JP2983580B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery

Info

Publication number
JP2983580B2
JP2983580B2 JP2131672A JP13167290A JP2983580B2 JP 2983580 B2 JP2983580 B2 JP 2983580B2 JP 2131672 A JP2131672 A JP 2131672A JP 13167290 A JP13167290 A JP 13167290A JP 2983580 B2 JP2983580 B2 JP 2983580B2
Authority
JP
Japan
Prior art keywords
battery
secondary battery
positive electrode
electrolyte secondary
solute
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2131672A
Other languages
Japanese (ja)
Other versions
JPH0428171A (en
Inventor
修弘 古川
精司 吉村
浩志 渡辺
昌利 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Denki Co Ltd
Original Assignee
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Denki Co Ltd filed Critical Sanyo Denki Co Ltd
Priority to JP2131672A priority Critical patent/JP2983580B2/en
Publication of JPH0428171A publication Critical patent/JPH0428171A/en
Application granted granted Critical
Publication of JP2983580B2 publication Critical patent/JP2983580B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は非水系電解液二次電池の電解液中の溶質の改
良に関するものである。
The present invention relates to improvement of solutes in an electrolyte of a non-aqueous electrolyte secondary battery.

(ロ)従来の技術 リチウムあるいはナトリウム等の軽金属を活物質とす
る負極を用いた非水系電解液電池は、高エネルギー密度
で低自己放電率という特徴を有する。
(B) Conventional technology A non-aqueous electrolyte battery using a negative electrode containing a light metal such as lithium or sodium as an active material is characterized by a high energy density and a low self-discharge rate.

近年、この種電池が広く普及するにつれ、更なる高率
放電特性の改善が望まれるようになり、電解液の溶質と
してフッ素を含むリチウム塩の研究が盛んに行なわれる
ようになった。これらのリチウム塩を用いた電池は、高
率放電特性の向上だけでなく、非水系二次電池とした場
合必要とされるサイクル特性をも向上させることがで
き、有望な溶質であることは言うまでもない。
In recent years, with the widespread use of this type of battery, further improvement in high-rate discharge characteristics has been desired, and research on lithium salts containing fluorine as a solute of an electrolyte has been actively conducted. Batteries using these lithium salts can improve not only the high-rate discharge characteristics but also the cycle characteristics required in the case of non-aqueous secondary batteries, and needless to say, they are promising solutes. No.

しかしながら、これらのリチウム塩を用いた非水系電
解液二次電池は高率放電特性では優れているものの、長
期保存における特性劣化が非常に大きく、保存特性の改
善及びサイクル特性の向上を同時に計ることが最大の課
題である。
However, although the non-aqueous electrolyte secondary batteries using these lithium salts are excellent in high-rate discharge characteristics, their characteristics deteriorate significantly during long-term storage, so it is necessary to simultaneously improve storage characteristics and cycle characteristics. Is the biggest challenge.

(ハ)発明が解決しようとする課題 本発明は前記問題点に鑑みてなされたものであって、
非水系電解液二次電池の高率放電特性を高いままに維持
し、加えて保存特性の向上を目的とし、且つサイクル特
性の向上を計るものである。
(C) Problems to be solved by the invention The present invention has been made in view of the above problems,
The object of the present invention is to maintain high rate discharge characteristics of a non-aqueous electrolyte secondary battery at a high level, to improve storage characteristics, and to improve cycle characteristics.

(ニ)課題を解決するための手段 本発明は、正極と、リチウムを活物質とする負極と、
有機溶媒及び分子式中にフッ素を含むリチウム塩よりな
る溶質とを含む電解液を備えた非水系電解液二次電池で
あって、前記リチウム塩は、遊離のフッ素イオンが50pp
m以下であることを特徴とするものである。
(D) Means for Solving the Problems The present invention provides a positive electrode, a negative electrode using lithium as an active material,
A non-aqueous electrolyte secondary battery comprising an electrolyte containing an organic solvent and a solute consisting of a lithium salt containing fluorine in the molecular formula, wherein the lithium salt has 50 pp of free fluorine ions.
m or less.

ここで、前記リチウム塩としては、LiPF6、LiCF3S
O3、LiAsF6、LiSbF6、LiCF3CO3、LiBF4のうちから選択
された少なくとも1種を使用するのが望ましい。
Here, as the lithium salt, LiPF 6 , LiCF 3 S
It is preferable to use at least one selected from O 3 , LiAsF 6 , LiSbF 6 , LiCF 3 CO 3 , and LiBF 4 .

(ホ)作用 溶質としてのリチウム塩中に、遊離のフッ素イオンが
存在すると、特に電池の保存特性を劣化させる。これ
は、遊離のフッ素イオンがこの種電池の長期保存時にお
いて、負極の軽金属からなる活物質と反応し、その表面
に不働態被膜を生成させることに起因し、サイクル特性
を著しく悪化させてしまう。
(E) Action The presence of free fluorine ions in the lithium salt as a solute particularly deteriorates the storage characteristics of the battery. This is because free fluorine ions react with the active material composed of the light metal of the negative electrode during long-term storage of this type of battery, and a passive film is generated on the surface thereof, which significantly deteriorates the cycle characteristics. .

そこで、種々検討した結果、溶質中における遊離のフ
ッ素イオンの濃度を50ppm以下とすることにより、前記
せる保存特性、及びサイクル特性を向上させることを見
い出した。
Therefore, as a result of various studies, it has been found that the storage characteristics and the cycle characteristics can be improved by reducing the concentration of free fluorine ions in the solute to 50 ppm or less.

ここで、遊離のフッ素イオンの濃度を50ppm以下とす
る方法としては、高純度の原料を用いる、合成の際原料
の量を最適化する、合成後の精製をくり返し行う方法な
どが挙げられる。
Here, examples of the method for reducing the concentration of free fluorine ions to 50 ppm or less include a method using a high-purity raw material, optimizing the amount of the raw material at the time of synthesis, and a method of repeatedly performing purification after synthesis.

尚、この遊離のフッ素イオンの濃度の測定は、イオン
クロマト法により行ったものである。
The measurement of the concentration of the free fluorine ions was carried out by an ion chromatography method.

そして、溶質として分子式中にフッ素を含むリチウム
塩を使用した場合、前記せる遊離のフッ素イオンの影響
は特に大きい。このようなリチウム塩は、原料としてHF
を用いて合成するのが一般的である。しかしながら、合
成の際に遊離のフッ素イオンを完成に除去することは非
常に困難であり、どのリチウム塩においても、数100ppm
程度は残留してしまう。そしてこの傾向は分子式中にフ
ッ素を含むリチウム塩であるLiPF6の場合、特に顕著で
ある。
When a lithium salt containing fluorine in the molecular formula is used as the solute, the influence of the free fluorine ions is particularly large. Such lithium salts are used as raw materials in HF
It is common to synthesize using. However, it is extremely difficult to completely remove free fluorine ions during synthesis, and in any lithium salt, several hundred ppm
The degree remains. This tendency is particularly remarkable in the case of LiPF 6 which is a lithium salt containing fluorine in the molecular formula.

そこで、前述せる如く、前記方法により遊離のフッ素
イオンを50ppm以下にすることにより、電池の保存特
性、及びサイクル特性の向上を同時に計ることができ
る。
Therefore, as described above, by reducing the free fluorine ion to 50 ppm or less by the above method, it is possible to simultaneously improve the storage characteristics and the cycle characteristics of the battery.

ここで、分子式中にフッ素を含むリチウム塩として
は、LiPF6、LiCF3SO3、LiAsF6、LiSbF6、LiCF3CO3、LiB
F4等を用いるのが望ましい。
Examples of the lithium salt containing fluorine in the molecular formula, LiPF 6, LiCF 3 SO 3 , LiAsF 6, LiSbF 6, LiCF 3 CO 3, LiB
It is desirable to use F 4, and the like.

(ヘ)実施例 以上に、参考例は一次電池とした場合、また実施例で
は二次電池とした場合について電池特性を調べた。
(F) Example As described above, the battery characteristics were examined in the case where the reference example was a primary battery, and in the example, the case where a secondary battery was used.

(参考例) ここでは、一次電池を作製した場合を例にとり説明す
る。第1図は参考例の扁平型電池の縦断面図であって、
リチウム金属から成る負極1は負極集電体2の内面に圧
着されており、この負極集電体2はフェライト系ステン
レス鋼(SUS430)から成る断面略コ字状の負極缶3の内
底面に固着されている。
(Reference Example) Here, a case where a primary battery is manufactured will be described as an example. FIG. 1 is a longitudinal sectional view of a flat battery according to a reference example,
A negative electrode 1 made of lithium metal is pressed against the inner surface of a negative electrode current collector 2, and the negative electrode current collector 2 is fixed to the inner bottom surface of a negative can 3 made of ferritic stainless steel (SUS430) and having a substantially U-shaped cross section. Have been.

上記負極缶3の周端はポリプロピレン製の絶縁パッキ
ング4の内部に固着されており、絶縁パッキング4の外
周には、ステンレスから成り上記負極缶3とは反対方向
に断面略コ字状を成す正極缶5が固定されている。この
正極缶5の内底面には正極集電体6が固定されており、
この正極集電体6の内面には、正極7が固定されてい
る。この正極7と前記負極1との間には、電解液が含浸
されたセパレータ8が介装されている。
A peripheral end of the negative electrode can 3 is fixed to the inside of an insulating packing 4 made of polypropylene. The can 5 is fixed. A positive electrode current collector 6 is fixed to the inner bottom surface of the positive electrode can 5,
A positive electrode 7 is fixed to the inner surface of the positive electrode current collector 6. A separator 8 impregnated with an electrolytic solution is interposed between the positive electrode 7 and the negative electrode 1.

ところで、前記正極7は350〜430℃の温度範囲で熱処
理した二酸化マンガンを活物質として用い、この二酸化
マンガンと、導電剤としてのカーボン粉末と、結着剤と
してのフッ素樹脂粉末とを85:10:5の重量比で混合す
る。次にこの混合物を加圧形成した後、250〜350℃で熱
処理して作製した。
By the way, the positive electrode 7 uses manganese dioxide heat-treated in a temperature range of 350 to 430 ° C. as an active material, and mixes the manganese dioxide, carbon powder as a conductive agent, and fluororesin powder as a binder with 85:10. : 5 by weight ratio. Next, this mixture was press-formed, and then heat-treated at 250 to 350 ° C. to produce a mixture.

一方、前記負極1は、リチウム圧延板を所定寸法に打
ち抜くことにより作製したものである。そして電解液と
してプロピレンカーボネートと1,2−ジメトキシエタン
との混合溶媒に遊離のフッ素イオン(F-)を10ppmとし
た溶質であるLiPF6を1モル/リットル溶解したものを
用いた。これらを用いて、外径20.0mm、厚み2.5mm、電
池容量130mAHの参考電池S1を作製した。
On the other hand, the negative electrode 1 is manufactured by punching a rolled lithium plate into a predetermined size. The electrolyte used was a mixture of propylene carbonate and 1,2-dimethoxyethane in which 1 mol / liter of a solute LiPF 6 having 10 ppm of free fluorine ions (F ) was dissolved. Using these, a reference battery S1 having an outer diameter of 20.0 mm, a thickness of 2.5 mm, and a battery capacity of 130 mAH was produced.

また溶質として、第1表に示す種々のF-濃度をもつLi
PF6を用いた以外は同様にして、参考電池S2、参考電池X
1、X2、X3を作製した。
As a solute, Li having various F - concentrations shown in Table 1 was used.
Except that PF 6 was used, reference battery S2 and reference battery X were used in the same manner.
1, X2 and X3 were prepared.

これらの電池S1、S2及びX1〜X3の初期の放電特性を比
較した。この時の条件は、電池組立後、300Ωの定抵抗
で放電させるというものである。
The initial discharge characteristics of these batteries S1, S2 and X1 to X3 were compared. The condition at this time is that the battery is discharged at a constant resistance of 300Ω after the assembly of the battery.

この結果を、第2図に示す。 The result is shown in FIG.

また、電池S1、S2及びX1〜X3を用い、保存後の放電特
性を調べた。この時の条件は、各電池を60℃で3ヶ月間
保存した後、300Ωの定抵抗で放電させるというもので
ある。
The discharge characteristics after storage were examined using batteries S1, S2 and X1 to X3. The condition at this time is that each battery is stored at 60 ° C. for 3 months and then discharged at a constant resistance of 300Ω.

この結果を、第3図に示す。 The result is shown in FIG.

第2図及び第3図の結果より、遊離のF-濃度の違い
は、初期の放電特性には影響を与えないが、保存後の放
電特性に顕著な差異を与えることがわかる。
From the results of FIG. 2 and FIG. 3, the free F - concentration differences do not affect the initial discharge characteristics, it is found to give a significant difference in the discharge characteristics after storage.

次に溶質であるLiPF6に含まれるF-濃度と、保存後の
放電容量との関係について調べた。
Next, the relationship between the F - concentration contained in the solute LiPF 6 and the discharge capacity after storage was examined.

この結果を、第4図に示す。 The result is shown in FIG.

これより、遊離のF-濃度が100ppm以上となる(参考電
池X1〜X3)と、保存特性が極端に悪くなることがわか
る。したがって、遊離のF-濃度は50ppm以下にする必要
がある。
From this, the free F - concentration is more than 100ppm and (Reference Battery X1 to X3), it is understood that the storage characteristic is extremely poor. Therefore, the free F - concentration must be below 50 ppm.

(実施例) ここでは本発明の実施例である二次電池を作製した場
合を例にとり、説明する。第5図は、本発明の扁平型二
次電池の半断面図である。
(Example) Here, a case where a secondary battery which is an example of the present invention is manufactured will be described as an example. FIG. 5 is a half sectional view of the flat secondary battery of the present invention.

第5図中、11、12は、ステンレス製の正、負極缶であ
って、これらはポリプロピレン製の絶縁パッキング13に
より隔離されている。14は正極であって、正極缶11の内
底面に固着せる正極集電体15に圧接されている。16は負
極であって、負極缶12の内底面に固着せる負極集電体17
に圧着されている。18はポリプロピレン製微孔性薄膜よ
りなるセパレータであり、又電解液としてプロピレンカ
ーボネートとジメトキシエタンとの混合溶媒に遊離のF-
(濃度:10ppm)をもつLiPF6を溶質として用いている。
In FIG. 5, reference numerals 11 and 12 denote positive and negative electrode cans made of stainless steel, which are separated by an insulating packing 13 made of polypropylene. Reference numeral 14 denotes a positive electrode, which is pressed against a positive electrode current collector 15 fixed to the inner bottom surface of the positive electrode can 11. Reference numeral 16 denotes a negative electrode, and a negative electrode current collector 17 fixed to the inner bottom surface of the negative electrode can 12
Is crimped. 18 is a separator made of a polypropylene microporous film, also free of F in a mixed solvent of propylene carbonate and dimethoxyethane as the electrolyte solution -
(Concentration: 10 ppm) is used LiPF 6 with a solute.

ここで、前記正極14は、二酸化マンガンとLiOHを混合
した後、空気中において350〜430℃の温度範囲で直径20
mmに加圧成型したのち250℃で熱処理して得られた活物
質粉末と、導電剤としてのアセチレンブラック及び結着
剤としてのフッ素樹脂粉末を重量比で90:6:4の比率で混
合して正極合剤とし、この正極合剤を2トン/cm2で熱処
理して得たものである。また負極16は所定厚みのリチウ
ム板を直径20mmに打抜いたものである。
Here, after mixing manganese dioxide and LiOH, the positive electrode 14 has a diameter of 20 in a temperature range of 350 to 430 ° C. in air.
The active material powder obtained by heat-molding at 250 ° C. after press-molding into mm, acetylene black as a conductive agent and a fluororesin powder as a binder were mixed at a weight ratio of 90: 6: 4. The positive electrode mixture was obtained by heat-treating the positive electrode mixture at 2 ton / cm 2 . The negative electrode 16 is obtained by punching a lithium plate having a predetermined thickness to a diameter of 20 mm.

このようにして、外径24.0mm、高さ3.0mmを有する扁
平型の非水系電解液二次電池を作製し、本発明電池Aと
した。
In this way, a flat nonaqueous electrolyte secondary battery having an outer diameter of 24.0 mm and a height of 3.0 mm was produced, and was referred to as Battery A of the present invention.

また、溶質として、第2表に示す種々の遊離のF-濃度
を有するLiPF6を用いた以外は同様にして、本発明電池
B及び比較電池Y1、Y2を作製した。
Further, as a solute, F various free illustrated in Table 2 -, except that LiPF 6 was used having a density in the same manner, to prepare a Battery B of the invention and comparative batteries Y1, Y2.

これらの電池A、B及びY1、Y2を用い、電池の充放電
サイクル特性を比較した。この時のサイクル条件は、充
放電電流を共に2mAで4時間とし、放電時間内に放電電
圧が1.5Vに達した電池を寿命とした。
Using these batteries A and B and Y1 and Y2, the charge / discharge cycle characteristics of the batteries were compared. The cycle conditions at this time were a charge and discharge current of 2 mA for 4 hours, and a battery whose discharge voltage reached 1.5 V within the discharge time was regarded as a life.

この結果を、第6図に示す。 The result is shown in FIG.

本発明電池A、Bは、比較電池Y1、Y2に比べて、サイ
クル特性が著しく向上していた。これは溶質における遊
離のフッ素イオン(F-)の濃度の差異に基づくものであ
り、溶質中の濃度が100ppm以上のもの(比較電池Y1、Y
2)は、サイクル特性が良くない。
The batteries A and B of the present invention had remarkably improved cycle characteristics as compared with the comparative batteries Y1 and Y2. This free in solute fluorine ions (F -) is based on the concentration difference of those is the concentration of solute than 100 ppm (Comparative Battery Y1, Y
2) has poor cycle characteristics.

(ト)発明の効果 本発明によれば、溶質として遊離のフッ素イオンが50
ppm以下のものを用いているので、この種非水系電解液
二次電池の保存特性を改善し、且つサイクル特性を向上
しうるものであり、その工業的価値は極めて大きい。
(G) Effects of the Invention According to the present invention, 50 or more free fluorine ions are used as a solute.
Since the non-aqueous electrolyte secondary battery of this type is used, the storage characteristics and cycle characteristics of this type of nonaqueous electrolyte secondary battery can be improved, and its industrial value is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

第1図は参考電池の縦断面図、第2図は電池の初期の放
電特性図、第3図は電池の保存後の放電特性図、第4図
は遊離のフッ素イオン濃度と電池保存後の放電容量との
関係を示す図、第5図は本発明電池の半断面図、第6図
は電池のサイクル特性図である。 1……負極、2……負極集電体、3……負極缶、4……
絶縁パッキング、5……正極缶、6……正極集電体、7
……正極、8……セパレータ、 A、B……本発明電池、 S1、S2、X1、X2、X3……参考電池、 Y1、Y2……比較電池。
FIG. 1 is a longitudinal sectional view of a reference battery, FIG. 2 is an initial discharge characteristic diagram of the battery, FIG. 3 is a discharge characteristic diagram after storage of the battery, and FIG. FIG. 5 is a diagram showing the relationship with the discharge capacity, FIG. 5 is a half sectional view of the battery of the present invention, and FIG. 6 is a cycle characteristic diagram of the battery. 1 ... Anode, 2 ... Anode collector, 3 ... Anode can, 4 ...
Insulation packing, 5: positive electrode can, 6: positive electrode current collector, 7
... positive electrode, 8 ... separator, A, B ... battery of the present invention, S1, S2, X1, X2, X3 ... reference battery, Y1, Y2 ... comparative battery.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 昌利 大阪府守口市京阪本通2丁目18番地 三 洋電機株式会社内 (56)参考文献 特開 平2−144860(JP,A) 特開 昭63−184269(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01M 10/40 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Masatoshi Takahashi 2-18-18 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (56) References JP-A-2-144860 (JP, A) JP-A Sho 63-184269 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H01M 10/40

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】正極と、リチウムを活物質とする負極と、
有機溶媒及び分子式中にフッ素を含むリチウム塩よりな
る溶質とを含む電解液を備えた電池であって、 前記リチウム塩は、遊離のフッ素イオンが50ppm以下で
あることを特徴とする非水系電解液二次電池。
1. A positive electrode, a negative electrode using lithium as an active material,
A battery comprising an electrolyte containing an organic solvent and a solute comprising a lithium salt containing fluorine in the molecular formula, wherein the lithium salt has a free fluorine ion of 50 ppm or less. Rechargeable battery.
【請求項2】前記分子式中にフッ素を含むリチウム塩
が、LiPF6、LiCF3SO3、LiAsF6、LiSbF6、LiCF3CO3、LiB
F4のうちから選択された少なくとも1種であることを特
徴とする請求項記載の非水系電解液二次電池。
2. A lithium salt containing fluorine in the molecular formula, LiPF 6, LiCF 3 SO 3 , LiAsF 6, LiSbF 6, LiCF 3 CO 3, LiB
Nonaqueous-electrolyte secondary battery according to claim wherein the at least one selected from among F 4.
JP2131672A 1990-05-22 1990-05-22 Non-aqueous electrolyte secondary battery Expired - Lifetime JP2983580B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2131672A JP2983580B2 (en) 1990-05-22 1990-05-22 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2131672A JP2983580B2 (en) 1990-05-22 1990-05-22 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH0428171A JPH0428171A (en) 1992-01-30
JP2983580B2 true JP2983580B2 (en) 1999-11-29

Family

ID=15063530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2131672A Expired - Lifetime JP2983580B2 (en) 1990-05-22 1990-05-22 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2983580B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008023744A1 (en) * 2006-08-22 2008-02-28 Mitsubishi Chemical Corporation Lithium difluorophosphate, electrolytic solution containing lithium difluorophosphate, process for producing lithium difluorophosphate, process for producing nonaqueous electrolytic solution, nonaqueous electrolytic solution, and nonaqueous-electrolytic-solution secondary cell employing the same
WO2013180175A1 (en) 2012-05-30 2013-12-05 セントラル硝子株式会社 Electrolyte solution for nonaqueous electrolyte batteries, and nonaqueous electrolyte battery using same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07254415A (en) * 1993-12-20 1995-10-03 Wilson Greatbatch Ltd Electrochemical battery and method of reducing its voltage delay
AU6242496A (en) 1995-06-28 1997-01-30 Fuji Photo Film Co., Ltd. Nonaqueous secondary battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008023744A1 (en) * 2006-08-22 2008-02-28 Mitsubishi Chemical Corporation Lithium difluorophosphate, electrolytic solution containing lithium difluorophosphate, process for producing lithium difluorophosphate, process for producing nonaqueous electrolytic solution, nonaqueous electrolytic solution, and nonaqueous-electrolytic-solution secondary cell employing the same
JP2008140767A (en) * 2006-08-22 2008-06-19 Mitsubishi Chemicals Corp Lithium difluorophosphate, electrolyte solution containing the same, manufacturing method of the same, manufacturing method of non-aqueous electrolyte solution, non-aqueous electrolyte solution and non-aqueous electrolyte secondary battery using the solution
JP2013056829A (en) * 2006-08-22 2013-03-28 Mitsubishi Chemicals Corp Method for producing lithium difluorophosphate, method for producing nonaqueous electrolyte, nonaqueous electrolyte, and nonaqueous electrolyte secondary battery employing the nonaqueous electrolyte
WO2013180175A1 (en) 2012-05-30 2013-12-05 セントラル硝子株式会社 Electrolyte solution for nonaqueous electrolyte batteries, and nonaqueous electrolyte battery using same
KR20150027162A (en) 2012-05-30 2015-03-11 샌트랄 글래스 컴퍼니 리미티드 Electrolytic solution for nonaqueous electrolyte batteries and nonaqueous electrolyte battery using the same

Also Published As

Publication number Publication date
JPH0428171A (en) 1992-01-30

Similar Documents

Publication Publication Date Title
CA2052317C (en) Nonaqueous electrolyte secondary battery
US5358805A (en) Secondary battery and manufacturing method therefor
JP3167513B2 (en) Non-aqueous electrolyte battery
JP3369583B2 (en) Non-aqueous electrolyte battery
JP2004303437A (en) Nonaqueous electrolyte secondary battery
JP3287376B2 (en) Lithium secondary battery and method of manufacturing the same
US6677081B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery
JPH1083815A (en) Lithium secondary battery
JPH06302320A (en) Nonaqueous electrolyte secondary battery
JPH09213348A (en) Non-aqueous electrolyte battery
JP3212639B2 (en) Non-aqueous solvent secondary battery
JP2983580B2 (en) Non-aqueous electrolyte secondary battery
JP3546566B2 (en) Non-aqueous electrolyte secondary battery
JP3050885B2 (en) Non-aqueous solvent secondary battery and method of manufacturing the same
JP2950924B2 (en) Non-aqueous electrolyte battery
JP3713066B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
US6696200B1 (en) Lithium battery with boron-containing electrode
JPS6151387B2 (en)
US5599643A (en) Lithium electrochemical cell including lithium copper oxide in the cathode
JP3025695B2 (en) Non-aqueous secondary battery
JPH06333565A (en) Nonaqueous electrolytic battery
JPH0495362A (en) Nonaqueous electrolytic battery
JPH1145724A (en) Nonaqueous electrolytic battery
JP2975727B2 (en) Non-aqueous electrolyte battery
JP3443217B2 (en) Non-aqueous electrolyte battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 11