JPH04213417A - Method for positioning rotary curved mirror - Google Patents

Method for positioning rotary curved mirror

Info

Publication number
JPH04213417A
JPH04213417A JP40096590A JP40096590A JPH04213417A JP H04213417 A JPH04213417 A JP H04213417A JP 40096590 A JP40096590 A JP 40096590A JP 40096590 A JP40096590 A JP 40096590A JP H04213417 A JPH04213417 A JP H04213417A
Authority
JP
Japan
Prior art keywords
mirror
holes
optical axis
seen
curved mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP40096590A
Other languages
Japanese (ja)
Other versions
JP2507186B2 (en
Inventor
Minoru Saito
稔 齊藤
Harukuni Matsuyama
松山 治邦
Seiichi Nakai
中井 誠一
Nobuyoshi Mori
森 信義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP40096590A priority Critical patent/JP2507186B2/en
Publication of JPH04213417A publication Critical patent/JPH04213417A/en
Application granted granted Critical
Publication of JP2507186B2 publication Critical patent/JP2507186B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To easily and accurately position a rotary curved mirror having no reference point. CONSTITUTION:As to a rotary curved type condenser 1, two pairs of holes 13 and 14 in pairs capable of seeing through each other are formed so as to be symmetrical to an optical axis L1 on a plane which is orthogonally crossed with an optical axis L1, and also includes a focus F1, and then, the position of the condenser 1 is decided so that the center of the light source of an arc lamp comes to the position of intersected points which can be seen from two pairs of the holes 13 and 14.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、一方の焦点位置の光源
から他方の焦点位置に光を集めるたとえばイメージ炉な
どにおいて、所謂曲線回転鏡(半楕円や放物線などを回
転した形状)の位置を決定する位置決め方法に関する。
[Industrial Application Field] The present invention focuses on adjusting the position of a so-called curved rotating mirror (a rotating half-ellipse, parabola, etc.) in, for example, an image furnace that focuses light from a light source at one focal position to another focal position. Regarding the positioning method to be determined.

【0002】0002

【従来の技術】半楕円回転鏡や放物線鏡等の集光鏡は、
従来、先端外周縁に形成されるフランジ部や凹部底側に
形成された穴部端面を基準点として焦点を決定し、この
焦点位置に光源がくるように集光鏡を位置決めし取り付
けていた。
[Prior art] Concentrating mirrors such as semi-elliptical rotating mirrors and parabolic mirrors are
Conventionally, the focal point was determined using the flange formed on the outer periphery of the tip or the end face of the hole formed on the bottom side of the recess as a reference point, and the condenser mirror was positioned and attached so that the light source was located at this focal position.

【0003】0003

【発明が解決しようとする課題】しかし、上記した方法
では基準点と焦点の距離が遠くなり、集光鏡を高精度で
位置決めすることができなかった。特にヘラ加工した形
状精度の低い集光鏡では、イメージ炉で必要な0.1m
mオーダーでの位置決めは困難であった。
[Problems to be Solved by the Invention] However, in the above method, the distance between the reference point and the focal point becomes long, and the condensing mirror cannot be positioned with high precision. In particular, for condensing mirrors with low shape precision that have been machined, the 0.1 m required for image furnaces is
Positioning on the order of m was difficult.

【0004】本発明は上記問題点を解決して、曲線回転
鏡を高精度で位置決めできる曲線回転鏡の位置決め方法
を提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned problems and provide a method for positioning a curved rotating mirror that can position the curved rotating mirror with high precision.

【0005】[0005]

【課題を解決するための手段】上記問題点を解決するた
めに本発明の曲線回転鏡の位置決め方法は、曲線回転鏡
に、光軸に直交しかつ焦点を含む平面上の対称位置に互
いに見通せる2個1組の透孔を2組形成し、2組の透孔
からそれぞれ見通せる交点位置を基準として曲線回転鏡
の位置を決定するものである。
[Means for Solving the Problems] In order to solve the above problems, the curved rotating mirror positioning method of the present invention provides curved rotating mirrors that can be seen from each other at symmetrical positions on a plane perpendicular to the optical axis and including the focal point. Two sets of two through holes are formed, and the position of the curved rotating mirror is determined based on the intersection position that can be seen from each of the two sets of through holes.

【0006】[0006]

【作用】上記構成において、互いに見通せる2組の透孔
の交点位置が焦点となるので、ここに光源やあるいは基
準となる目印が位置するように曲線回転鏡を位置決めす
ることにより、きわめて高精度で曲線回転鏡を取り付け
ることができる。
[Operation] In the above configuration, the intersection of two sets of through holes that can be seen through each other becomes the focal point, so by positioning the curved rotating mirror so that the light source or reference mark is located here, extremely high precision can be achieved. A curved rotating mirror can be installed.

