JPH04214027A - 酸化物超電導体およびその製造方法 - Google Patents

酸化物超電導体およびその製造方法

Info

Publication number
JPH04214027A
JPH04214027A JP3036409A JP3640991A JPH04214027A JP H04214027 A JPH04214027 A JP H04214027A JP 3036409 A JP3036409 A JP 3036409A JP 3640991 A JP3640991 A JP 3640991A JP H04214027 A JPH04214027 A JP H04214027A
Authority
JP
Japan
Prior art keywords
phase
partial pressure
oxygen partial
temperature
40logp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3036409A
Other languages
English (en)
Other versions
JP2672033B2 (ja
Inventor
Shinichi Koriyama
慎一 郡山
Kazuhiro Sakuyama
作山 和弘
Toshihiko Maeda
敏彦 前田
Hisao Yamauchi
尚雄 山内
Shoji Tanaka
昭二 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOKUSAI CHODENDO SANGYO GIJUTSU KENKYU CENTER
Furukawa Electric Co Ltd
Kyocera Corp
Tohoku Electric Power Co Inc
Original Assignee
KOKUSAI CHODENDO SANGYO GIJUTSU KENKYU CENTER
Furukawa Electric Co Ltd
Kyocera Corp
Tohoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOKUSAI CHODENDO SANGYO GIJUTSU KENKYU CENTER, Furukawa Electric Co Ltd, Kyocera Corp, Tohoku Electric Power Co Inc filed Critical KOKUSAI CHODENDO SANGYO GIJUTSU KENKYU CENTER
Publication of JPH04214027A publication Critical patent/JPH04214027A/ja
Application granted granted Critical
Publication of JP2672033B2 publication Critical patent/JP2672033B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • H10N60/85Superconducting active materials
    • H10N60/855Ceramic materials
    • H10N60/857Ceramic materials comprising copper oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/775High tc, above 30 k, superconducting material
    • Y10S505/776Containing transition metal oxide with rare earth or alkaline earth
    • Y10S505/779Other rare earth, i.e. Sc,Y,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu and alkaline earth, i.e. Ca,Sr,Ba,Ra
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/775High tc, above 30 k, superconducting material
    • Y10S505/776Containing transition metal oxide with rare earth or alkaline earth
