JPH08262140A - Laser beam swinging mechanism for laser radar and laser device using it - Google Patents

Laser beam swinging mechanism for laser radar and laser device using it

Info

Publication number
JPH08262140A
JPH08262140A JP7060192A JP6019295A JPH08262140A JP H08262140 A JPH08262140 A JP H08262140A JP 7060192 A JP7060192 A JP 7060192A JP 6019295 A JP6019295 A JP 6019295A JP H08262140 A JPH08262140 A JP H08262140A
Authority
JP
Japan
Prior art keywords
spherical
portion
body
laser beam
mirror support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7060192A
Other languages
Japanese (ja)
Inventor
Ryoichi Chokai
良一 鳥海
Original Assignee
Tokyo Gas Co Ltd
東京瓦斯株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd, 東京瓦斯株式会社 filed Critical Tokyo Gas Co Ltd
Priority to JP7060192A priority Critical patent/JPH08262140A/en
Publication of JPH08262140A publication Critical patent/JPH08262140A/en
Application status is Granted legal-status Critical

Links

Abstract

PURPOSE: To provide a laser beam swinging mechanism which can radiate a laser beam toward a gas to be measured in a wide extent and effectively condense scattered light returning from the gas through a telescope. CONSTITUTION: A box body 10 having a spherical recess 11 at the center on the bottom of a nearly square void section 13 having an opening at its top and recessed circular arcuate sections carrying female screws 12 in the upper parts of the internal surfaces of the void 13 is provided. In the box body 10, a mirror supporting section 21 fitted with a laser beam swinging mirror 25 and spherical section 23 connected to the supporting section 21 are provided to the box body 10. In addition, a mirror supporting body 20 which can be put in the spherical recess 11 by sliding and is constituted so that the supporting section 21 can swing around the spherical section 23 is provided. A ring-like tightening member 30 which has male screws which are meshed with the female screws 12 on its outer peripheral surface and a hole 32 for supporting body 20 at its center and a square pressing plate 40 which has a hole 41 for the supporting body 20 and can be put in the void section 13 of the box body 10 with small clearances from the internal surfaces of the box body 10 are also put in the void section 10.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【産業上の利用分野】本発明はレーザレーダ用光線あおり機構および該あおり機構を使用したレーザ装置に関する。 The present invention relates to a laser apparatus using a ray tilting mechanism and the tilting mechanism for laser radar.

【0002】 [0002]

【従来の技術】近年、環境汚染の問題が大きく取り上げられているが、中でも大気汚染は大きなテーマとなっている。 In recent years, but the problem of environmental pollution is taken up large, air pollution has become a major theme among them. 窒素酸化物や硫黄酸化物は汚染気体の中でも特に重要なものであり、従来これらの汚染気体や特定の重要な注目気体の濃度を測定するためにレーザレーダが用いられている。 Nitrogen oxides and sulfur oxides are of particular importance among pollution gases, and the laser radar is used to conventionally measuring the concentration of these contaminants gases and certain critical attention gases.

【0003】図6はレーザレーダによる気体の濃度測定方法を説明する図である。 [0003] FIG. 6 is a diagram for explaining a method for measuring the concentration gas by the laser radar.

【0004】レーザレーダによる気体の濃度測定は、レーザ光線を用いて測定対象気体が顕著に吸収する波長のレーザ光線を発生せしめ、気体によるレーザ光線の吸収度合いを光検出器などにより検出して気体の濃度を測定するものであり、このために測定対象気体7に吸収される固有の波長のレーザ光線6を発生するレーザ装置9が用いられる。 [0004] concentration measurement of a gas by the laser radar, by which the laser beam of a wavelength measuring object gas using a laser beam significantly absorb, the absorption degree of the laser beam by the gas is detected by such as an optical detector gas of it is intended to measure the concentration, the laser device 9 for generating a laser beam 6 specific wavelength that is absorbed by the measurement target gas 7 for this purpose are used. レーザレーダでは、レーザ光線6を測定対象気体7に向けて放射し、戻ってくる微弱な光を大口径の望遠鏡5で集光し、気体による吸収度合いを検出してガス濃度を求めている。 In the laser radar, a laser beam 6 emitted toward the measuring object gas 7, the weak light returning condensed telescope 5 of large diameter, by detecting the absorption degree by the gas seeking gas concentration. この際、レーザ光線6の放射方向Yを望遠鏡5の視野8と重ねなければならない。 At this time, must superimposed radial direction Y of the laser beam 6 and field 8 of the telescope 5. この望遠鏡5の視野8にレーザ光線6が入らないと測定対象気体7の散乱光は検出できない。 Scattered light to the measurement target gas 7 in field 8 of the telescope 5 is not a laser beam 6 from entering can not be detected. そこで、レーザ光線6 Thus, the laser beam 6
の放射方向を望遠鏡5の視野8の方向と一致させるようレーザ光線6の方向をミラーであおって調整する。 The direction of the laser beam 6 to adjust fueling a mirror so that the direction of the radiation coincides with the direction of the field of view 8 of the telescope 5. これをレーザ光線のあおり機構と称している。 This is referred to as the tilting mechanism of the laser beam. このあおりは望遠鏡5の視野8にレーザ光線6が入るよう調整するが、その際は肉眼によるか、またはオシロコープを使用している。 The tilt is adjusted so that the laser beam 6 enters the field of view 8 of the telescope 5, the time is used either by the naked eye, or Oshirokopu.

【0005】 [0005]

【発明が解決しようとする課題】従来、この方式によるガス濃度の測定において、望遠鏡とレーザ光線との位置関係は固定していた。 BRIEF Problem to be Solved] Conventionally, in the measurement of gas concentration by this method, the positional relationship between the telescope and the laser beam was fixed. そのため1方向のみの測定についてはある程度の濃度測定効果を得ることができるが、二次元や三次元の拡がりを測定したい場合には正確な濃度測定はできなかった。 Therefore it is possible to obtain a certain degree of concentration measurement effect measurement in only one direction, was not accurate concentration measurements if you want to measure the extent of two-dimensional or three-dimensional. そこで、鏡筒の回転軸にレーザ光線6の光軸を一致させ、望遠鏡5とレーザ光線6の両方を同期移動させるクーデ方式のレーザレーダが使用されるようになった。 Therefore, to match the optical axis of the laser beam 6 to the rotation axis of the barrel, the laser radar Kude method of moving synchronize both telescopes 5 and the laser beam 6 are now being used. しかしながら、このクーデ方式のレーザレーダを使用する際に望遠鏡5とレーザ光線6を正確に追随移動させるよう両者の配置を任意に調整する実用的手段がこれまで存在しなかった。 However, practical means for arbitrarily adjusting the arrangement of the two so as to accurately follow the movement of the telescope 5 and the laser beam 6 when using a laser radar of this Kude scheme did not exist until now.

【0006】従来使用されていたレーザ光線のあおり機構は2枚の板の間に1個の球を介在して常に1個所だけは両板の間隔を一定に保ち、片方の板の外側にミラーを固定し、2枚の板の間隔を2本のビスとスプリングにより調節してレーザ光線をあおるように構成していた。 Conventional tilting mechanism uses which do laser beam always only one location interposed one sphere between two plates keeps the distance between the two plates to be constant, fixed mirrors on the outside of one plate and it was configured to stir up the laser beam spacing two plates adjusted by two screws and springs. この従来の方式はあおりの範囲が狭く、且つ2本のビスで調節するため時間がかかる欠点があった。 This conventional scheme narrow range of tilt, the time for adjusting at and two screws had such drawbacks.

【0007】本発明は上述の点に鑑みてなされたもので、クーデ方式のレーザレーダにおいて、望遠鏡とレーザ光線を正確に追随移動させるよう両者の配置を迅速に且つ正確に調整することができ、もって二次元や三次元の拡がりを有する広範囲の測定対象気体に向かって放射され、そこから戻ってくる微弱な散乱光を望遠鏡により効果的に集光することができるようにするためのレーザ光線あおり機構およびこれを使用したレーザ装置を提供することを目的とする。 [0007] The present invention has been made in view of the above, in the laser radar Kude method, it is possible to quickly and accurately adjust the placement of the two so as to accurately follow the movement of the telescope and the laser beam, laser beam tilt for the having been emitted towards a wide range of measuring object gas having a two-dimensional or three-dimensional spread, so that it can be effectively collected by the telescope weak scattered light returned from there and to provide a mechanism and a laser device using the same.

【0008】 [0008]

【課題を解決するための手段】上記課題を解決するため、本発明は上部を開放したほぼ正方形の空洞部を有し、該空洞部の底部中央に球状へこみを備え、該空洞部の内壁の上方部分に一連の雌ねじを有する凹状円弧部が形成されている函体と、レーザ光線あおり用ミラーを取り付けるミラー支持部と該ミラー支持部に接続する球状部とを備え、前記球状部が前記函体空洞部の底部球状へこみに滑り嵌合する球面を有し、該球状部を支点にして前記ミラー支持部が首振り揺動するようになったミラー支持体と、前記函体の空洞部の一辺より長い直径を有し、外周側面に前記函体の凹状円弧部の雌ねじと嵌合する雄ねじを有し、中央に前記ミラー支持体の上部を突出させる孔を有するリング状締付け部材と、中央に前記ミラー支持体の上部を突出 In order to solve the above problems SUMMARY OF THE INVENTION The present invention has a hollow portion of substantially square having an open top, provided with indentations spherical in the bottom center of the cavity portion, the inner wall of the cavity portion comprising a box-body concave arcuate portion is formed with a series of internal thread in the upper part, and a spherical portion to be connected to the mirror support portion for mounting the mirror for the laser beam tilt and the mirror support, the spherical portion is the box making has a spherical surface which fits sliding recessed bottom spherical body cavity, a mirror support, wherein the mirror support portion is adapted to swing swung fulcrums spherical portion, the hollow portion of the box making body has a longer diameter than the one side, has an external thread to the internal thread mating concave arcuate portion of the box making body on the outer peripheral side surface, and a ring-shaped clamping member having a hole for protruding the upper portion of the mirror support in the center, the center projecting an upper portion of the mirror support せる孔を有し、前記函体の空洞部に微小な間隙を隔てて嵌合して上下動できるできる形状を有し、前記函体の空洞部内において前記締付け部材と前記ミラー支持体の球状部との間に介在される四角形の押圧板と、を包含することを特徴とする。 It has a hole for the fitted at a small gap in the cavity of a box body having a shape capable can vertically move, spherical portion of the fastening member and the mirror support in the cavity of the box making body characterized in that it comprises a and a pressing plate of a square that is interposed between the.

【0009】 [0009]

【作用】本発明の光線あおり機構により、望遠鏡の横方向および縦方向の回転軸とレーザ光線の光軸を正確に且つ簡便に一致させることができ、さらに測定対象の36 By ray tilting mechanism of the present invention, the optical axis in the horizontal direction and the vertical direction of the rotation axis and the laser beam of the telescope can be matched accurately and easily, yet to be measured 36
0度中の好きな方向にレーザ光線方向を合わせることができるので、望遠鏡の視野とレーザ光線の出射方向がぴったりと重なり、ガス濃度測定に必要な散乱光強度の収集が可能となり、また、望遠鏡がレーザ光線に同期して追随移動する。 Since any direction in 0 degrees can be matched laser beam direction, it overlaps with the perfect is the emission direction of the field and the laser beam of the telescope, it is possible to collect the scattered light intensity necessary for gas concentration measurement, also telescope There follow moves in synchronism with the laser beam.

【0010】 [0010]

【実施例】本発明を図面に基づいて説明する。 It will be described with reference to EXAMPLES present invention with reference to the drawings.

【0011】図1は本発明にかかるレーザレーダ用光線あおり機構の平面図、図2は図1のII−II線上断面矢視図、図3は図2のIII−III線上断面矢視図である。 [0011] Figure 1 is a plan view of the laser radar beam tilting mechanism according to the present invention, FIG 2 is II-II line cross-sectional arrow view of FIG. 1, FIG. 3 is a III-III line sectional view on arrows of FIG. 2 is there.

【0012】本発明にかかるレーザレーダ用光線あおり機構の主要な構成部材は函体10、ミラー支持体20、 [0012] The primary components of the laser radar beam tilting mechanism according to the present invention is the box body 10, the mirror support 20,
締付け部材30および押圧板40である。 A clamping member 30 and the pressing plate 40. 函体10は内部に上部を開放したほぼ正方形の空洞部13を有し、この空洞部13の底部中央に球状へこみ11を備え、空洞部13の四つの内周壁の上方部分に4個の凹状円弧部A Box body 10 has a cavity 13 of substantially square having an open upper internally provided with a spherical indentation 11 in the bottom center of the cavity 13, four concave upper part of the four inner peripheral wall of the cavity 13 arc portion A
が形成されている。 There has been formed. これら4個の凹状円弧部Aに一連の雌ねじ12が刻まれている。 These four series of internal thread 12 in the concavely curved portion A of is engraved.

【0013】ミラー支持体20は最上部のミラー支持部21、このミラー支持部21の下に接続する細い柄部2 [0013] Mirror support 20 at the top of the mirror support 21, the thin shank portion 2 connected to the bottom of the mirror support 21
2および柄部22の下に接続する球状部23から構成されている。 And a 2 and the spherical portion 23 connected to the lower handle portion 22. ミラー支持部21の頂面24はミラー支持体20の長手方向中心軸線に対し45度の角度に形成されており、この頂面24にミラー25が接着剤により取り付けられる。 The top surface 24 of the mirror support 21 is formed at an angle of 45 degrees relative to the longitudinal central axis of the mirror support 20, a mirror 25 is attached by adhesive to the top surface 24. 球状部23は函体10の空洞部13に収容できる直径を有し、かつ空洞部13の底部中央に設けた球状へこみ11に滑り嵌合する球面を有している。 Spherical portion 23 has a spherical surface which fits sliding into spherical indentations 11 have a diameter that can be accommodated in the cavity 13, and is provided in the center of the bottom of the cavity 13 of the box body 10. 球状部23を球状へこみ11に嵌合させたミラー支持体20 Mirror support body 20 and the spherical portion 23 is fitted into the spherical indentations 11
は図1に矢印Bで示すように球状へこみ11を支点にして首振り揺動することができる。 You can swing swings spherical dents 11 as a fulcrum as indicated by the arrow B in FIG. ミラー支持体20の揺動角度は後述する締付け部材30の孔32、押圧板40 Hole 32 of clamping member 30 is rocking angle of the mirror support 20 to be described later, the pressing plate 40
の孔41等の製作寸法を変えることにより調節することができる。 Production dimensions of such hole 41 can be adjusted by varying the.

【0014】締付け部材30は函体10の空洞部13の一辺より長い直径を有し、中央に孔32を有し、外周面に雄ねじを有するリングであり、この締付け部材30は函体10の凹状円弧部Aに設けた一連の雌ねじ12に嵌合することができる。 [0014] clamping member 30 has a longer diameter than the one side of the cavity 13 of the box body 10, the center has a hole 32, a ring having an external thread on an outer circumferential surface, the clamping member 30 of the box body 10 it can be fitted to a series of internal thread 12 provided on the concavely curved portion a. 孔32からミラー支持体20の上部を突出させることができる。 It may be from the hole 32 to protrude the upper mirror support 20. この締付け部材30の上面に適当数の小孔31があけられている。 Small hole 31 of the appropriate number have been opened on the upper surface of the clamping member 30. この小孔31 The small holes 31
は締付け部材30を函体10に嵌めたり外したりするための治具(図示せず)の挿入孔である。 Is the insertion holes of the jig (not shown) for or remove fitting the fastening member 30 to the box body 10.

【0015】押圧板40は函体10の空洞部13に微小な間隙を隔てて嵌合してスムースに上下動できる四角形の板であり、中央に孔41を有し、この孔41からミラー支持体20の上部を突出させることができる。 The pressing plate 40 is a plate of square can be moved up and down smoothly fitted at a small gap in the cavity 13 of the box body 10, the center has a hole 41, the mirror support from the hole 41 it can be protruded to the top of the body 20. 図2に示すように、押圧板40は函体10の空洞部13の内部において締付け部材30と、ミラー支持体20の球状部23との間に介在される。 As shown in FIG. 2, the pressing plate 40 and the clamping member 30 inside the cavity 13 of the box body 10, it is interposed between the spherical portion 23 of the mirror support 20. したがって、締付け部材30 Accordingly, the clamping member 30
を函体10の凹状円弧部Aに設けた雌ねじ12に嵌合させて回転させれば、押圧板40は下降してミラー支持体20の球状部23を下方向に押しつけ、その結果ミラー支持体20は位置が狂わないようになる。 Is rotated by fitting the internal thread 12 provided on the concavely curved portion A of the box body 10, pressing plate 40 is lowered against the spherical portion 23 of the mirror support 20 in a downward direction, as a result the mirror support 20 is as position does not go mad. 押圧板40が矢印C方向に下降するとき、押圧板40の4隅の角部4 When the pressing plate 40 is lowered in the direction of arrow C, four corners of the corner portions of the pressing plate 40 4
2は函体10の空洞部13の4隅の角部内を下降し、回転できないようになっている。 2 descends the Tsunobeuchi the four corners of the cavity 13 of the box body 10, so that it can not rotate. このため、押圧板40が矢印C方向にミラー支持体20の球状部23を下方向に押しつけるとき、ミラー支持体20はその固定位置をずらすことがなく、その結果、ミラー支持体20の最上部に取り付けられたミラーは振動せず、あおり調整が狂わない効果がある。 Therefore, when the pressing plate 40 presses the spherical portion 23 of the mirror support 20 in a downward direction in the direction of arrow C, the mirror support 20 without shifting the fixing position, as a result, the top of the mirror support 20 the mirror mounted without vibration, the effect of the tilt adjusting not go mad.

【0016】図4は本発明の光線あおり機構を使用したレーザレーダの概略構成を示す斜視図、図5は図4のレーザレーダのクーデ方式望遠鏡の作動原理を説明する図である。 [0016] Figure 4 is a perspective view showing a schematic configuration of a laser radar using light tilting mechanism of the present invention, FIG 5 is a diagram for explaining the operation principle of Kude method telescope laser radar of FIG.

【0017】図4および図5のレーザレーダはクーデ方式のレーザレーダであり、三脚に支持された架台1の上面に水平回転台2が垂直軸線V−Vを中心にして回転自在に取り付けられ、水平回転台2の左右の上向き突起3 The laser radar of FIG. 4 and FIG. 5 is a laser radar Kude method, a horizontal turntable 2 rotatably mounted about a vertical axis V-V to an upper surface of the frame 1 which is supported on a tripod, left and right upward projection of the horizontal turntable 2 3
に左右の砲耳4が水平軸線H−Hを中心にして俯仰できるように取り付けられ、これらの砲耳4に大口径の望遠鏡5が固定されている。 Left and right trunnion 4 is mounted for elevation about a horizontal axis H-H, telescope 5 of large diameter is fixed to these trunnion 4. 望遠鏡5の光軸X−Xは水平回転台2の垂直軸線V−Vおよび砲耳4の水平軸線H−H Telescope 5 of the optical axis X-X is the horizontal axis of the horizontal turntable 2 of vertical axis V-V and trunnion 4 H-H
を通る。 Passing through.

【0018】架台1に取り付けられたブラケットB1、 [0018] The bracket B1, which is attached to the frame 1,
水平回転台2に取り付けられたブラケットB2、片方の上向き突起3に取り付けられたブラケットB3およびブラケットB4、砲耳4に取り付けられたB5のそれぞれに、頂面にミラーM1、M2、M3、M4、M5をそれぞれ貼付た本発明の光線あおり機構(図4、5にはミラー以外は図示せず)が1個ずつ固定されている。 Bracket B2 mounted on a horizontal turntable 2, each of B5, which is attached to the bracket B3 and the bracket B4, trunnion 4 which is attached to the upward projection 3 of one, the mirror M1 in the top surface, M2, M3, M4, ray tilting mechanism M5 of the present invention was attached, respectively (except mirror not shown in FIGS. 4 and 5) are fixed one by one.

【0019】本発明の光線あおり機構の操作にあたり、 [0019] Upon operation of the beam tilt mechanism of the present invention,
各あおり機構の締付け部材30を治具により緩め、それぞれのミラー支持体20を首振り揺動させ、それらの傾きを加減してミラーをあおることにより、最終的に望遠鏡5の視野8にレーザ光線6が入るように調整し(図6 The fastening member 30 of each tilting mechanism loosened by the jig, each of the mirror support 20 is swinging the swing, by incite mirror go easy their inclination, eventually the laser beam in field 8 of the telescope 5 6 is adjusted to fall (FIG. 6
参照)、その位置で締付け部材30を締め付けて、あおり操作を終了する。 See), by tightening the fastening member 30 in that position, and ends the incitement operation. このようなあおり操作は従来のあおり機構の操作に比べ、短時間に正確に調整することができ、且つあおりの範囲も広いことが特徴である。 Such incitement operation compared with the operation of a conventional tilting mechanism, short time can be adjusted accurately, it is a feature and wider range of tilt.

【0020】光源から放射されたレーザ光線6が矢印D The laser beam 6 emitted from the light source arrows D
方向に水平にM1に入射し且つ矢印E方向に垂直に反射されてM2に入射する。 It is reflected vertically and the direction of arrow E is incident horizontally M1 in a direction incident to M2. M2にて反射されたレーザ光線6が矢印F方向に水平にM3に入射し反射されて矢印G Laser beam 6 reflected by M2 is incident horizontally M3 in the direction of arrow F reflected by the arrow G
方向に垂直にM4に入射する。 Perpendicularly incident on the M4 direction. さらにM4で反射されて矢印H方向に水平にM5に入射し、ここで反射されて矢印Y方向に測定対象気体7に向かって放射され、そこから戻ってくる微弱な散乱光が望遠鏡5のミラーにより集光される(図6参照)。 Furthermore incident horizontally M5 in the arrow H direction is reflected by the M4, where it is reflected is radiated toward the measuring object gas 7 in the direction of arrow Y, the mirror come weak scattered light of the telescope 5 back therefrom It is focused by (see FIG. 6).

【0021】望遠鏡5の中のミラーにより集光されたレーザ光線は光電子増倍管により検出され、電圧に変換し、必要に応じアンプにより信号を増幅してAD変換器に入れ、デジタル信号に直して、パソコンに転送して波形を得る。 The laser beam condensed by the mirror in the telescope 5 is detected by a photomultiplier tube and converted to a voltage, put into the AD converter amplifies the signal by an amplifier if necessary, re a digital signal Te, get the waveform is transferred to the PC.

【0022】 [0022]

【発明の効果】以上説明したように本発明のレーザレーダ用光線あおり機構は、底部中央に球状へこみを備え空洞部の内壁の上方部分に一連の雌ねじを形成した函体と、レーザ光線あおり用ミラーを取り付けるミラー支持部と函体空洞部の底部球状へこみに滑り嵌合する球状部とを備えたミラー支持体と、外周側面に前記函体の凹状円弧部の雌ねじと嵌合する雄ねじを有するリング状締付け部材と、前記函体の空洞部に微小な間隙を隔てて嵌合して上下動でき前記締付け部材と前記ミラー支持体の球状部との間で固定される押圧板とを具備しているので、 Laser radar beam tilting mechanism of the present invention as described in the foregoing comprises: a box-body has a series of internal thread in the upper portion of the inner wall of the cavity comprises a recessed spherical at the bottom center, laser beam tilting having a mirror support with a spherical portion fitted sliding in recessed bottom spherical mirror support portion and the box body cavity for mounting the mirror, the external thread of the internal thread mating concave arcuate portion of the box making body on the outer peripheral side surface comprising a ring-shaped clamping member, and a pressing plate which is fixed between the fitted at a small gap in the cavity of a box body made vertically movable above the clamping member and the spherical portion of the mirror support since the are,
従来のビスを使った光線あおり機構に比べ、短時間に調整することができ、またあおりの範囲も広いので望遠鏡の横方向および縦方向の回転軸とレーザ光線の光軸を正確に且つ簡便に一致させることができ、さらに測定対象の360度中の好きな方向のレーザ光線方向を合わせることができるので、望遠鏡の視野とレーザ光線の出る方向がぴったりと重なり、ガス濃度に必要な散乱光強度の収集が可能である。 Compared to the ray tilting mechanism using conventional screws, can be adjusted in a short time, and because wider range of tilt of the optical axis in the horizontal direction and the vertical direction of the rotation axis and the laser beam of the telescope accurately and conveniently can be matched, it is possible to further align the laser beam direction of any direction in 360 degrees to be measured, the overlap snugly is a direction out of the field of view and the laser beam of the telescope, the scattered light intensity necessary for gas concentration it is possible collection of. また、望遠鏡をレーザ光線に同期して追随移動させることができる。 Further, it is possible to follow the movement in synchronization with telescope laser beam.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明にかかるレーザレーダ用光線あおり機構の平面図である。 1 is a plan view of the laser radar beam tilting mechanism according to the present invention.

【図2】図1のII−II線上断面矢視図である。 2 is a II-II line cross-sectional arrow view of FIG.

【図3】図2のIII−III線上断面矢視図である。 3 is a III-III line sectional view on arrows of FIG.

【図4】本発明の光線あおり機構を使用したレーザレーダの概略構成を示す斜視図である。 4 is a perspective view showing a schematic configuration of a laser radar using light tilting mechanism of the present invention.

【図5】図4のレーザレーダのクーデ方式望遠鏡の作動原理を説明する図である。 5 is a diagram illustrating the operation principle of Kude method telescope laser radar of FIG.

【図6】レーザレーダによる気体の濃度測定方法を説明する図である。 6 is a diagram for explaining a method for measuring the concentration gas by the laser radar.

【符号の説明】 DESCRIPTION OF SYMBOLS

1 架台 2 水平回転台 3 上向き突起 4 砲耳 5 望遠鏡 6 レーザ光線 7 測定対象気体 8 望遠鏡の視野 9 レーザ装置 10 函体 11 球状へこみ 12 雌ねじ 13 空洞部 20 ミラー支持体 21 ミラー支持部 22 柄部 23 球状部 24 頂面 25 ミラー 30 締付け部材 31 治工具嵌合孔 32 孔 40 押圧板 41 孔 42 角部 A 凹状円弧部 1 gantry 2 horizontal turntable 3 upward projection 4 trunnion 5 telescope 6 laser beam 7 measured field 9 laser device of the gas 8 telescope 10 box body 11 spherical depressions 12 internal thread 13 cavity 20 mirror support 21 mirror support 22 the handle portion 23 spherical portion 24 the top surface 25 the mirror 30 the clamping member 31 jig engagement hole 32 hole 40 pressing plate 41 hole 42 corner portion A concavely curved portion

Claims (2)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 レーザレーダにより気体の濃度を測定する際に該気体中に放射するレーザ光線をあおる機構において、 上部を開放したほぼ正方形の空洞部を有し、該空洞部の底部中央に球状へこみを備え、該空洞部の内壁の上方部分に一連の雌ねじを有する凹状円弧部が形成されている函体と、 レーザ光線あおり用ミラーを取り付けるミラー支持部と該ミラー支持部に接続する球状部とを備え、前記球状部が前記函体空洞部の底部球状へこみに滑り嵌合する球面を有し、該球面に嵌合した球状部を支点にして前記ミラー支持部が首振り揺動できるようになったミラー支持体と、 前記函体の空洞部の一辺より長い直径を有し、外周側面に前記函体の凹状円弧部Aの雌ねじと嵌合する雄ねじを有し、中央に前記ミラー支持体の上部を突出させる孔 1. A mechanism incite a laser beam to be radiated into the gas in measuring the concentration of a gas by a laser radar, it has a cavity of substantially square having an open top, spherical bottom center of the cavity portion with indentations, spherical portion connecting the box-body concave arcuate portion is formed with a series of internal thread in the upper portion of the inner wall of the cavity portion, the mirror support mounting the mirror laser beam tilt and the mirror support with the door, has a spherical surface in which the spherical portion is fitted sliding in recessed bottom spherical the box body cavity, said mirror support portion in the fulcrum spherical portion fitted to the spherical surface can swing the swing a mirror support becomes, has a longer diameter than the one side of the cavity of the box making body, has an external thread to the internal thread mating the concave arc portion a of the box-body on the outer peripheral side surface, the mirror support in the center hole for protruding the upper portion of the body を有するリング状締付け部材と、 中央に前記ミラー支持体の上部を突出させる孔を有し、 A ring-shaped clamping member having, has a hole for protruding the upper portion of the the central mirror support,
    前記函体の空洞部に微小な間隙を隔てて嵌合して上下動できる形状を有し、前記函体の空洞部内において前記締付け部材と前記ミラー支持体の球状部との間に介在される四角形の押圧板と、 を包含することを特徴とするレーザレーダ用光線あおり機構。 Is the interposed between the fitted at a small gap in the cavity of a box body having a vertical movement can shape, spherical portion of the fastening member and the mirror support in the cavity of the box making body laser radar beam tilting mechanism, characterized in that to cover, and the pressing plate rectangle.
  2. 【請求項2】 請求項1に記載のレーザレーダ用光線あおり機構を使用したことを特徴とするレーザ装置。 2. A laser device characterized by using the laser radar beam tilting mechanism according to claim 1.
JP7060192A 1995-03-20 1995-03-20 Laser beam swinging mechanism for laser radar and laser device using it Granted JPH08262140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7060192A JPH08262140A (en) 1995-03-20 1995-03-20 Laser beam swinging mechanism for laser radar and laser device using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7060192A JPH08262140A (en) 1995-03-20 1995-03-20 Laser beam swinging mechanism for laser radar and laser device using it

Publications (1)

Publication Number Publication Date
JPH08262140A true JPH08262140A (en) 1996-10-11

Family

ID=13135057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7060192A Granted JPH08262140A (en) 1995-03-20 1995-03-20 Laser beam swinging mechanism for laser radar and laser device using it

Country Status (1)

Country Link
JP (1) JPH08262140A (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013508695A (en) * 2009-11-20 2013-03-07 ファロ テクノロジーズ インコーポレーテッド Equipment for optically scanning and measuring the environment
US8625106B2 (en) 2009-07-22 2014-01-07 Faro Technologies, Inc. Method for optically scanning and measuring an object
US8699007B2 (en) 2010-07-26 2014-04-15 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8705016B2 (en) 2009-11-20 2014-04-22 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8705012B2 (en) 2010-07-26 2014-04-22 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8719474B2 (en) 2009-02-13 2014-05-06 Faro Technologies, Inc. Interface for communication between internal and external devices
US8730477B2 (en) 2010-07-26 2014-05-20 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8830485B2 (en) 2012-08-17 2014-09-09 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8896819B2 (en) 2009-11-20 2014-11-25 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8997362B2 (en) 2012-07-17 2015-04-07 Faro Technologies, Inc. Portable articulated arm coordinate measuring machine with optical communications bus
US9009000B2 (en) 2010-01-20 2015-04-14 Faro Technologies, Inc. Method for evaluating mounting stability of articulated arm coordinate measurement machine using inclinometers
US9074883B2 (en) 2009-03-25 2015-07-07 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9113023B2 (en) 2009-11-20 2015-08-18 Faro Technologies, Inc. Three-dimensional scanner with spectroscopic energy detector
US9163922B2 (en) 2010-01-20 2015-10-20 Faro Technologies, Inc. Coordinate measurement machine with distance meter and camera to determine dimensions within camera images
US9168654B2 (en) 2010-11-16 2015-10-27 Faro Technologies, Inc. Coordinate measuring machines with dual layer arm
US9210288B2 (en) 2009-11-20 2015-12-08 Faro Technologies, Inc. Three-dimensional scanner with dichroic beam splitters to capture a variety of signals
USRE45854E1 (en) 2006-07-03 2016-01-19 Faro Technologies, Inc. Method and an apparatus for capturing three-dimensional data of an area of space
US9329271B2 (en) 2010-05-10 2016-05-03 Faro Technologies, Inc. Method for optically scanning and measuring an environment
US9372265B2 (en) 2012-10-05 2016-06-21 Faro Technologies, Inc. Intermediate two-dimensional scanning with a three-dimensional scanner to speed registration
US9417056B2 (en) 2012-01-25 2016-08-16 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9513107B2 (en) 2012-10-05 2016-12-06 Faro Technologies, Inc. Registration calculation between three-dimensional (3D) scans based on two-dimensional (2D) scan data from a 3D scanner
US9529083B2 (en) 2009-11-20 2016-12-27 Faro Technologies, Inc. Three-dimensional scanner with enhanced spectroscopic energy detector
US9551575B2 (en) 2009-03-25 2017-01-24 Faro Technologies, Inc. Laser scanner having a multi-color light source and real-time color receiver
US9607239B2 (en) 2010-01-20 2017-03-28 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US9628775B2 (en) 2010-01-20 2017-04-18 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US10067231B2 (en) 2012-10-05 2018-09-04 Faro Technologies, Inc. Registration calculation of three-dimensional scanner data performed between scans based on measurements by two-dimensional scanner
US10175037B2 (en) 2015-12-27 2019-01-08 Faro Technologies, Inc. 3-D measuring device with battery pack
US10281259B2 (en) 2010-01-20 2019-05-07 Faro Technologies, Inc. Articulated arm coordinate measurement machine that uses a 2D camera to determine 3D coordinates of smoothly continuous edge features

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE45854E1 (en) 2006-07-03 2016-01-19 Faro Technologies, Inc. Method and an apparatus for capturing three-dimensional data of an area of space
US8719474B2 (en) 2009-02-13 2014-05-06 Faro Technologies, Inc. Interface for communication between internal and external devices
US9074883B2 (en) 2009-03-25 2015-07-07 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9551575B2 (en) 2009-03-25 2017-01-24 Faro Technologies, Inc. Laser scanner having a multi-color light source and real-time color receiver
US8625106B2 (en) 2009-07-22 2014-01-07 Faro Technologies, Inc. Method for optically scanning and measuring an object
US8705016B2 (en) 2009-11-20 2014-04-22 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9417316B2 (en) 2009-11-20 2016-08-16 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9113023B2 (en) 2009-11-20 2015-08-18 Faro Technologies, Inc. Three-dimensional scanner with spectroscopic energy detector
US9210288B2 (en) 2009-11-20 2015-12-08 Faro Technologies, Inc. Three-dimensional scanner with dichroic beam splitters to capture a variety of signals
US9529083B2 (en) 2009-11-20 2016-12-27 Faro Technologies, Inc. Three-dimensional scanner with enhanced spectroscopic energy detector
US8896819B2 (en) 2009-11-20 2014-11-25 Faro Technologies, Inc. Device for optically scanning and measuring an environment
JP2013508695A (en) * 2009-11-20 2013-03-07 ファロ テクノロジーズ インコーポレーテッド Equipment for optically scanning and measuring the environment
US9009000B2 (en) 2010-01-20 2015-04-14 Faro Technologies, Inc. Method for evaluating mounting stability of articulated arm coordinate measurement machine using inclinometers
US9607239B2 (en) 2010-01-20 2017-03-28 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US9163922B2 (en) 2010-01-20 2015-10-20 Faro Technologies, Inc. Coordinate measurement machine with distance meter and camera to determine dimensions within camera images
US9628775B2 (en) 2010-01-20 2017-04-18 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US10060722B2 (en) 2010-01-20 2018-08-28 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US10281259B2 (en) 2010-01-20 2019-05-07 Faro Technologies, Inc. Articulated arm coordinate measurement machine that uses a 2D camera to determine 3D coordinates of smoothly continuous edge features
US9684078B2 (en) 2010-05-10 2017-06-20 Faro Technologies, Inc. Method for optically scanning and measuring an environment
US9329271B2 (en) 2010-05-10 2016-05-03 Faro Technologies, Inc. Method for optically scanning and measuring an environment
US8730477B2 (en) 2010-07-26 2014-05-20 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8699007B2 (en) 2010-07-26 2014-04-15 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8705012B2 (en) 2010-07-26 2014-04-22 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9168654B2 (en) 2010-11-16 2015-10-27 Faro Technologies, Inc. Coordinate measuring machines with dual layer arm
US9417056B2 (en) 2012-01-25 2016-08-16 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8997362B2 (en) 2012-07-17 2015-04-07 Faro Technologies, Inc. Portable articulated arm coordinate measuring machine with optical communications bus
US8830485B2 (en) 2012-08-17 2014-09-09 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9618620B2 (en) 2012-10-05 2017-04-11 Faro Technologies, Inc. Using depth-camera images to speed registration of three-dimensional scans
US9513107B2 (en) 2012-10-05 2016-12-06 Faro Technologies, Inc. Registration calculation between three-dimensional (3D) scans based on two-dimensional (2D) scan data from a 3D scanner
US9739886B2 (en) 2012-10-05 2017-08-22 Faro Technologies, Inc. Using a two-dimensional scanner to speed registration of three-dimensional scan data
US9746559B2 (en) 2012-10-05 2017-08-29 Faro Technologies, Inc. Using two-dimensional camera images to speed registration of three-dimensional scans
US10067231B2 (en) 2012-10-05 2018-09-04 Faro Technologies, Inc. Registration calculation of three-dimensional scanner data performed between scans based on measurements by two-dimensional scanner
US10203413B2 (en) 2012-10-05 2019-02-12 Faro Technologies, Inc. Using a two-dimensional scanner to speed registration of three-dimensional scan data
US9372265B2 (en) 2012-10-05 2016-06-21 Faro Technologies, Inc. Intermediate two-dimensional scanning with a three-dimensional scanner to speed registration
US10175037B2 (en) 2015-12-27 2019-01-08 Faro Technologies, Inc. 3-D measuring device with battery pack

Similar Documents

Publication Publication Date Title
JP3193724B2 (en) Wavefront measurement system using an integrated geometric reference (igr)
CN1534289B (en) X-ray diffraction device
KR20120023188A (en) Polarization-modulating optical element
US20010028344A1 (en) Optical scanning-type touch panel
JP2704001B2 (en) Position detecting device
US4984893A (en) Phase shifting device and method
US6441908B1 (en) Profiling of a component having reduced sensitivity to anomalous off-axis reflections
US5237457A (en) Apparatus for adjusting an optical axis including a laser beam source and a beam shaping prism
US8699036B2 (en) Device for optically scanning and measuring an environment
CN101189532B (en) Distance measuring device
CN1071898C (en) Measuring ball reflector
US4838632A (en) Two-dimensional beam scanner
JP2679969B2 (en) Interferometers and ft spectrophotometer incorporating this
US4758729A (en) Apparatus and method for measuring the included angle of a reflective cone
JPH1092722A (en) Aligner
JPH0954278A (en) Optical device for controlling expanding angle of annular light ray
JPH102714A (en) Method and device for measurement
JPH07168115A (en) Optical scanner
JPH05256647A (en) Inclination measuring device
JP2004534245A (en) Scanning interferometer for aspheric and wavefront
JPH05240645A (en) Apparatus for regulating laser leveling unit toward reference line
CN1545610A (en) Position detecting device
JPS6327707A (en) Apparatus for inspecting hyperbolic mirror
US4872756A (en) Dual path interferometer with varying difference in path length
JP3725817B2 (en) Eccentricity of the aspheric lens measurement method and the eccentric measuring device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020604