【0007】[0007]

【実施例】以下、本発明のイメージ炉の一実施例を図1
,図2に基づいて説明する。図2において、1は光軸L
1 が垂直方向上向きに配置されて内面が回転楕円面か
らなる半楕円回転体形の集光鏡で、収納室2に配置され
、先端部外周のフランジ1aが周囲複数箇所で上下左右
に微動調整可能な位置決め装置3を介して収納室2の側
壁に取り付けられている。この集光鏡1の光軸L1 上
で第1焦点F1 位置には、昇降架台4に昇降自在に支
持されるとともに、上端のガイド部4aが支持部材6に
昇降自在に保持されたアークランプ5が配設されている
[Example] An example of the image furnace of the present invention is shown below in Fig. 1.
, will be explained based on FIG. In Fig. 2, 1 is the optical axis L
1 is a condensing mirror in the shape of a semi-elliptical body of revolution, which is arranged vertically upward and whose inner surface is an ellipsoid of revolution.It is placed in the storage chamber 2, and the flange 1a on the outer periphery of the tip can be finely adjusted vertically and horizontally at multiple points around it. It is attached to the side wall of the storage chamber 2 via a positioning device 3. At the first focal point F1 on the optical axis L1 of the condenser mirror 1, an arc lamp 5 is supported by an elevating frame 4 so as to be movable up and down, and a guide portion 4a at the upper end is held by a support member 6 so as to be movable up and down. is installed.

【0008】アークランプ5の上方には反射光量を調整
するシャッター装置7と、シャッター装置7と第2焦点
F2 の間には光軸L1 に対して45度傾斜させた平
面鏡8が配置される。この平面鏡8に反射された光軸L
2 側には、透過窓9を介して光が入射される試料室1
0が設けられ、光軸L2 上の第3焦点F3 位置には
、不活性ガス雰囲気或いは真空中で加熱される試料11
が配置される。12は試料室8内で光を集めるメガホン
型のガイド鏡である。
A shutter device 7 for adjusting the amount of reflected light is disposed above the arc lamp 5, and a plane mirror 8 inclined at 45 degrees with respect to the optical axis L1 is disposed between the shutter device 7 and the second focal point F2. Optical axis L reflected by this plane mirror 8
On the 2 side, there is a sample chamber 1 into which light enters through a transmission window 9.
At a third focal point F3 on the optical axis L2, a sample 11 is heated in an inert gas atmosphere or in a vacuum.
is placed. 12 is a megaphone-type guide mirror that collects light within the sample chamber 8.

【0009】図1に示すように、集光鏡1には、光軸L
1 に直交しかつ焦点を含む平面上で直交交差する対称
位置4か所に互いに見通せる2組の透孔13,14が形
成されている。なお、これら透孔13,14は見通し軸
a,bに平行に形成される。
As shown in FIG. 1, the condenser mirror 1 has an optical axis L.
Two sets of through holes 13 and 14 are formed at four symmetrical positions that are orthogonal to each other and intersect orthogonally on a plane that is perpendicular to the focal point and includes the focal point. Note that these through holes 13 and 14 are formed parallel to the viewing axes a and b.

【0010】上記構成における集光鏡1の位置決め作業
は、透孔13,14にそれぞれ見通せる位置すなわち見
通し軸a,bの交点にアークランプ5の光源中心が来る
とともに、第3焦点F3 が試料11に対して適正な位
置に来るように、位置決め装置3により集光鏡1を移動
させ、または昇降架台4によりアークランプ5を昇降さ
せて行う。万一、集光鏡1の位置精度が悪いときには前
記位置を基準として微動調整することにより、容易に再
調整することができる。
In order to position the condensing mirror 1 in the above configuration, the center of the light source of the arc lamp 5 is located at a position that can be seen through the through holes 13 and 14, that is, the intersection of the line-of-sight axes a and b, and the third focal point F3 is located at the point where the sample 11 is located. This is done by moving the condensing mirror 1 using the positioning device 3 or by raising and lowering the arc lamp 5 using the elevating frame 4 so that it is in an appropriate position. In the unlikely event that the positional accuracy of the condensing mirror 1 is poor, readjustment can be easily made by making fine adjustments based on the position.

【0011】[0011]

【発明の効果】以上に述べたごとく本発明によれば、互
いに見通せる2組の透孔からそれぞれ見通せる交点位置
を焦点として、ここに光源やあるいは基準となる目印が
位置するように曲線回転鏡を位置決めすることにより、
曲線回転鏡を容易にきわめて高精度で取り付けることが
できる。
As described above, according to the present invention, the curved rotating mirror is positioned so that the light source or reference mark is located at the intersection position that can be seen through two sets of through holes that can be seen from each other. By positioning,
Curved rotating mirrors can be easily mounted with extremely high precision.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】集光鏡の縦断面図である。FIG. 1 is a longitudinal cross-sectional view of a condensing mirror.

【図2】図1に示すA−A断面図である。FIG. 2 is a sectional view taken along the line AA shown in FIG. 1;

【図3】イメージ炉の縦断面図である。FIG. 3 is a longitudinal sectional view of the image furnace.

【符号の説明】[Explanation of symbols]

1    集光鏡 3    位置決め装置 4    昇降架台 5    アークランプ 13,14      透孔 F1   第1焦点 F2   第2焦点 L1,L2     光軸 a,b    見通し軸 1. Concentrating mirror 3 Positioning device 4 Lifting platform 5 Arc lamp 13,14 Through hole F1 1st focus F2 2nd focal point L1, L2 Optical axis a, b Line of sight axis

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  曲線回転鏡に、光軸に直交しかつ焦点
を含む平面上の対称位置に互いに見通せる2個1組の透
孔を2組形成し、2組の透孔からそれぞれ見通せる交点
位置を基準として曲線回転鏡の位置を決定することを特
徴とする曲線回転鏡の位置決め方法。
Claim 1: A curved rotating mirror is provided with two sets of two through holes that can be seen through each other at symmetrical positions on a plane that is perpendicular to the optical axis and includes the focal point, and an intersection point that can be seen through each of the two sets of through holes. A method for positioning a curved rotating mirror, characterized in that the position of the curved rotating mirror is determined based on .
JP40096590A 1990-12-10 1990-12-10 Positioning method for curved rotating mirror Expired - Lifetime JP2507186B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP40096590A JP2507186B2 (en) 1990-12-10 1990-12-10 Positioning method for curved rotating mirror

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP40096590A JP2507186B2 (en) 1990-12-10 1990-12-10 Positioning method for curved rotating mirror

Publications (2)

Publication Number Publication Date
JPH04213417A true JPH04213417A (en) 1992-08-04
JP2507186B2 JP2507186B2 (en) 1996-06-12

Family

ID=18510822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP40096590A Expired - Lifetime JP2507186B2 (en) 1990-12-10 1990-12-10 Positioning method for curved rotating mirror

Country Status (1)

Country Link
JP (1) JP2507186B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008171681A (en) * 2007-01-11 2008-07-24 Sharp Corp Light source device and video display device using this

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008171681A (en) * 2007-01-11 2008-07-24 Sharp Corp Light source device and video display device using this
JP4612638B2 (en) * 2007-01-11 2011-01-12 シャープ株式会社 Light source device and video display device using the same

Also Published As

Publication number Publication date
JP2507186B2 (en) 1996-06-12

Similar Documents

Publication Publication Date Title
TW466332B (en) Measuring instrument and method for measuring features on an substrate
IL92446A (en) Laser microbeam machine for acting on thin film objects, in particular for chemically etching or depositing substance in the presence of a reactive gas
JPH08262140A (en) Laser beam swinging mechanism for laser radar and laser device using it
US5483065A (en) Electron beam microanalyzer
TWI461675B (en) Aperture position measuring method, Aperture position measuring device, Aperture position determining method, and aperture position determining device
JP2008055436A (en) Laser beam irradiation device
JP2015010900A (en) Aligning device, vacuum device, and aligning method
JPH04213417A (en) Method for positioning rotary curved mirror
KR20000035656A (en) Inclined light irradiating apparatus
JP2009043865A (en) Exposure equipment, exposure method, and manufacturing method of semiconductor device
CN109668512A (en) The beam directing mechanisms and alignment methods for the laser displacement sensor being arranged symmetrically
CN209279896U (en) The beam directing mechanisms for the laser displacement sensor being arranged symmetrically
JP2000349043A (en) Precise focusing method for rectangular beam
JPH02190813A (en) Method and device for adjusting horizontality of sample container
KR20030064088A (en) Laser beam alignment system with the rotation axis of cylindrical structures for laser-assisted fabrication
JPS61267722A (en) Optical device for illumination
JPH11135412A (en) Projection aligner and method for holding reticule
JP6977681B2 (en) Manufacturing method of focused ion beam device and semiconductor device
JPS63187542A (en) Ion micro-beam device
JPH06258055A (en) Optical axis adjusting method for positional shift measuring optical system
US20080130104A1 (en) Fine Tuning Device
JPS6050921A (en) Up-down driving device
KR20230048479A (en) Focused Ion Beam Device
JPH01250921A (en) Automatic aligning pin hole device
JPS56126924A (en) Forming device for picture