    • Y10S505/779Other rare earth, i.e. Sc,Y,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu and alkaline earth, i.e. Ca,Sr,Ba,Ra
    • Y10S505/78Yttrium and barium-, e.g. YBa2Cu307
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/775High tc, above 30 k, superconducting material
    • Y10S505/776Containing transition metal oxide with rare earth or alkaline earth
    • Y10S505/779Other rare earth, i.e. Sc,Y,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu and alkaline earth, i.e. Ca,Sr,Ba,Ra
    • Y10S505/78Yttrium and barium-, e.g. YBa2Cu307
    • Y10S505/781Noble metal, i.e. Ag, Au, Os, Ir, Pt, Ru, Rh, Pd or chromium, manganese, iron, cobalt or nickel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、少なくとも金属元素P
b、Sr、Ba、Y又は希土類元素、Ca、Cu及び酸
素より構成される酸化物超電導体およびその製造方法に
関するものである。
【0002】
【従来の技術】従来、鉛を含む銅酸化物超電導体(以降
Pb系銅酸化物超電導体と記述する)としては、Pb2
Sr2(Ca,Y)Cu3Oy(以降2213相と記述
する)、PbSrBa(Y,Ca)Cu3Oy(以降1
213相と記述する)、(Pb,Sr)Sr2(Y,C
a)Cu2Oy(以降1212相と記述する)が知られ
ている。
【0003】2213相、1213相は還元性雰囲気中
で合成され、約50〜70Kの超電導臨界温度(以降T
cと記述する)を有している(2213相: R.J.
Cavaら,Nature,vol.363,pp21
1〜214,1988、1213相:日経超電導,庄野
ら,1990.1.22,pp4〜5参照)。
【0004】1212相は石英管中に真空封入して合成
され、約70〜100KのTcを有しているといわれて
いる(T.Rouillonら,Physica C,
vol.159,pp201〜pp208,1989参
照)。
【0005】Pbを含まない銅酸化物超電導体の1種で
あるYBa2Cu3Oy(以降123相と記述する)は
、約90KのTcを有していることが知られている。
【0006】
【発明が解決しようとする問題点】前述の2213相、
1213相は、約50〜70KのTcを有するものの、
いずれも還元性の雰囲気で合成する必要があった。つま
り、これらはいずれも結晶構造中に1価のCuを含むと
いわれており、これらの相を形成するには、1価のCu
が2価のCuと共存できるような還元性雰囲気中での合
成が必要と考えられている。また前述の1212相にお
いては、Tcは約100Kと高いものの、合成にはサン
プルを真空引きした石英管中に封入する必要があった。 いずれの場合にも、送電ケーブル等の長尺物にする場合
、前記のように還元性雰囲気中または真空引きした石英
管中に入れて反応させるため、その設備を線状形状に構
成しなければならないので、特に製造上の困難があった
【0007】また、(Pb,Cu)Sr2YCu2Ow
で表される1212相は酸化性雰囲気中で合成されるが
、この場合、超電導性を示さないことが報告されている
(Sunshine,S.A,etal,Chemis
try of Materials,1.331−33
5(1989))。
【0008】一方、Pbを含まない123相は酸素の不
定比性が大きく、Tcは酸素量により大きく変化するこ
とが知られている。このため高いTcを得るには酸素を
低温で充分に吸収させる必要があった。
【0009】本発明は、このような従来の問題を解決す
るためになされたものであり、酸化性雰囲気下で合成可
能な、Tcが比較的高い、酸素の不定比性が小さい新規
なPb系銅酸化物超電導体を提供することを目的とする
【0010】本発明の前記並びにその他の目的と新規な
特徴は、本明細書の記述及び添付図面によって明かにな
るであろう。
【0011】
【問題点を解決するための手段】前記目的を達成するた
めに、本発明では、(1)金属酸化物を含む超電導材料
であって、該金属は下記組成をもつもの:(Pb1−z
Cuz)((Sr1−yBay)1−vCav)2(A
1−xCax)Cu2式中、AはY、La、Nd、Sm
、Eu、Gd、Ho、Er、YbならびにY、La、N
d、Sm、Eu、Gd、Ho、Er及びYbの少なくと
も1つとTb、Tm及びLuの少なくとも1つとの混合
物の中から選ばれる少なくとも1つの元素、xは0以上
0.4以下の数、yは0.1以上0.7未満の数、及び
zは(2y−0.4)以上(2y+0.2)以下の数で
xが0.2未満のときはzは(0.6−x)以上1.0
未満であってxが0.2以上0.4以下の数のときはz
は0.4以上1.0未満の数、vは0以上0.2x以下
の数である。
【0012】   (2)前記(1)の超電導材料であって、x、y、
v及びzは        0≦x≦0.4;         0.4−0.5x≦y≦0.6且つ 
       0.7−x≦z<1.0(ただし0≦x
<0.2のとき)        0.3≦y≦0.6
  且つ        0.5≦z<1.0(ただし
0.2≦x≦0.4のとき)        2y−0
.4≦z<1.0        0≦v≦0.2x を満足するもの。
【0013】(3)前記(1)の超電導材料の製造方法
であって、該金属酸化物の金属の化合物の混合物を用意
する工程;及び該混合物を0.001気圧以上の酸素分
圧Pの下で(860+40logP)℃から(1060
+40logP)℃(ただしPは酸素分圧を示す)の温
度で加熱する工程を包合する方法。
【0014】(4)酸素分圧Pが0.1〜1気圧で(9
50+40logP)℃〜(1050+40logP)
℃の温度で該加熱工程を行う前記(3)の方法。
【0015】(5)該混合物を所望の形状に成型してか
ら該加熱工程を行う前記(3)の方法。
【0016】(6)該混合物の一部を溶融するのに十分
で全部を溶融するのには不十分な温度で該加熱工程を行
う前記(3)の方法。
【0017】(7)該加熱工程で得られた生成物を0.
1気圧以上の酸素分圧下で該加熱工程で採用した温度よ
りも低い温度で後処理を行う工程を更に含む前記(3)
の方法。
【0018】なお、本発明のPb系銅酸化物超電導体は
、各構成金属元素の原子が従来の(Pb,Sr)Sr2
(Y,Ca)Cu2Owで表されるPb系銅酸化物超電
導体1212相と同様の配置をしたものであり、酸素の
配置や占有率によって限定されるものではない。
【0019】
【作用】本発明のPb系銅酸化物超電導体は、従来のP
b系銅酸化物1212相(Pb,Cu)Sr2(Y,C
a)Cu2OwのSrを一部Baで置換したものを基本
としている。本発明者が実施した結果、従来のPb系銅
酸化物超電導体1212相(Pb,Sr)Sr2(Y,
Ca)Cu2Owは、酸化性雰囲気下で合成した場合超
電導転移を示さなかった。X線回折により調べたところ
、(Pb,Sr)Sr2(Y,Ca)Cu2Owを酸化
性雰囲気下で合成した場合にはSrがPbサイトへ固溶
せず、また、(Pb,Cu)Sr2(Y,Ca)Cu2
Owを同様の雰囲気下で合成した場合にもPb/Cu比
を1:1に固定したままではCaがYサイトへ充分に固
溶しないことがわかった。この事実と、前記の文献で示
されたような、サンプルを石英管中に真空封入して合成
し、約100KのTcを有するサンプルを得ている事実
とを考えあわせると、従来のBaを含まないPb系銅酸
化物超電導体1212相が高いTcを示すには、真空封
入しての合成が必要条件であると考えられる。
【0020】一方、本発明品であるBaを含むPb系銅
酸化物超電導体(Pb,Cu)(Sr,Ba,Ca)2
(A,Ca)Cu2Owにおいては、酸化性雰囲気下で
合成しても超電導転移を示した。Baを含むと、Caの
固溶限が大きくなっていることがX線回折よりわかった
。 超電導転移を示したのは、3価のAイオンのサイトに2
価のCaイオンが充分に固溶し、超電導転移を示すに充
分なホールが導入されたためと考えられる。本発明品と
類似の結晶構造を有する銅酸化物超電導体YBa2Cu
3Oyにおいては、CaはYサイトに25%まで固溶す
ることが知られている(Z.Jirakら,Physi
ca C, vol.156, pp750〜754 
参照)。本発明の酸化物超電導体においては、Srの一
部をBaで置換したことにより、Aサイト近傍のイオン
配置が前記YBa2Cu3OyのYサイト近傍のイオン
配置に似てきたことによって、Caの固溶限が拡大した
ものと考えている。
【0021】
【実施例】以下、本発明を実施例に基づいて具体的に説
明する。
【0022】〔実施例1〕原料として、PbO、SrC
O3、BaCO3、Y2O3、CaCO3及びCuOを
用い、Pb、Sr、Ba、Y、Ca、Cuの比率を、化
学組成式(Pb1−zCuz)((Sr1−yBay)
1−vCav)2(A1−xCax)Cu2において、
x,y,z及びvの組合せを種々変化させて混合した。 得られた混合粉末をプレス成形した後、1気圧の酸素気
流中で1000℃、1時間焼結させて酸化物超電導体と
した。
【0023】表1に、試料番号、組成比x、y、z、v
、粉末X線回折による相構成、電気抵抗率が急激に減少
し始める温度TON、電気抵抗率が0になる温度TR=
0を示す。X線回折では酸素の情報はほとんど得られな
いので、表中の“1212相”は、金属元素が従来のP
b系銅酸化物超電導体1212相(Pb,Sr)Sr2
(Y,Ca)Cu2Owと同様の配置をしていることを
示す。
【0024】試料番号1,3,4,8,9,14,19
,20,23,29,30,32,38,39,41,
44は比較例である。
【0025】表1をみると、Baを含まない場合(y=
0の場合)、Caがほとんど置換固溶せず、超電導転移
を示さないことがわかる。Ba量が多くなる(yが大き
くなる)とCaの固溶限は大きくなり、それに対応して
超電導転移を示し、Tcは高くなっていることがわかる
。更にBa量を多くする(yを大きくする)と、BaP
bO3が不純物として析出するが、これはCaの固溶限
によるものではなく、従ってTcは低下しない。この不
純物は、Cu量を多くする(zを大きくする)ことによ
って、Tcを低下させることなく消滅させることができ
る。図1に(Pb1−zCuz)(Sr0.5Ba0.
5)2YCu2OwのX線回折図を示す。Cu量zを0
.5から0.6に多くすることにより不純物であるBa
PbO3が消滅していることがわかる。超電導転移を示
すには、Baは最低yの値として0.1は必要であるこ
とがわかる。また、表1の試料21〜23番から、yの
値が0.6では単一相であるが、yの値が0.7ではC
u量を十分に多くしても不純物が析出している。従って
、Baは0.7よりも少ない量しか結晶構造中に置換固
溶しないことがわかる。
【0026】Caは、xの値が0から0.4まで置換固
溶することがわかる。
【0027】試料17〜19、28〜29、31〜32
、37〜38、40〜41番より、Pb量が大きくなる
に従ってTcが高くなっている。これはPbが入ること
により、酸素の不定比性が小さくなったためと考えられ
る。そのことによって、特殊な後処理を施さなくとも比
較的高いTcが得られたものと考えている。従って、P
bはわずかな量であってもその量に応じて酸素不定比性
を小さくする効果があり、その結果Tcを高める効果が
あるといえる。
【0028】〔実施例2〕本実施例2においては、前記
実施例1のYを希土類元素あるいはそれらの組合せとし
て変化させて合成した。
【0029】なお、化学組成式(Pb1−zCuz)(
Sr1−yBay)2(A1−xCax)Cu2におい
て、x、y、zを、夫々、x=0.4、y=0.5、z
=0.7にした。
【0030】表2に、前記表1と同様の本実施例2の測
定結果を示す。表2により、AがCe,Prの場合には
1212相を形成せず、超電導転移を示さないのがわか
る。Ce,Prは、通常、結晶中では4価にちかい状態
をとる。元来Aのサイトは3価あるいは2価であるので
、この価数の違いによって固溶しないものと考えられる
。その他の元素においては、いずれも1212相を形成
し、超電導転移を示すことがわかる。TcはLaの場合
をのぞいてイオン半径が小さい方が高くなる傾向がある
。Aを複数の元素で複合した場合も、その平均イオン半
径をとると先と同じ傾向がある。
【0031】〔実施例3〕本実施例3においては、通常
の固相反応法による合成を行った。
【0032】原料として、PbO、SrCO3、BaC
O3、Y2O3、CaCO3及びCuOを用い、Pb、
Sr、Ba、Y、Ca、Cuの比率を、化学組成式(P
b1−zCuz)((Sr1−yBay)1−vCav
)2(A1−xCax)Cu2において、x=0.4、
y=0.5、z=0.7となるようにボールミルで混合
した。この混合により、構成元素であるPb、Sr、B
a、Y、Ca、Cu、Oとその付随的な元素C、Oを均
質に分散させた。 固相反応法においては、最初構成元素は粉末の状態にな
っているので、プレス成形した。その後、雰囲気、温度
について種々の条件で熱処理した。
【0033】表3にその測定結果を示す。表3より、全
体的傾向として、1212相を形成するには雰囲気の酸
素分圧が大きいほど熱処理温度を上げる必要があること
がわかる。酸素分圧が0.001気圧より小さいと、2
213相が形成されることがわかる。2213相におい
ては、結晶構造中に1価と2価のCuが共存していると
いわれている。1価と2価のCuが共存するには、ある
程度酸素分圧が小さい必要がある。すなわち、2213
相は、酸素分圧が小さい領域で安定な相である。121
2相は、結晶構造中に1価のCuを含んでおらず、22
13相が安定な酸素分圧よりも酸素分圧が大きい領域で
安定である。すなわち、1212相は、酸素分圧が大き
い領域で安定な相であるといえる。
【0034】本実施例においては、通常の固相反応法に
よる合成を例に説明した。本実施例からわかるように、
本発明品である1212相を相として形成するには、構
成元素を均質に分散させた後、酸素分圧0.001気圧
以上の雰囲気中で、(860+40logP)℃乃至(
1060+40logP)℃の温度で熱処理する必要が
あることがわかる。従って、スパック法、蒸着法、CV
D法等の気相からの合成法、あるいは共沈法、蒸発乾固
法、融体急冷法、ゾルゲル法等の液相からの合成法にあ
っても、相として本発明品の1212相を形成するには
上記の製造方法によらなければならないことは当然であ
る。
【0035】〔実施例4〕前記実施例3の混合粉および
焼結体試料を用い、混合粉で熱分析を行い、焼結体試料
で気孔率および液体ヘリウム温度における超電導臨界電
流密度を測定した。
【0036】表4にその測定結果を示す。表4より、構
成成分の一部の溶融と考えられる、融点直下の吸熱ピー
クの温度より高い温度で熱処理した場合、それより低い
温度で熱処理した場合よりも超電導臨界電流密度が大き
いことがわかる。これは気孔率の値より、構成成分の一
部の溶融温度以上の温度で熱処理することによって緻密
になり、電流の流れる有効断面積が大きくなったためと
考えられる。
【0037】〔実施例5〕前記実施例3の混合粉を成形
し、酸素気流中で1000℃、1時間熱処理して121
2相を形成した試料を用い、後処理の効果について調べ
た。
【0038】表5にその測定結果を示す。表5より、酸
素分圧の大きい雰囲気下で熱処理するとTcが高くなる
ことがわかる。本発明品であるこの試料は、後処理を施
さなくともTONは約80Kと良好な特性を示すが、酸
素分圧の大きい雰囲気下で後処理することにより更にT
ONは高くなり、更に良好な特性を有するようになる。 本発明品は、Pbを含むことにより、123相と比較し
て酸素の不定比性は小さくなるものの完全にはなくなら
ないと考えられる。酸素を多く吸収させることにより、
ホール濃度が大きくなり、TONが高くなったものと考
えられる。
【0039】以上の説明から分かるように、前記実施例
1、2、3によれば、比較的超電導臨界温度の高いPb
系銅酸化物超電導体が特に特殊な装置を用いず、特殊な
反応条件の下でなくとも酸化性雰囲気中で合成され、送
電ケーブルのような長尺物への応用を容易にすることが
できる。
【0040】また前記実施例4、5によれば、緻密で超
電導臨界電流密度が大きく、更に超電導臨界温度の高い
Pb系銅酸化物超電導体を得ることができる。
【0041】また、本発明のPb系銅酸化物超電導体は
、酸素不定比性が小さいために、スパック法、蒸着法、
CVD法等の気相からの合成法において、エピタキシャ
ル成長が容易でかつ成膜直後の状態で良好な特性を示す
ことが予測される。
【0042】また、共沈法、蒸発乾固法、ゾルゲル法、
融体急冷法等の液相からの合成法においても、相形成直
後の状態で均質で良好な特性を示すことが予想される。 また、シース材に充填して線引きする手法においても、
線引き後の熱処理で意識的に酸素を吸収させなくとも良
好な特性が得られることが予想される。
【0043】また、本発明の酸化物超電導体は、Pb系
であるので、製造が容易であり、製造コストも安価とな
ることが予測できる。
【0044】以上、本発明を実施例に基づき具体的に説
明したが、本発明は、前記実施例に限定されるものでは
なく、その要旨を逸脱しない範囲において種々変更可能
であることは言うまでもない。
【0045】本発明の新規な酸化物超電導体は、前記説
明では、合成可能な雰囲気に注目して説明したが、それ
以外の長所も種々の分野で応用できることは勿論である
【0046】
【表1】
【0047】
【表1】
【0048】
【表2】
【0049】
【表3】
【0050】
【表4】
【0051】
【表5】
【0052】
【発明の効果】以上、説明したように、本発明の新規な
酸化物超電導体によれば、酸化性雰囲気下で合成可能と
なるので、送電ケーブルのような長尺物への応用を容易
にすることができる。また、酸素の不定比性が小さいの
で、気相からの良質な薄膜の合成を容易にすることが予
想される。
【図面の簡単な説明】
【図1】  (Pb1−zCuz)(Sr0.5Ba0
.5)2YCu2OwのX線回折図。

Claims (7)

    【特許請求の範囲】
  1. 【請求項1】  金属酸化物を含む超電導材料であって
    、該金属は下記組成をもつもの:(Pb1−zCuz)
    ((Sr1−yBay)1−vCav)2(A1−xC
    ax)Cu2式中、AはY、La、Nd、Sm、Eu、
    Gd、Ho、Er、YbならびにY、La、Nd、Sm
    、Eu、Gd、Ho、Er及びYbの少なくとも1つと
    Tb、Tm及びLuの少なくとも1つとの混合物の中か
    ら選ばれる少なくとも1つの元素、xは0以上0.4以
    下の数、yは0.1以上0.7未満の数、及びzは(2
    y−0.4)以上(2y+0.2)以下の数でxが0.
    2未満のときはzは(0.6−x)以上1.0未満であ
    ってxが0.2以上0.4以下の数のときはzは0.4
    以上1.0未満の数、vは0以上0.2x以下の数であ
    る。
  2. 【請求項2】  請求項1の超電導材料であって、x、
    y、z及びvは         0≦x≦0.4;         0.4−0.5x≦y≦0.6且つ 
           0.7−x≦z<1.0(ただし0≦x
    <0.2のとき)        0.3≦y≦0.6
      且つ        0.5≦z<1.0(ただし
    0.2≦x≦0.4のとき)        2y−0
    .4≦z<1.0        0≦v≦0.2x を満足するもの。
  3. 【請求項3】  請求項1の超電導材料の製造方法であ
    って、該金属酸化物の金属の化合物の混合物を用意する
    工程;及び該混合物を0.001気圧以上の酸素分圧P
    の下で(860+40logP)℃から(1060+4
    0logP)℃(ただしPは酸素分圧を示す)の温度で
    加熱する工程を包合する方法。
  4. 【請求項4】  酸素分圧Pが0.1〜1気圧で(95
    0+40logP)℃〜(1050+40logP)℃
    の温度で該加熱工程を行う請求項3の方法。
  5. 【請求項5】  該混合物を所望の形状に成型してから
    該加熱工程を行う請求項3の方法。
  6. 【請求項6】  該混合物の一部を溶融するのに十分で
    全部を溶融するのには不十分な温度で該加熱工程を行う
    請求項3の方法。
  7. 【請求項7】  該加熱工程で得られた生成物を0.1
    気圧以上の酸素分圧下で該加熱工程で採用した温度より
    も低い温度で後処理を行う工程を更に含む請求項3の方
    法。
JP3036409A 1990-03-02 1991-03-01 酸化物超電導体およびその製造方法 Expired - Fee Related JP2672033B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2-51483 1990-03-02
JP5148390 1990-03-02

Publications (2)

Publication Number Publication Date
JPH04214027A true JPH04214027A (ja) 1992-08-05
JP2672033B2 JP2672033B2 (ja) 1997-11-05

Family

ID=12888204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3036409A Expired - Fee Related JP2672033B2 (ja) 1990-03-02 1991-03-01 酸化物超電導体およびその製造方法

Country Status (4)

Country Link
US (1) US5190914A (ja)
EP (1) EP0444955B1 (ja)
JP (1) JP2672033B2 (ja)
DE (1) DE69122141T2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5389603A (en) * 1988-10-25 1995-02-14 At&T Corp. Oxide superconductors, and devices and systems comprising such a superconductor
JPH0881221A (ja) * 1994-09-13 1996-03-26 Furukawa Electric Co Ltd:The 酸化物超電導体およびその製造方法
US6096327A (en) * 1998-11-05 2000-08-01 Protease Sciences Inc. Cosmetic compositions containing human type serine protease inhibitors for revitalizing the skin
KR20050118294A (ko) * 2003-03-31 2005-12-16 후루까와덴끼고오교 가부시끼가이샤 산화물 초전도 선재용 금속 기판, 산화물 초전도 선재 및그 제조방법

Also Published As

Publication number Publication date
EP0444955B1 (en) 1996-09-18
DE69122141T2 (de) 1997-04-03
JP2672033B2 (ja) 1997-11-05
DE69122141D1 (de) 1996-10-24
EP0444955A2 (en) 1991-09-04
EP0444955A3 (en) 1992-01-29
US5190914A (en) 1993-03-02

Similar Documents

Publication Publication Date Title
EP0332291B1 (en) Devices and systems based on novel superconducting material
Laffez et al. Synthesis of superconducting Sr2CuO3+ δ using-high pressure techniques
US5510323A (en) Tl1 (Ba1-x Sr8)2 Ca2 Cu3 Oy oxide superconductor and method of producing the same
Dabrowski et al. New family of superconducting copper oxides: GaSr2Ln1− xCaxCu2O7
JPH0515647B2 (ja)
Kawashima et al. New series of oxide superconductors, BSr2Can− 1CunO2n+ 3 (n= 3∼ 5), prepared at high pressure
US5340796A (en) Oxide superconductor comprising Cu, Bi, Ca and Sr
JPH04214027A (ja) 酸化物超電導体およびその製造方法
US5389603A (en) Oxide superconductors, and devices and systems comprising such a superconductor
JP3165770B2 (ja) 酸化物超電導体の製造方法
JP3219563B2 (ja) 金属酸化物とその製造方法
JPH08259230A (ja) 酸化物超電導体およびその製造方法
US4835136A (en) Lanthanum: sodium copper superconducting metal oxide compositions and process for manufacture
US5536705A (en) Superconductor with 1212 phase of Hg,Pb,Sr,Ba,Ca,Y,Cu oxide
JPS63176353A (ja) 超伝導性素材
Kandyel Synthesis, structural and physical properties of new Terbium containing Tb–Hg–Sr–Ca–Cu–O superconducting system
JP2555505B2 (ja) 金属酸化物材料
US5145834A (en) Processes for making Tl-Ca-Ba-Cu-O, Tl-Sr-Ba-Cu-O and Tl-Sr-Cu-O superconductors by solid state synthesis
JPH0465395A (ja) 超電導繊維状単結晶およびその製造方法
EP0436723B1 (en) Oxide superconductor and method of producing the same
JP3247914B2 (ja) 金属酸化物材料
JPH03137018A (ja) 酸化物系高温超電導体
JPH0230618A (ja) 酸化物高温超電導体
JPH0446015A (ja) 酸化物超電導体およびその製造方法
Tanaami et al. Phase Stability of the A 2 Cu 3 O 4 X 2 (A= Alkaline-Earth; X= Halogen) System

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees