどの金属ハロ
ゲン化物、RbAg4I3、  RbAg4I3CN等
が挙げられる。又、有機系ではポリエチレンオキサイド
、ポリプロピレンオキサイド、ポリフッ化ビニリデン、
ポリアクリルアミド等をポリマーマトリクスとして先に
述べた電解質塩をポリマーマトリクス中に溶解せしめた
複合体、あるいはこれらの架橋体、低分子量ポリエチレ
ンオキサイド、クラウンエーテルなどのイオン解離基を
ポリマー主鎖にグラフト化した高分子電解質あるいは高
分子量重合体に電解液を含有させた粘弾性固体電解質が
挙げられるが、特に本発明の負極とは粘弾性体固体電解
質との組み合わせが好ましく、負極の崩壊、合金層の脱
落等の防止あるいは負極と固体電解質との接触抵抗を低
減させる上で好ましい。
[0008] As the positive electrode active material for batteries in the present invention, TiS2, Nb3S4, MoS2, Mo3S4, Co
S2, FeS2, V2O5, Cr2O5, MnO2, C
Examples include chalcogenite compounds such as oO2, and conductive polymers such as polyaniline, polypyrrole, poly3-methylthiophene, and polydiphenylbenzine. In the case of a polymer active material, it is necessary to dissolve the electrolyte in the electrolytic solution in an amount equivalent to the amount of doping, and it is desirable that the electrolyte be highly concentrated and have a high content. As a separator,
has low resistance to ion movement in the electrolyte solution, and
A material with excellent solution retention is used. For example, glass fiber filters: polymer pore filters such as polyester, Teflon, polyflon, polypropylene, etc., nonwoven fabrics, or mixed paper made of glass fibers and these polymers can be used. Further, a solid electrolyte can be used in place of the separator electrolyte, and examples of inorganic electrolytes include metal halides such as AgCl, AgBr, AgI, and LiI, RbAg4I3, RbAg4I3CN, and the like. In addition, organic types include polyethylene oxide, polypropylene oxide, polyvinylidene fluoride,
Composites in which polyacrylamide or the like is used as a polymer matrix and the electrolyte salt mentioned above is dissolved in the polymer matrix, or crosslinked products of these, or in which ionic dissociative groups such as low molecular weight polyethylene oxide or crown ether are grafted onto the polymer main chain. A polymer electrolyte or a viscoelastic solid electrolyte in which an electrolytic solution is contained in a high molecular weight polymer may be used, but it is particularly preferable to use the negative electrode of the present invention in combination with a viscoelastic solid electrolyte, so that the negative electrode may collapse and the alloy layer may fall off. This is preferable in terms of preventing such problems or reducing contact resistance between the negative electrode and the solid electrolyte.

【0009】[0009]

【実施例】実施例1 厚さ75μmのアルミニウム箔を電気化学的にエッチン
グして面に垂直方向に無数のピットを形成した。このア
ルミニウム上に20μmのLiを蒸着した後、150℃
で20秒間熱処理を行い、Al表面を合金化させた。こ
のアルミニウムを負極、白金を正極にして0.1M過塩
素酸テトラブチルアンモニウム、50mMテトラクロロ
キシリデンCHCl2C6H4CHCl2を含むプロピ
レンカーボネイト溶液を10mA/cm2で5c/cm
2電解を行い、シート状負極を製造した。 実施例2 実施例1で無数のピットを形成したアルミニウムを負極
、白金を正極にして  0.1M過塩素酸テトラブチル
アンモニウム、50mMのCHCl2C6H4CHCl
2を含むプロピレンカーボネイト溶液を10mA/cm
2で7c/cm2電解を行った。このアルミニウム/ポ
リフェニレンビニレン電極上にLiを20μm積層した
後、150℃で20秒間が熱処理を行い、シート状負極
を製造した。
Examples Example 1 An aluminum foil having a thickness of 75 μm was electrochemically etched to form numerous pits in the direction perpendicular to the surface. After evaporating 20 μm of Li on this aluminum,
Heat treatment was performed for 20 seconds to alloy the Al surface. Using this aluminum as a negative electrode and platinum as a positive electrode, a propylene carbonate solution containing 0.1M tetrabutylammonium perchlorate and 50mM tetrachloroxylidene CHCl2C6H4CHCl2 was applied at 5c/cm at 10mA/cm2.
2 electrolysis was performed to produce a sheet negative electrode. Example 2 Aluminum with numerous pits formed in Example 1 was used as a negative electrode, and platinum was used as a positive electrode. 0.1M tetrabutylammonium perchlorate, 50mM CHCl2C6H4CHCl
A propylene carbonate solution containing 2 at 10 mA/cm
Electrolysis was carried out at 7c/cm2. After laminating 20 μm of Li on this aluminum/polyphenylene vinylene electrode, heat treatment was performed at 150° C. for 20 seconds to produce a sheet-like negative electrode.

【0010】比較例 実施例2で用いたアルミニウム上にLiを20μm積層
後150℃で20秒間加熱処理を行いシート状負極を製
造した。 負極性能試験 実施例1、2、比較例で製造した負極を作用極、Liを
対極及び参照極に用い、3M  LiBF4/プロピレ
ンカーボネート+ジメトキシエタン(1:1体積比)中
で 1mA/cm2の定電流で1mAh/cm2の充放
電を行い負極のサイクル寿命を測定した。結果を表1に
示す。
Comparative Example After laminating Li to a thickness of 20 μm on the aluminum used in Example 2, heat treatment was performed at 150° C. for 20 seconds to produce a sheet-like negative electrode. Negative electrode performance test The negative electrodes prepared in Examples 1 and 2 and Comparative Example were used as the working electrode, and Li was used as the counter electrode and reference electrode, and the electrodes were heated at a constant rate of 1 mA/cm2 in 3M LiBF4/propylene carbonate + dimethoxyethane (1:1 volume ratio). The cycle life of the negative electrode was measured by charging and discharging with a current of 1 mAh/cm2. The results are shown in Table 1.

【表1】[Table 1]

【0011】[0011]

【発明の効果】以上説明したように、本発明のシート状
負極は、サイクル寿命が長く、例えば二次電池等の実用
的性能の向上に寄与することができる。
As explained above, the sheet-like negative electrode of the present invention has a long cycle life and can contribute to improving the practical performance of, for example, secondary batteries.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  アルミニウムあるいはアルミニウム合
金上にLiーAl合金及び脱ハロゲン化還元重合反応に
より得られる高分子材料との複合体を設けてなるシート
状負極。
1. A sheet-like negative electrode comprising a composite of a Li--Al alloy and a polymer material obtained by a dehalogenation reduction polymerization reaction on aluminum or an aluminum alloy.
【請求項2】  アルミニウムあるいはアルミニウム合
金の表面が粗面化されている請求項1記載のシート状負
極。
2. The sheet-like negative electrode according to claim 1, wherein the surface of the aluminum or aluminum alloy is roughened.
JP03031370A 1990-11-09 1991-02-01 Sheet-shaped negative electrode Expired - Fee Related JP3051468B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2-302579 1990-11-09
JP30257990 1990-11-09

Publications (2)

Publication Number Publication Date
JPH04215246A true JPH04215246A (en) 1992-08-06
JP3051468B2 JP3051468B2 (en) 2000-06-12

Family

ID=17910680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03031370A Expired - Fee Related JP3051468B2 (en) 1990-11-09 1991-02-01 Sheet-shaped negative electrode

Country Status (1)

Country Link
JP (1) JP3051468B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996013072A1 (en) * 1994-10-19 1996-05-02 Arthur D. Little, Inc. Current collector device and method of manufacturing same
US5588971A (en) * 1994-10-19 1996-12-31 Arthur D. Little, Inc. Current collector device and method of manufacturing same
KR100439350B1 (en) * 2001-09-14 2004-07-07 주식회사 엠에프에스컴퍼니 Method for Continuously Making Band Type Lithium Metal Anode, Rechargeable Lithium Polymer Battery and Method for Making the Same Using the Lithium Metal Anode

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996013072A1 (en) * 1994-10-19 1996-05-02 Arthur D. Little, Inc. Current collector device and method of manufacturing same
US5573554A (en) * 1994-10-19 1996-11-12 Arthur D. Little, Inc. Current collector device and method of manufacturing same
US5578396A (en) * 1994-10-19 1996-11-26 Arthur D. Little, Inc. Current collector device
US5588971A (en) * 1994-10-19 1996-12-31 Arthur D. Little, Inc. Current collector device and method of manufacturing same
US5591544A (en) * 1994-10-19 1997-01-07 Arthur D. Little, Inc. Current collector device
KR100439350B1 (en) * 2001-09-14 2004-07-07 주식회사 엠에프에스컴퍼니 Method for Continuously Making Band Type Lithium Metal Anode, Rechargeable Lithium Polymer Battery and Method for Making the Same Using the Lithium Metal Anode

Also Published As

Publication number Publication date
JP3051468B2 (en) 2000-06-12

Similar Documents

Publication Publication Date Title
US6025437A (en) Block-graft copolymer, self-crosslinked polymer solid electrolyte and composite solid electrolyte manufactured through use of the block-graft copolymer, and solid cell employing the composite solid electrolyte
JP2000285929A (en) Solid electrolyte battery
JP2001093573A (en) Lithium battery
JP3854382B2 (en) Polymer matrix for forming gelled solid electrolyte, solid electrolyte and battery
CA2334240C (en) Lithium secondary battery using gelled polymeric electrolyte
JPH08195199A (en) Electrode for battery and secondary battery using it
JP3467812B2 (en) Chemical battery
JPH11149825A (en) Slid polymer electrolyte and electrochemical device using the same
JP2005293960A (en) Anode for lithium ion secondary battery, and lithium ion secondary battery
JP3587982B2 (en) Polymer solid electrolyte and lithium secondary battery and electric double layer capacitor using the same
JP2004087226A (en) Lithium secondary battery
JPH04215246A (en) Sheet-shaped negative electrode
JP3131441B2 (en) Anode for battery
JP2003017058A (en) Non-aqueous electrolyte battery
JPH10261437A (en) Polymer electrolyte and lithium polymer battery using it
JPH1145725A (en) Lithium battery
JP3383454B2 (en) Lithium secondary battery
JP2983580B2 (en) Non-aqueous electrolyte secondary battery
JPH10265635A (en) Polymeric solid electrolyte and electrochemical device made by using it
JP3084050B2 (en) Negative electrode for secondary battery
JP3942232B2 (en) Gel-like solid electrolyte and battery
JP6916337B1 (en) Lithium ion secondary battery
JP2703297B2 (en) Rechargeable battery
JP4438141B2 (en) Polymer lithium secondary battery
JP3555262B2 (en) Battery electrolyte and battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees