JPH04211189A - Circuit board and its manufacture - Google Patents

Circuit board and its manufacture

Info

Publication number
JPH04211189A
JPH04211189A JP5881791A JP5881791A JPH04211189A JP H04211189 A JPH04211189 A JP H04211189A JP 5881791 A JP5881791 A JP 5881791A JP 5881791 A JP5881791 A JP 5881791A JP H04211189 A JPH04211189 A JP H04211189A
Authority
JP
Japan
Prior art keywords
powder
insulating film
circuit board
film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5881791A
Other languages
Japanese (ja)
Other versions
JP2810554B2 (en
Inventor
Susumu Sumikura
角倉 進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP3058817A priority Critical patent/JP2810554B2/en
Publication of JPH04211189A publication Critical patent/JPH04211189A/en
Application granted granted Critical
Publication of JP2810554B2 publication Critical patent/JP2810554B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/0218Reduction of cross-talk, noise or electromagnetic interference by printed shielding conductors, ground planes or power plane
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Paints Or Removers (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

PURPOSE:To provide a circuit board which has an insulating layer and shield layer having uniform thickness, does not cause any insufficient insulation, and is high in electromagnetic shielding effect and the manufacturing method of the circuit board. CONSTITUTION:This circuit board includes conductor 2 provided on a substrate 1, a first insulating film 4 coating the conductors 2, and a conductive film 3 coating the first insulating film 4. At least one of the films 4 and 3 is formed by an electrodeposition coating method.

Description

【発明の詳細な説明】[Detailed description of the invention]

[00011 [00011

【産業上の利用分野]本発明は回路基板およびその製造
方法に関し、特にカメラ等の光学機器、家電製品、コン
ピューター、ワードプロセッサーあるいは計測機器等に
用いられる回路基板およびその製造方法に関する。 [0002] 【従来の技術】従来、回路基板を製造する一般的な方法
は、絶縁性基板上にフォトリソ技術または導電性ペース
トを用いたスクリーン印刷等で銅箔の回路パターンを形
成し、その後ソルダーレジスト等を回路の表面に塗布し
て絶縁層を設け、次いで絶縁層の表面に導電性ペースト
を塗布してシールド層を設けさらにシールド層上にソル
ダーレジスト等で絶縁層を設けるものであった。 [0003]電磁波をシールドする方法には、上記のシ
ールド層を設ける方法の他に回路基板を板金で囲んでシ
ールドする方法が挙げられる。また、回路パターン上の
絶縁層は、ドライフィルムをラミネートすることによっ
ても設けられている。 [0004]
[Field of Industrial Application] The present invention relates to a circuit board and a method of manufacturing the same, and more particularly to a circuit board and a method of manufacturing the same used in optical equipment such as cameras, home appliances, computers, word processors, measuring instruments, and the like. [0002] Conventionally, the general method for manufacturing circuit boards is to form a copper foil circuit pattern on an insulating substrate by photolithography or screen printing using conductive paste, and then solder it. An insulating layer is provided by applying a resist or the like to the surface of the circuit, a conductive paste is then applied to the surface of the insulating layer to provide a shield layer, and an insulating layer is provided on the shield layer using a solder resist or the like. [0003] In addition to the above method of providing a shield layer, methods for shielding electromagnetic waves include a method of surrounding the circuit board with a sheet metal for shielding. Further, the insulating layer on the circuit pattern is also provided by laminating dry films. [0004]

【発明が解決しようとする課題】しかしながら、従来の
回路基板の製造方法によると、回路を構成する銅線の角
部で絶縁層の厚みが薄くなるため、この部分で絶縁層が
破損し易かった。また、従来の回路基板の製造方法は銅
線と銅線の間に気泡等が混入して絶縁破壊あるいは絶縁
不良が発生しやすく、大きな問題となっていた。さらに
は、従来の回路基板の製造方法は、工程が複雑で製造時
間も長くかかるため、コスト的にも問題があった。 [0005]また、従来の板金により回路基板を囲んで
シールドする方法は、板金を設置するために広いスペー
スを必要とし、製品の小型化には不向きなものであった
。 [0006]本発明は、この様な従来技術の欠点を改善
するためになされたものであり、回路パターン上の絶縁
層、シールド層の膜厚が均一で絶縁不良がなく、また電
磁波シールド効果が高い回路基板およびその製造方法を
提供することを目的とするものである。 [0007]
[Problem to be Solved by the Invention] However, according to the conventional circuit board manufacturing method, the thickness of the insulating layer becomes thinner at the corners of the copper wires that make up the circuit, so the insulating layer is easily damaged at these parts. . Further, in the conventional circuit board manufacturing method, air bubbles or the like get mixed in between the copper wires, which tends to cause insulation breakdown or insulation failure, which has been a big problem. Furthermore, conventional circuit board manufacturing methods involve complicated processes and take a long time to manufacture, resulting in problems in terms of cost. [0005] Further, the conventional method of surrounding and shielding a circuit board with a sheet metal requires a large space for installing the sheet metal, and is not suitable for miniaturizing products. [0006] The present invention has been made in order to improve the drawbacks of the conventional technology, and the film thickness of the insulating layer and shield layer on the circuit pattern is uniform, there is no insulation defect, and the electromagnetic wave shielding effect is improved. The object of the present invention is to provide a high quality circuit board and a method for manufacturing the same. [0007]

【課題を解決するための手段】本発明の回路基板は、基
板上に設けられた導線と、前記導線を被覆する第1の絶
縁膜と、前記第1の絶縁膜を被覆する導電膜とを有し、
前記第1の絶縁膜及び前記導電膜のうち少なくとも1つ
の膜を電着塗装法により形成したことを特徴とするもの
である。 [0008]また、本発明の回路基板の製造方法は、基
板上に導線からなる回路パターンを形成する第1の工程
と、前記回路パターンに第1の絶縁膜を被覆する第2の
工程と、前記第1の絶縁膜に導電膜を被覆する第3の工
程とを有し、前記第2の工程及び前記第3の工程のうち
少なくとも1つの工程に、電着塗料中に前記基板を浸漬
して前記導線を電極とした電着塗装法を用いることを特
徴とするものである。 [0009]本発明の回路基板は、カメラ等の光学機器
、家電製品、ワードプロセッサー、コンピューター、あ
るいは計測機器等のあらゆる電機製品に使用されるもの
である。本発明の回路基板は、図1に示すように、絶縁
性基板1上に形成されている導線2の周囲を第1の絶縁
膜4が被覆し、第1の絶縁膜4の周囲を導電膜3が被覆
するものである。導電膜3は電磁波をシールドするシー
ルド層である。導線2により絶縁性基板1上に回路パタ
ーンが形成される。導線2は銅で形成するのが好ましい
。絶縁膜4の周囲は、必要に応じ更に絶縁膜5が被覆す
る。絶縁膜5は、本発明の回路基板を、電機製品に設置
したとき本発明の回路基板が他の部品に接触して短絡す
るのを防ぐためのものである。
[Means for Solving the Problems] A circuit board of the present invention includes a conductive wire provided on the substrate, a first insulating film covering the conductive wire, and a conductive film covering the first insulating film. have,
The present invention is characterized in that at least one of the first insulating film and the conductive film is formed by electrodeposition coating. [0008] Further, the method for manufacturing a circuit board of the present invention includes a first step of forming a circuit pattern made of conductive wires on the substrate, a second step of covering the circuit pattern with a first insulating film, a third step of coating the first insulating film with a conductive film, and in at least one of the second step and the third step, the substrate is immersed in an electrodeposition paint. The present invention is characterized in that an electrodeposition coating method is used in which the conductive wire is used as an electrode. [0009] The circuit board of the present invention is used in all electrical products such as optical equipment such as cameras, home appliances, word processors, computers, and measuring instruments. As shown in FIG. 1, in the circuit board of the present invention, a first insulating film 4 covers the periphery of a conductive wire 2 formed on an insulating substrate 1, and a conductive film covers the periphery of the first insulating film 4. 3 is what is covered. The conductive film 3 is a shield layer that shields electromagnetic waves. A circuit pattern is formed on the insulating substrate 1 by the conductive wire 2 . Preferably, the conductive wire 2 is made of copper. The periphery of the insulating film 4 is further covered with an insulating film 5 if necessary. The insulating film 5 is for preventing the circuit board of the present invention from coming into contact with other components and causing a short circuit when the circuit board of the present invention is installed in an electrical appliance.

【0010】本発明の回路基板では、各膜3.4. 5
のうち少なくとも1つの膜を電着塗装法により形成する
。 電着塗装法により形成した膜は、最終的に熱又は光を照
射して硬化させる。 [00111電着塗装法とは、被膜となる物質の溶解し
た溶液(以下、電着塗料)中に、一対の電極を配置して
直流電圧を加えることにより、電極上に上記物質を付着
させるものである。従って、本発明においては基板上に
形成された導線2が一方の電極となる。他方の電極とし
ては、例えばステンレス板を用いると良い。 [0012]電着塗装法については、従来から提案がな
されている。例えば、特開昭55−11175号公報に
より電着塗料を2回塗り重ねる方法が提案されている。 また、本出願人も特開平2−6564号でセラミック粉
体及び弗素樹脂粉体を含有する電着塗料を提案している
。 [0013]絶縁性基板1には、一般に知られている、
例えばポリカーボネート樹脂、ポリエーテルイミド樹脂
、ガラス繊維充填ABS樹脂、ガラスエポキシ樹脂等の
絶縁基板を用いることができる。 [0014]導線2による回路パターンは、一般に知ら
れているフォトリソ技術により形成することができる。 即ち、絶縁性基板1上に、例えば銅箔をラミネートし、
更に銅箔上にレジストを塗布した後、所望のパターンを
有するマスクを用いて露光、つづいて現像、エツチング
により回路パターンを形成することができる。 [0015]導線2の周囲には、電着可能な樹脂を用い
て電着塗装法により絶縁膜4を形成する。 [0016]電着塗装法に使用される樹脂は、従来から
種々研究されている。樹脂が電着し得るためには、電着
塗料としたとき、荷電するものでなければならない。荷
電した樹脂は、直流電圧を印加したときアノードあるい
はカソードへ引かれ電極上に析出して被膜となる。本発
明で使用する樹脂としては、例えばアクリル・メラミン
系、アクリル系、エポキシ系、ウレタン系、アルキッド
系等、従来から電着塗装法に用いられている樹脂が使用
できる。 [0017]本発明で使用する樹脂は、アニオン系樹脂
でもカチオン系樹脂でもかまわないが、実用的にはカル
ボキシル基を有する水溶性樹脂あるいは水分散性樹脂が
好ましい。カルボキシル基を有する樹脂プレポリマーは
、アンモニアまたは有機アミンに中和されることにより
、水に溶解または分散する。 [0018]電着塗料中における樹脂濃度は5〜20重
量%、好ましくは7〜15重量%の範囲が望ましい。 [0019]本発明で使用する電着塗料は、所望の樹脂
を水に溶解または分散したものが好ましいが、電着塗料
中に、更にアルコール系やグリコールエーテル系等の有
機溶剤を含有してもかまわない。有機溶剤の含有量は数
パーセントで十分である。 [00201絶縁膜4には、セラミック粉体を含有させ
てもかまわない。絶縁膜4にセラミック粉体を含有させ
ると、絶縁膜4に熱を加えて硬化させる際に低温、例え
ば90〜100℃程度で十分に硬化させることができる
。その結果、熱変形のない回路基板を得ることができる
。 [0021]セラミック粉体を含有する電着塗料を用い
て電着膜を形成すると、熱硬化が低温で行われる理由に
ついては、明らかでないが、セラミック粉体は、表面が
すぐに酸化されてしまう金属粒子と異なり、粉体表面が
ある程度活性化されたまま安定な状態で維持されるため
、硬化時に粉体表面が架橋点となり電着膜の硬化を促進
するためと考えられる。 [0022]絶縁膜4に含有せしめるセラミック粉体と
しては、例えば酸化アルミニウム、窒化チタン、窒化マ
ンガン、窒化タングステン、タングステンカーバイド、
窒化ランタン、硅酸アルミニウム、=硫化モリブテン、
酸化チタン、グラファイト、硅酸化合物等が挙げられる
。 [0023]セラミック粉体は、粒径が大きすぎると絶
縁膜4の硬化が過剰となり脆くなる。また粒径が小さす
ぎると十分な効果が得られない。このため、セラミック
粉体の粒径は平均粒径で0.1〜5μm、特には0. 
5〜2μmが好ましい。 [0024]絶縁膜4の形成に用いる電着塗料に含有す
るセラミック粉体の量としては、塗膜の物性例えば密着
性が良好で且つ、低温でも十分に硬化させることができ
る塗膜4を得るために、電着可能な樹脂100重量部に
対してセラミック粉体を0.5〜30重景部重電に2〜
25重量部分散させるのが好ましい。絶縁膜4中のセラ
ミック粉体の共析量としては10〜30wt%、特に1
5〜25wt%が好ましい。 [0025]粉体の含有する電着塗料を用いて電着塗装
を行うと、形成された膜中に粉体が析出するのは、電着
塗料中では粉体粒子の周囲に樹脂分子が吸着していて、
樹脂分子が電極に引き付けられるのに伴って粉体も電極
方向に移動するためと思われる。 [0026]絶縁膜4の形成後、シールド層となる導電
膜3を絶縁膜4の周囲に形成する。導電膜3は、導電粉
体を含有する電着塗料を用いて電着塗装を行うことによ
り形成する。電着塗料中に含有する導電粉体としては、
表面を金属めっきしたセラミック粉体(以下、金属化セ
ラミック粉体)あるいは表面を金属めっきした天然マイ
カ粉体(以下、金属化天然マイカ粉体)が好ましい。金
属化セラミック粉体あるいは金属化天然マイカ粉体は、
電着塗料中にどちらか一方のみを含有してもよいし、両
方を混合して含有してもかまわない。電着塗料中に金属
化セラミック粉体あるいは金属化天然マイカを含有させ
ると、前述したように電着終了後に加熱処理を行って電
着膜を硬化させる際に、加熱温度として通常の130〜
180℃必要なところを90℃〜100℃の低温で完全
に硬化させることができ好ましい。 [0027]本発明に於て用いられる金属化セラミック
粉体及び金属化天然マイカ粉体としては、セラミック粉
体或いは天然マイカ粉体の表面を、たとえばCu、Ni
、Ag、Au、Sn等でめっきしたものが用いられる。 これらの粉体表面のめっきはシールド性やコストの点か
らCu、Ag及びNiを好適に用いることができる。粉
体表面へのめっき方法としては無電解めっきが適してい
る。また、粉体表面のめっき厚としては0.05〜3μ
m、特に0.15〜2μmとした場合、優れたシールド
性と低温硬化時の良好な塗膜物性を得ることができる。 3μmより厚くめっきを形成した場合、表面特性が金属
粒子と類似してしまい、表面が極めて活性なため、空気
中で酸化されて低温による電着膜の硬化が不十分となり
易い。 [0028]又、粉体へのN1めっきの形成に於て、例
えば特開昭61−276979号公報に開示されている
様に、粉体の水性懸濁液を作製し、次いでこの懸濁液に
無電解ニッケルめっき老化液を添加して粉体表面にニッ
ケルめっきを形成させて、りん含有率の低い、例えば5
%以下としたXiめっきを施した場合、導電性が向上し
てCuめっき粉体とほぼ同等のシールド性を有する電着
膜を形成できる。 [0029]導電粉体に使用するセラミック粉体として
は、絶縁膜4に含有するセラミック粉体と同様のものが
使用できる。又、天然マイカとしてはフロゴバイトマイ
カ、セリサイトマイカ、マスコバイトマイカ等が挙げら
れる。 [00301金属化セラミック粉体あるいは金属化天然
マイカの平均粒径は、0.1〜5μm、好ましくは0゜
5〜2μmの範囲が望ましく、0.1μm未満では二次
凝集作用が大きく、5μmを越えると沈降性あるいは化
粧性の問題で好ましくない。 [0031]導電粉体としては、金属化セラミック粉体
及び金属化天然マイカの他に、表面を金属めっきした樹
脂粉体(以下、金属化樹脂粉体)や金属粉体を用いるこ
ともできる。 [0032]金属化樹脂粉体に使用する樹脂粉体として
は、例えばフッ素樹脂、ポリエチレン樹脂、アクリル樹
脂、ポリスチレン樹脂、ナイロン等を用いることができ
る。樹脂粉体表面に施す金属めっきとしては、金属化セ
ラミック粉体の場合と同様のものを用いることができる
。金属化樹脂粉体の平均粒径も、金属化セラミック粉体
の場合と同様である。 [0033]金属粉体としては、例えばAu、Pd、A
g、Ni、Cu、Sn、Co、Mn、Fe、Te等の粉
体が挙げられる。金属粉体の粒径は平均粒子径0.01
〜5μm、好ましくは0.05〜4μm、更には0.0
5〜0.1μmの範囲が望ましく、0.01μm未満で
は2次凝集作用を生じ、5μmを越えると電着塗料中で
粉体が沈降してしまい好ましくない。金属粉体は、例え
ば熱プラズマ蒸発法等を用いて製造されたものが好まし
い。 [0034]尚、本発明において、導電粉体の粒径は、
遠心沈降式粒度分布測定器を用いて測定した値である。 この測定器として実際に用いたものは5ACP−3(島
津製作所製)である。 [0035]電着塗料中における導電粉体の含有量は、
電着可能な樹脂100重量部に対して0.2〜30重量
部、好ましくは10〜20重量部、更には7〜15重量
部の範囲が望ましい。 [0036]なお、導電膜3中の導電粉体はX線マイク
ロアナライザーにより同定することができ、更に導電粉
体の共析量は熱重量分析で解析することにより測定する
ことができる。塗膜3中の導電粉体の共析量は5〜50
wt%、特に10〜40wt%、更には15〜35wt
%が好ましい。 [0037]導電膜3中に含有する導電粉体には金属化
セラミック粉体、金属化天然マイカ粉体、金属化樹脂粉
体及び金属粉体のうちの一種だけを用いてもよいし、例
えば金属化セラミック粉体と金属粉体というように二種
以上を混合して用いてもよい。好ましくは、金属化セラ
ミック粉体及び金属化天然マイカ粉体から選ばれる一種
または二種の導電粉体と、金属化樹脂粉体及び金属粉体
から選ばれる一種または二種の導電粉体とを混合して使
用するのが良い。これは、導電膜3中において、金属化
セラミック粉体及び/又は金属化天然マイカ粉体の空隙
を、金属粉体及び/又は金属化樹脂粉体が満たし、各粉
体間の接触面積が増大するためシールド性が一層向上す
ると共に、金属化セラミック粉体及び/又は金属化天然
マイカ粉体の作用により低温で導電膜3を硬化させるこ
とができるためである。この場合、導電粉体の混合割合
は、金属化セラミック粉体及び金属化天然マイカ粉体か
ら選ばれた一種または二種の導電粉体100重量部に対
して、金属化樹脂粉体及び金属粉体から選ばれた一種ま
たは一種の導電粉体を20〜300重量部とするのが好
ましい。 [0038]導電膜3を電着塗装法により形成すること
により、導電膜3中に導電粉体が高密度に析出し、薄膜
であっても優れたシールド機能を示す。 [0039]導電膜3の形成後、必要に応じ更に絶縁膜
5を導電膜3の周囲に形成する。絶縁膜5は、絶縁膜4
のところで説明した材料と同様の材料を用い、絶縁膜4
と同様にして形成すればよい。従って、絶縁膜5につい
てもセラミック粉体を含有させてもよいし、含有させな
くてもよい。セラミック粉体は、絶縁層4と絶縁層5の
両方に含有してもよいし、どちらか一方のみに含有して
もよい。また、絶縁層4と絶縁層5のいずれにもセラミ
ック粉体を含有させなくてもよい。
In the circuit board of the present invention, each film 3.4. 5
At least one of the films is formed by electrodeposition coating. The film formed by electrodeposition coating is finally cured by irradiation with heat or light. [00111 Electrodeposition coating method is a method in which a pair of electrodes is placed in a solution containing a substance to form a coating (hereinafter referred to as electrodeposition paint) and the substance is deposited onto the electrode by applying a DC voltage. It is. Therefore, in the present invention, the conductive wire 2 formed on the substrate serves as one electrode. For example, a stainless steel plate may be used as the other electrode. [0012] Proposals have been made regarding electrodeposition coating methods. For example, JP-A-55-11175 proposes a method of applying two coats of electrodeposition paint. Furthermore, the present applicant has also proposed an electrodeposition paint containing ceramic powder and fluororesin powder in Japanese Patent Laid-Open No. 2-6564. [0013] The insulating substrate 1 includes the generally known
For example, an insulating substrate made of polycarbonate resin, polyetherimide resin, glass fiber-filled ABS resin, glass epoxy resin, etc. can be used. [0014] The circuit pattern using the conductive wire 2 can be formed by a generally known photolithography technique. That is, for example, copper foil is laminated on the insulating substrate 1,
Further, after coating a resist on the copper foil, a circuit pattern can be formed by exposing to light using a mask having a desired pattern, followed by development and etching. [0015] An insulating film 4 is formed around the conducting wire 2 by an electrodeposition coating method using an electrodepositable resin. [0016] Various researches have been made on resins used in electrodeposition coating methods. In order for the resin to be electrodeposited, it must be electrically charged when used as an electrodeposition paint. When a DC voltage is applied, the charged resin is drawn to the anode or cathode and deposits on the electrode to form a film. As the resin used in the present invention, resins conventionally used in electrodeposition coating methods can be used, such as acrylic/melamine, acrylic, epoxy, urethane, and alkyd resins. [0017] The resin used in the present invention may be an anionic resin or a cationic resin, but for practical purposes, a water-soluble resin or a water-dispersible resin having a carboxyl group is preferable. A resin prepolymer having a carboxyl group is dissolved or dispersed in water by being neutralized with ammonia or an organic amine. [0018] The resin concentration in the electrodeposition paint is preferably in the range of 5 to 20% by weight, preferably 7 to 15% by weight. [0019] The electrodeposition paint used in the present invention is preferably one in which a desired resin is dissolved or dispersed in water, but the electrodeposition paint may further contain an organic solvent such as an alcohol type or glycol ether type. I don't mind. A content of several percent of the organic solvent is sufficient. [00201 The insulating film 4 may contain ceramic powder. When the insulating film 4 contains ceramic powder, the insulating film 4 can be sufficiently cured at a low temperature, for example, about 90 to 100° C., when heat is applied to the insulating film 4 to cure it. As a result, a circuit board without thermal deformation can be obtained. [0021] When an electrodeposited film is formed using an electrodeposition paint containing ceramic powder, the reason why heat curing is performed at a low temperature is not clear, but the surface of the ceramic powder is quickly oxidized. This is thought to be because, unlike metal particles, the powder surface is maintained in a stable state while being activated to some extent, so the powder surface becomes a crosslinking point during curing and promotes the curing of the electrodeposited film. [0022] Examples of the ceramic powder contained in the insulating film 4 include aluminum oxide, titanium nitride, manganese nitride, tungsten nitride, tungsten carbide,
Lanthanum nitride, aluminum silicate, = molybdenum sulfide,
Examples include titanium oxide, graphite, and silicic acid compounds. [0023] If the particle size of the ceramic powder is too large, the insulating film 4 will be excessively hardened and become brittle. Moreover, if the particle size is too small, sufficient effects cannot be obtained. Therefore, the average particle size of the ceramic powder is 0.1 to 5 μm, particularly 0.1 to 5 μm.
5 to 2 μm is preferable. [0024] The amount of ceramic powder contained in the electrodeposition coating used for forming the insulating film 4 is determined to obtain a coating film 4 that has good physical properties such as adhesion and can be sufficiently cured even at low temperatures. For this reason, ceramic powder is added to 100 parts by weight of electrodepositable resin in an amount of 0.5 to 30 parts by weight and 2 to 3 parts by weight.
A dispersion of 25 parts by weight is preferred. The amount of eutectoid ceramic powder in the insulating film 4 is 10 to 30 wt%, especially 1
5 to 25 wt% is preferable. [0025] When electrodeposition coating is performed using an electrodeposition paint containing powder, the powder is deposited in the formed film because resin molecules are adsorbed around the powder particles in the electrodeposition paint. I'm doing it,
This seems to be because the powder also moves toward the electrode as the resin molecules are attracted to the electrode. [0026] After the insulating film 4 is formed, the conductive film 3 that will become a shield layer is formed around the insulating film 4. The conductive film 3 is formed by electrodeposition using an electrodeposition paint containing conductive powder. The conductive powder contained in the electrodeposition paint is as follows:
Ceramic powder whose surface is plated with metal (hereinafter referred to as metalized ceramic powder) or natural mica powder whose surface is plated with metal (hereinafter referred to as metalized natural mica powder) is preferable. Metallized ceramic powder or metalized natural mica powder is
Either one of them may be contained in the electrodeposition paint, or a mixture of both may be contained. When metallized ceramic powder or metallized natural mica is contained in the electrodeposition paint, as mentioned above, when the electrodeposition film is cured by heat treatment after the electrodeposition is completed, the heating temperature is 130 to 130℃.
It is preferable because it can be completely cured at a low temperature of 90°C to 100°C where 180°C is required. [0027] As for the metallized ceramic powder and the metallized natural mica powder used in the present invention, the surface of the ceramic powder or natural mica powder is coated with Cu, Ni, etc.
, Ag, Au, Sn, etc. are used. For plating the surfaces of these powders, Cu, Ag, and Ni can be suitably used from the viewpoint of shielding properties and cost. Electroless plating is suitable as a method for plating the powder surface. In addition, the plating thickness on the powder surface is 0.05 to 3 μm.
m, especially when it is 0.15 to 2 μm, it is possible to obtain excellent shielding properties and good coating film properties during low temperature curing. If the plating is formed thicker than 3 μm, the surface characteristics will be similar to those of metal particles, and the surface will be extremely active, so it will likely be oxidized in the air, resulting in insufficient hardening of the electrodeposited film at low temperatures. [0028] In forming N1 plating on powder, for example, as disclosed in JP-A-61-276979, an aqueous suspension of powder is prepared, and then this suspension is An electroless nickel plating aging solution is added to the powder to form nickel plating on the powder surface, resulting in a powder with a low phosphorus content, e.g.
% or less, it is possible to form an electrodeposited film with improved conductivity and shielding properties almost equivalent to that of Cu plating powder. [0029] As the ceramic powder used for the conductive powder, the same ceramic powder as that contained in the insulating film 4 can be used. Further, examples of natural mica include phlogobite mica, sericite mica, muscovite mica, and the like. [00301 The average particle size of the metallized ceramic powder or metallized natural mica is desirably in the range of 0.1 to 5 μm, preferably 0.5 to 2 μm. If it is less than 0.1 μm, the secondary agglomeration effect is large, and if it is less than 5 μm, If it exceeds it, it is undesirable due to sedimentation or cosmetic problems. [0031] As the conductive powder, in addition to metallized ceramic powder and metallized natural mica, resin powder whose surface is plated with metal (hereinafter referred to as metallized resin powder) and metal powder can also be used. [0032] As the resin powder used for the metallized resin powder, for example, fluororesin, polyethylene resin, acrylic resin, polystyrene resin, nylon, etc. can be used. As the metal plating applied to the surface of the resin powder, the same metal plating as in the case of the metallized ceramic powder can be used. The average particle size of the metallized resin powder is also the same as that of the metallized ceramic powder. [0033] As the metal powder, for example, Au, Pd, A
Examples include powders of g, Ni, Cu, Sn, Co, Mn, Fe, Te, and the like. The particle size of the metal powder is an average particle size of 0.01
~5μm, preferably 0.05~4μm, even 0.0
A range of 5 to 0.1 .mu.m is desirable; if it is less than 0.01 .mu.m, secondary agglomeration occurs, and if it exceeds 5 .mu.m, the powder will settle in the electrodeposition paint, which is undesirable. The metal powder is preferably manufactured using, for example, a thermal plasma evaporation method. [0034] In the present invention, the particle size of the conductive powder is
This is a value measured using a centrifugal sedimentation type particle size distribution analyzer. The measuring device actually used was 5ACP-3 (manufactured by Shimadzu Corporation). [0035] The content of conductive powder in the electrodeposition paint is
It is preferably in the range of 0.2 to 30 parts by weight, preferably 10 to 20 parts by weight, and more preferably 7 to 15 parts by weight, based on 100 parts by weight of the electrodepositable resin. [0036] The conductive powder in the conductive film 3 can be identified using an X-ray microanalyzer, and the amount of eutectoid of the conductive powder can be measured by thermogravimetric analysis. The eutectoid amount of conductive powder in coating film 3 is 5 to 50
wt%, especially 10-40wt%, even 15-35wt
% is preferred. [0037] For the conductive powder contained in the conductive film 3, only one of metallized ceramic powder, metallized natural mica powder, metalized resin powder, and metal powder may be used, for example. A mixture of two or more types, such as metallized ceramic powder and metal powder, may be used. Preferably, one or two types of conductive powder selected from metallized ceramic powder and metalized natural mica powder and one or two types of conductive powder selected from metalized resin powder and metal powder are used. It is best to use a mixture. This is because the metal powder and/or metallized resin powder fills the voids in the metallized ceramic powder and/or metallized natural mica powder in the conductive film 3, increasing the contact area between each powder. This is because the shielding properties are further improved, and the conductive film 3 can be hardened at a low temperature by the action of the metallized ceramic powder and/or the metallized natural mica powder. In this case, the mixing ratio of the conductive powder is 100 parts by weight of one or two types of conductive powder selected from metalized ceramic powder and metalized natural mica powder, and metalized resin powder and metal powder. It is preferable to use 20 to 300 parts by weight of one or more conductive powders selected from the following. [0038] By forming the conductive film 3 by an electrodeposition coating method, conductive powder is deposited in the conductive film 3 at a high density, and exhibits an excellent shielding function even if it is a thin film. [0039] After forming the conductive film 3, an insulating film 5 is further formed around the conductive film 3, if necessary. The insulating film 5 is the insulating film 4
The insulating film 4 is made of a material similar to that explained in the above.
It can be formed in the same manner as. Therefore, the insulating film 5 may or may not contain ceramic powder. The ceramic powder may be contained in both the insulating layer 4 and the insulating layer 5, or only in either one. Furthermore, neither the insulating layer 4 nor the insulating layer 5 need contain ceramic powder.

【0040】こうして、導線2の周囲に絶縁膜4.導電
膜3及び必要に応じて絶縁膜5を形成したのち、絶縁膜
4.5及び導電膜3を、熱、光あるいは熱及び光の両方
により硬化させる。樹脂を硬化させるエネルギーとして
は、熱でも光でもかまわないが、−様にしかも簡単に付
与できるという点で熱が好ましい。膜を硬化させる温度
及び加熱時間は、90〜100℃で20〜180分が好
ましい。また、熱及び光以外のエネルギーでも絶縁膜あ
るいは導電膜を硬化させることができる。
In this way, an insulating film 4. is formed around the conductive wire 2. After forming the conductive film 3 and, if necessary, the insulating film 5, the insulating film 4.5 and the conductive film 3 are cured by heat, light, or both heat and light. The energy for curing the resin may be either heat or light, but heat is preferable because it can be applied in a similar manner and easily. The temperature and heating time for curing the film are preferably 90 to 100°C for 20 to 180 minutes. Furthermore, an insulating film or a conductive film can be cured using energy other than heat and light.

【0041】絶縁膜4の厚みは5〜30μm、更には7
〜25μmが好ましい。 [0042]導電膜3の厚みは7〜40μm、更には1
0〜25μmが好ましい。 [0043]必要に応じ設ける絶縁膜5の厚みは10〜
30μm、更には10〜25μmが好ましい。 [0044]絶縁膜4,5及び導電膜3を電着塗装法に
より形成する場合、基板上の導線を電極としてもう一方
の電極と共に電着塗料中に浸漬して行う。電着塗料の温
度は20〜25℃、水製イオン濃度はpH8〜9が好ま
しい。また、印加電圧は50〜170■の直流電圧が好
ましく、電流密度は0.5〜3A/dm2、処理時間は
1〜5分が好ましい。絶縁膜4,5及び導電膜3に使用
する樹脂は、膜毎に種類を変えてもよい。 [0045]
The thickness of the insulating film 4 is 5 to 30 μm, more preferably 7 μm.
~25 μm is preferred. [0042] The thickness of the conductive film 3 is 7 to 40 μm, more preferably 1
0 to 25 μm is preferable. [0043] The thickness of the insulating film 5 provided as necessary is 10~
30 μm, more preferably 10 to 25 μm. [0044] When the insulating films 4, 5 and the conductive film 3 are formed by the electrodeposition coating method, the conductive wire on the substrate is used as an electrode and is immersed together with the other electrode in the electrodeposition paint. The temperature of the electrodeposition paint is preferably 20 to 25°C, and the water ion concentration is preferably pH 8 to 9. Further, the applied voltage is preferably a DC voltage of 50 to 170 cm, the current density is preferably 0.5 to 3 A/dm2, and the processing time is preferably 1 to 5 minutes. The type of resin used for the insulating films 4 and 5 and the conductive film 3 may be different for each film. [0045]

【実施例】以下、実施例を示し本発明をさらに具体的に
説明するが、本発明は係る実施例のみに限定されるもの
ではない。 [0046] 実施例1 0.6mm厚のガラスエポキシ樹脂基板上に18μmの
銅箔をラミネートしたものを用いて、その表面にネガ型
レジスト(東京応化社製、OMR−83、粘度450C
p)をスピンナー塗布して、厚さ5μmの感光性材料層
を形成した。次いで、線巾0.5〜50 mm、スペー
ス1〜20mmの範囲の各々のパターンマスクを用いて
露光し、現像した。次に、銅エツチング液(上材工業社
製、アルファイン)を用いて、スプレ一方式によりエツ
チングし、銅パターン回路を形成した。 [0047]その後、脱塩水を用いてアクリル・メラミ
ン系樹脂(商品名:ハニブライトCL−1;ハニー化成
社製)を濃度15wt%に稀釈した電着塗料を用いて、
pH8,5、浴温25℃の条件下で、基板を陽極として
、陰極にステンレス板を用いて、150Vの直流電圧を
3分間印加し、15μm厚の絶縁膜4を銅パターン回路
の上に形成した。 [0048]次に、別に用意したアクリル・メラミン系
樹脂(商品名ハニブライトCL−1、ハニー化成社製)
100重量部に、平均粒子径0. 7μmのアルミナ上
にニッケルめっきを0.2μmの厚さで施した粉体15
重量部を分散させ、更に脱塩水で樹脂と粉体の混合物が
15wt%になるように稀釈した電着塗料中で、絶縁膜
4の形成条件と同一条件下で、絶縁膜4の周囲に厚さ1
7μmの導電膜3を形成した。 [0049]さらに、絶縁膜4と同じ電着塗料を用いて
、絶縁膜4の形成条件と同一条件で導電膜3の周囲に厚
さ15μm厚の絶縁膜5を形成した最後に基板を水洗し
、その後97℃±1℃のオーブンに基板を入れて150
分間加熱処理して本発明の回路基板を得た。 [00501得られた回路基板の物性(付着性、耐酸性
、耐アルカリ性、燃焼性)、絶縁抵抗および体積固有抵
抗を測定した。その結果を下記の表1〜3に示す。 [0051]得られた絶縁膜及び導電膜は、緻密で隣接
する膜に十分に付着しており、耐酸性、耐アルカリ性及
び耐燃焼性も申し分ないものであった。 [0052]また、回路基板の電磁波シールド効果の測
定を、製品に組込み後、トランスミッションライン法(
ASTM  ES7・83)で行なった。その結果を図
2に示す。電磁波シールド効果は、図2に示す通り、無
電解めっきとほぼ同一の効果であった(参考例1及び参
考例2参照)。 [00531更に、この回路基板を、図1のように切断
して回路基板の断面を、オリンパス社製金属顕微鏡で観
察した(倍率400倍)。その結果、絶縁膜4,5及び
導電膜3はいずれも均一な厚みに形成されていた。 [0054] 参考例I ABS基板に膜厚0.7μmの銅薄膜および膜厚0.4
μmのニッケル薄膜を、ABS基板側から順次無電解め
っきで積層して金属めっき部材を得た。 [0055] この金属めっき部材の電磁波シールド効
果の測定を、実施例1と同様の方法で行なった。その結
果を図2に示す。 [0056] 参考例2 ABS基板に、ニッケル粉末を吹付は塗装してニッケル
塗膜を形成した。 [0057] このニッケル塗膜を形成した部材の電磁
波シールド効果の測定を、実施例1と同様の方法で行な
った。その結果を図2に示す。 [0058] 比較例1 実施例1と同様のガラスエポキシ樹脂基板上に実施例1
と同様にして銅パターン回路を形成した後、従来の方法
により、ソルダーレジスト(商品名FINEDEL  
DSR・2200(C)、田村製作所製)、銀ペースト
(商品名LS−500、アサヒ化学研究所製)、ソルダ
ーレジスト(商品名FINEDEL  DSR・220
0(C)、田村製作所製)をそれぞれ30μm、35μ
m、30μmの厚みで基板側から順次形成して回路基板
を得た。 [0059]得られた回路基板の物性、絶縁抵抗および
体積固有抵抗を実施例1と同様にして測定した。その結
果を表1〜3に示す。 [00601
[Examples] The present invention will be explained in more detail with reference to Examples below, but the present invention is not limited to these Examples. [0046] Example 1 Using a 0.6 mm thick glass epoxy resin substrate laminated with 18 μm copper foil, a negative resist (manufactured by Tokyo Ohka Co., Ltd., OMR-83, viscosity 450C) was applied to the surface.
p) was applied with a spinner to form a 5 μm thick photosensitive material layer. Next, each pattern mask having a line width of 0.5 to 50 mm and a space of 1 to 20 mm was used for exposure and development. Next, using a copper etching solution (manufactured by Uezai Kogyo Co., Ltd., Alphain), etching was carried out by spraying to form a copper pattern circuit. [0047] Then, using an electrodeposition paint in which an acrylic/melamine resin (trade name: Honeybright CL-1; manufactured by Honey Kasei Co., Ltd.) was diluted to a concentration of 15 wt% using demineralized water,
Under conditions of pH 8.5 and bath temperature of 25° C., a 150 V DC voltage was applied for 3 minutes using the substrate as an anode and a stainless steel plate as a cathode to form an insulating film 4 with a thickness of 15 μm on the copper pattern circuit. did. [0048] Next, separately prepared acrylic/melamine resin (trade name Honeybright CL-1, manufactured by Honey Kasei Co., Ltd.)
100 parts by weight, average particle size 0. Powder 15 made of 0.2 μm thick nickel plating on 7 μm alumina
In an electrodeposition paint in which the weight part was dispersed and further diluted with demineralized water so that the mixture of resin and powder became 15 wt%, a thickness was applied around the insulating film 4 under the same conditions as those for forming the insulating film 4. Sa1
A conductive film 3 having a thickness of 7 μm was formed. [0049] Further, an insulating film 5 with a thickness of 15 μm was formed around the conductive film 3 under the same conditions as those for forming the insulating film 4 using the same electrodeposition paint as the insulating film 4. Finally, the substrate was washed with water. , then put the substrate in an oven at 97℃±1℃ for 150 minutes.
A circuit board of the present invention was obtained by heat treatment for a minute. [00501 The physical properties (adhesion, acid resistance, alkali resistance, combustibility), insulation resistance, and volume resistivity of the obtained circuit board were measured. The results are shown in Tables 1 to 3 below. [0051] The obtained insulating film and conductive film were dense and sufficiently adhered to adjacent films, and had satisfactory acid resistance, alkali resistance, and combustion resistance. [0052] In addition, the electromagnetic shielding effect of the circuit board can be measured using the transmission line method (
ASTM ES7.83). The results are shown in FIG. As shown in FIG. 2, the electromagnetic shielding effect was almost the same as that of electroless plating (see Reference Examples 1 and 2). [00531 Furthermore, this circuit board was cut as shown in FIG. 1, and the cross section of the circuit board was observed using a metallurgical microscope manufactured by Olympus Corporation (400x magnification). As a result, the insulating films 4 and 5 and the conductive film 3 were all formed to have a uniform thickness. [0054] Reference Example I Copper thin film with a film thickness of 0.7 μm and a film thickness of 0.4 μm on an ABS substrate
A metal plated member was obtained by sequentially laminating μm thick nickel thin films by electroless plating from the ABS substrate side. [0055] The electromagnetic shielding effect of this metal plated member was measured in the same manner as in Example 1. The results are shown in FIG. [0056] Reference Example 2 An ABS substrate was sprayed with nickel powder to form a nickel coating. [0057] The electromagnetic shielding effect of the member on which the nickel coating was formed was measured in the same manner as in Example 1. The results are shown in FIG. [0058] Comparative Example 1 Example 1 was placed on the same glass epoxy resin substrate as Example 1.
After forming a copper pattern circuit in the same manner as above, a solder resist (product name: FINEDEL) is applied using a conventional method.
DSR・2200(C), manufactured by Tamura Seisakusho), silver paste (product name LS-500, manufactured by Asahi Chemical Research Institute), solder resist (product name FINEDEL DSR・220)
0(C), manufactured by Tamura Seisakusho), 30 μm and 35 μm, respectively.
A circuit board was obtained by sequentially forming layers from the substrate side to a thickness of 30 μm. [0059] The physical properties, insulation resistance, and volume resistivity of the obtained circuit board were measured in the same manner as in Example 1. The results are shown in Tables 1-3. [00601

【表1] 表 ■ [0061】 (注)上記表の試験方法は下記のとおりである。 (1)付着性・・・JIS  DO202(2)耐酸性
−10Vo1%H2S 04で常温20分間浸漬処理 (3)耐アルカリ性・・・5wt%NaOHで常温30
分浸漬処理 (4)燃焼性・・・UL94試験法 [0062]
[Table 1] Table ■ [0061] (Note) The test method in the above table is as follows. (1) Adhesion... JIS DO202 (2) Acid resistance - Immersion treatment in 10Vo1% H2S 04 at room temperature for 20 minutes (3) Alkali resistance... 5 wt% NaOH at room temperature 30 minutes
Separate immersion treatment (4) Flammability...UL94 test method [0062]

【表2】 表 [0063]  (注)上記表の絶縁抵抗は、JIS 
 Z3197に準拠し、くし型電極G−10、基材吸湿
処理は55℃、98%RH,DC500Vで1分値を示
す。 抵抗値の測定はYHP社製、超絶線抵抗測定器HP43
)・29Aを用いた。 [0064]
[Table 2] Table [0063] (Note) The insulation resistance in the above table is JIS
Based on Z3197, the comb-shaped electrode G-10 and the substrate moisture absorption treatment show a 1 minute value at 55° C., 98% RH, and DC 500V. The resistance value was measured using a super wire resistance measuring device HP43 made by YHP.
)・29A was used. [0064]

【表3】 表 [0065]  (注)上記表の固有抵抗値は、JIS
  C6481により測定した値である。 [0066]実施例2 実施例1で用いたニッケルめっきアルミナ粉体15重量
部を、銅めっきアルミナ粉体10重電部にかえた以外は
、実施例1と同様にして本発明の回路基板を作成した。 銅めっきアルミナ粉体のめっき厚みは0.2μmであっ
た。また、アルミナ粉体の平均粒子径は1.2μmであ
った。 [0067] この回路基板の物性(付着性、耐酸性、
耐アルカリ性、燃焼性)、絶縁抵抗、体積固有抵抗及び
電磁波シールド効果を実施例1と同様の方法で測定した
。 その結果、実施例1と同様の良好な効果が得られた。 [0068]また、実施例1と同様にして基板の断面を
観察したところ、各膜とも均一の厚みに形成されていた
。 [0069]実施例3 0.6mm厚のガラスエポキシ樹脂基板上に実施例1と
同様にして銅パターン回路及び絶縁膜4を形成した。 [00701次に、別に用意したアクリル・メラミン系
樹脂(商品名ハニブライトCL−1、ハニー化成社製)
100重量部に、平均粒子径1.0μmのアルミナ上に
銅めっきを0.2μmの厚さで施した粉体7重量部を分
散し、更に脱塩水で樹脂と粉体の混合物が15wt%に
なるように希釈した電着塗料中で、絶縁膜4の形成条件
と同一条件下で、絶縁膜4の周囲に厚さ17μmの導電
膜3を形成した。 [00711最後に、基板を水洗し、その後、97℃±
1℃のオーブンに基板を入れて150分間加熱処理して
本発明の回路基板を得た。 [0072] この回路基板の物性(付着性、耐酸性、
耐アルカリ性、燃焼性)及び電磁波シールド効果を実施
例1と同様の方法で測定した。その結果、実施例1と同
様の良好な効果が得られた。 [0073]また、実施例1と同様にして基板の断面を
観察したところ、各膜とも均一の厚みに形成されていた
。 [0074]実施例4 0.8mm厚のガラスエポキシ樹脂基板上に実施例1と
同様にして銅パターン回路を形成した。 [0075]その後、脱塩水を用いてアルキッド系樹脂
(商品名TF 121、神東塗料(株)社製)を濃度1
5tw%に希釈した電着塗料を用いてpH8,5,浴温
25℃の条件下で、基板を陽極として陰極にステンレス
板を用いて、150Vの直流電圧を3分間印加し、15
μm厚の絶縁膜4を銅パターン回路の上に形成した。 [0076]次に、別に用意したアルキッド系樹脂(商
品名TF 121.神東塗料(株)社製)100重量部
に、平均粒子径1.0μmのアルミナ上にニッケルめっ
きを0. 1μmの厚さで施した粉体7重量部を分散し
、更に脱塩水で樹脂と粉体の混合物が15wt%になる
ように稀釈した電着塗料中で、絶縁膜4の形成条件と同
一条件下で、絶縁膜4の周囲に厚さ17μmの導電膜3
を形成した。 [0077]さらに、絶縁膜4と同じ電着塗料を用いて
、絶縁膜4の形成条件と同一条件で導電膜3の周囲に厚
さ15μm厚の絶縁膜5を形成した。 [0078]最後に基板を水洗し、その後、97℃±1
℃のオーブンに基板を入れて150分間加熱処理して本
発明の回路基板を得た。 [0079] この回路基板の物性(付着性、耐酸性、
耐アルカリ性、燃焼性)、絶縁抵抗、体積固有抵抗、及
び電磁波シールドを実施例1と同様の方法で測定した。 その結果、実施例1と同様の良好な効果が得られた。 [00801また、実施例1と同様にして基板の断面を
観察したところ、各膜とも均一の厚みに形成されていた
。 [0081] 実施例5 0.6mm厚のガラスエポキシ樹脂基板上に実施例1と
同様にして銅パターン回路及び絶縁膜4を形成した。 [0082]次に、別に用意したアクリル・メラミン系
樹脂(商品名ハニブライトCL−1、ハニー化成社製)
100重量部に、平均粒子径0.03μmの銅粉体10
重量部を分散し、更に脱塩水で樹脂と粉体の混合物が1
5wt%になるように稀釈した電着塗料中で、絶縁膜4
の形成条件と同一条件下で、絶縁膜4の周囲に厚さ17
μmの導電膜3を形成した。 [0083]さらに、絶縁膜4と同じ電着塗料を用いて
、絶縁膜4の形成条件と同一条件で導電膜3の周囲に厚
さ15μm厚の絶縁膜5を形成した。 [0084]最後に、基板を水洗し、その後、97℃±
1℃のオーブンに基板を入れて150分間加熱処理して
本発明の回路基板を得た。 [0085] この回路基板の物性(付着性、耐酸性、
耐アルカリ性、燃焼性)、絶縁抵抗、体積固有抵抗及び
電磁波シールドを実施例1と同様の方法で測定した。そ
の結果、実施例1と同様の良好な効果が得られた。 [0086]また、実施例1と同様にして基板の断面を
観察したところ、各膜とも均一の厚みに形成されていた
。 [0087] 実施例6 0.6mm厚のガラスエポキシ樹脂基板上に実施例1と
同様にして銅パターン回路及び絶縁膜4を形成した。 [0088]次に、別に用意したアクリル・メラミン系
樹脂(商品名ハニブライトCL−1、ハニー化成社製)
100重量部に、平均粒子径0.02μmの銅粉体10
重量部を分散し、更に脱塩水で樹脂と粉体の混合物が1
5wt%になるように稀釈した電着塗料中で、絶縁膜4
の形成条件と同一条件下で、絶縁膜4の周囲に厚さ15
μmの導電膜3を形成した。 [0089]最後に、基板を水洗し、その後、97℃±
1℃のオーブンに基板を入れて150分間加熱処理して
本発明の回路基板を得た。 [00901この回路基板の物性(付着性、耐酸性、耐
アルカリ性、燃焼性)及び電磁波シールド効果を実施例
1と同様の方法で測定した。その結果、実施例1と同様
の良好な効果が得られた。 [0091]また、実施例1と同様にして基板の断面を
観察したところ、各膜とも均一の厚みに形成されていた
。 [0092] 実施例7 0.6mm厚のガラスエポキシ樹脂基板上に実施例1と
同様にして銅パターン回路及び絶縁膜4を形成した。 [0093]その後、脱塩水を用いてアルキッド系樹脂
(商品名TF 121、神東塗料(株)社製)を濃度1
5tw%に稀釈した電着塗料を用いてpH8,5,浴温
25℃の条件下で、基板を陽極として陰極にステンレス
板を用いて、150Vの直流電圧を3分間印加し、15
μm厚の絶縁膜4を銅パターン回路の上に形成した。 [00941次に、別に用意したアルキッド系樹脂(商
品名TF 121、神東塗料(株)社製)100重量部
に、平均粒子径0.03μmのニッケル粉体15重量部
を分散し、更に脱塩水で樹脂と粉体の混合物が15wt
%になるように稀釈した電着塗料中で、絶縁膜4の形成
条件と同一条件下で、絶縁膜4の周囲に厚さ20μmの
導電膜3を形成した。 [0095]さらに、絶縁膜4と同じ電着塗料を用いて
、絶縁膜4の形成条件と同一条件で導電膜3の周囲に厚
さ15μm厚の絶縁膜5を形成した。 [0096]最後に基板を水洗し、その後、97℃±1
℃のオーブンに基板を入れて150分間加熱処理して本
発明の回路基板を得た。 [0097] この回路基板の物性(付着性、耐酸性、
耐アルカリ性、燃焼性)、絶縁抵抗、体積固有抵抗、及
び電磁波シールドを実施例1と同様の方法で測定した。 その結果、実施例1と同様の良好な効果が得られた。 [0098]また、実施例1と同様にして基板の断面を
観察したところ、各膜とも均一の厚みに形成されていた
。 [0099] 実施例8 実施例1で用いたニッケルめっきアルミナ粉体15重電
部を、ニッケルめっきアルミナ粉体7重量部と銅粉体5
重量部の混合物にかえた以外は、実施例1と同様にして
本発明の回路基板を作成した。ニッケルめっきアルミナ
粉体のめっき厚みは0. 2μmであった。アルミナ粉
体の平均粒子径は1.2μmであった。銅粉体の平均粒
子径は0.03μmであった。 [01001この回路基板の物性(付着性、耐酸性、耐
アルカリ性、燃焼性)、絶縁抵抗、体積固有抵抗、及び
電磁波シールドを実施例1と同様の方法で測定した。そ
の結果、実施例1と同様の良好な効果が得られた。 [01011また、実施例1と同様にして基板の断面を
観察したところ、各膜とも均一の厚みに形成されていた
。 [0102]実施例9 実施例6で用いた銅粉体10重量部を、ニッケルめっき
アルミナ粉体5重量部と銅粉体10重量部の混合物にか
えた以外は、実施例6と同様にして本発明の回路基板を
作成した。、ニッケルめっきアルミナ粉体のめっき厚み
は0.2μmであった。アルミナ粉体の平均粒子径は1
.0μmであった。銅粉体の平均粒子径は0.02μm
であった。 [0103] この回路基板の物性(付着性、耐酸性、
耐アルカリ性、燃焼性)及び電磁波シールド効果を実施
例1と同様の方法で測定した。その結果、実施例1と同
様の良好な効果が得られた。 [0104]また、実施例1と同様にして基板の断面を
観察したところ、各膜とも均一の厚みに形成されていた
。 [0105]実施例10 実施例4で用いたニッケルめっきアルミナ粉体7重量部
を、銅めっきアルミナ粉体7重量部とニッケル粉体5重
量部の混合物にかえた以外は、実施例4と同様にして本
発明の回路基板を作成した。銅めっきアルミナ粉体のめ
っき厚みは0.2μmであった。アルミナ粉体の平均粒
子径は1.0μmであった。ニッケル粉体の平均粒子径
は0.03μmであった。 [0106] この回路基板の物性(付着性、耐酸性、
耐アルカリ性、燃焼性)、絶縁抵抗、体積固有抵抗、及
び電磁波シールドを実施例1と同様の方法で測定した。 その結果、実施例1と同様の良好な効果が得られた。 [0107]また、実施例1と同様にして基板の断面を
観察したところ、各膜とも均一の厚みに形成されていた
。 [0108] 実施例11 0.6mm厚のガラスエポキシ樹脂基板上に実施例1と
同様にして銅パターン回路を形成した。 [0109]その後、アクリル・メラミン系樹脂(商品
名ハニフライトCL−1、ハニー化成社製)中に平均粒
径1.5μmの窒化アルミニウムを樹脂の3重量%分散
ニさせた後、脱塩水で樹脂と粉体の混合物が15重量%
になるように稀釈した電着塗料を用いて、pH8,5、
浴温25℃の条件下で、基板を陽極として、陰極にステ
ンレス板を用いて、150■の直流電圧を3分間印加し
、15μm厚、粉体の共析量25重量%の絶縁膜4を銅
パターン回路の上に形成した。 [01101次に、別に用意したアクリルメラミン系樹
脂(商品名ハニブライトCL−1、ハニー化成社製)1
00重量部に、平均粒子径1.0μmのアルミナ上にニ
ッケルめっきを0.1μmの厚さで施した粉体10重量
部を分散し、更に脱塩水で樹脂と粉体の混合物が15w
t%になるように稀釈した電着塗料中で、絶縁膜4の形
成条件と同一条件下で、絶縁膜4の周囲に厚さ17μm
、粉体の共析量30重量%の導電膜3を形成した。 [01111さらに、絶縁膜4と同じ電着塗料を用いて
、絶縁膜4の形成条件と同じ条件で導電膜3の周囲に厚
さ15μm厚の絶縁膜5を形成した。 [0112]最後に基板を水洗し、その後、97℃±1
℃のオーブンに基板を入れて150分間加熱処理して本
発明の回路基板を得た。 [0113]得られた回路基板の物性(付着性、耐酸性
、耐アルカリ性、燃焼性)、絶縁抵抗、体積固有抵抗、
硬度(鉛筆)及び耐傷性(消ゴム)を測定した。その結
果を下記の表4〜6に示す。 (0114]得られた絶縁膜及び導電膜は、緻密で隣接
する膜に十分に付着しており、耐酸性、耐アルカリ性、
耐燃焼性、硬度及び耐傷性も申し分ないものであった。 [0115]また、回路基板の電磁波シールド効果の測
定を、製品に組込み後、トランスミッションライン法(
ASTM  ES7・83)で行なった。その結果、電
磁波シールド効果は、実施例1と同様に良好なものであ
った。 [01161更に、実施例1と同様にして基板の断面を
観察したところ、各膜とも均一の厚みに形成されていた
。 [0117]
[Table 3] Table [0065] (Note) The specific resistance values in the above table are JIS
This is a value measured using C6481. [0066] Example 2 A circuit board of the present invention was produced in the same manner as in Example 1, except that 15 parts by weight of the nickel-plated alumina powder used in Example 1 was replaced with 10 parts by weight of copper-plated alumina powder. Created. The plating thickness of the copper-plated alumina powder was 0.2 μm. Further, the average particle diameter of the alumina powder was 1.2 μm. [0067] Physical properties of this circuit board (adhesion, acid resistance,
Alkali resistance, combustibility), insulation resistance, volume resistivity, and electromagnetic shielding effect were measured in the same manner as in Example 1. As a result, good effects similar to those of Example 1 were obtained. [0068] Furthermore, when the cross section of the substrate was observed in the same manner as in Example 1, it was found that each film was formed to have a uniform thickness. [0069] Example 3 A copper pattern circuit and an insulating film 4 were formed in the same manner as in Example 1 on a 0.6 mm thick glass epoxy resin substrate. [00701 Next, separately prepared acrylic/melamine resin (trade name Honeybright CL-1, manufactured by Honey Kasei Co., Ltd.)
To 100 parts by weight, 7 parts by weight of powder made of copper plating applied to alumina with an average particle size of 1.0 μm to a thickness of 0.2 μm was dispersed, and the mixture of resin and powder was further reduced to 15 wt% with demineralized water. A conductive film 3 having a thickness of 17 μm was formed around the insulating film 4 under the same conditions as those for forming the insulating film 4 in an electrodeposition paint diluted as follows. [00711 Finally, the substrate was washed with water, and then heated to 97°C±
The substrate was placed in an oven at 1° C. and heat-treated for 150 minutes to obtain a circuit board of the present invention. [0072] Physical properties of this circuit board (adhesion, acid resistance,
The alkali resistance, combustibility) and electromagnetic shielding effect were measured in the same manner as in Example 1. As a result, good effects similar to those of Example 1 were obtained. [0073] Furthermore, when the cross section of the substrate was observed in the same manner as in Example 1, it was found that each film had a uniform thickness. [0074] Example 4 A copper pattern circuit was formed on a 0.8 mm thick glass epoxy resin substrate in the same manner as in Example 1. [0075] After that, alkyd resin (trade name TF 121, manufactured by Shinto Toyo Co., Ltd.) was added to a concentration of 1 using demineralized water.
Using an electrodeposition paint diluted to 5 tw%, under conditions of pH 8.5 and bath temperature of 25°C, a DC voltage of 150 V was applied for 3 minutes using the substrate as an anode and a stainless steel plate as a cathode.
A μm thick insulating film 4 was formed on the copper pattern circuit. [0076]Next, 100 parts by weight of a separately prepared alkyd resin (trade name TF 121, manufactured by Shinto Paint Co., Ltd.) was coated with 0.0% nickel plating on alumina having an average particle size of 1.0 μm. 7 parts by weight of the powder applied to a thickness of 1 μm was dispersed in an electrodeposition paint that was further diluted with demineralized water so that the mixture of resin and powder was 15 wt%, under the same conditions as those for forming the insulating film 4. Below, a conductive film 3 with a thickness of 17 μm is placed around the insulating film 4.
was formed. [0077] Further, an insulating film 5 having a thickness of 15 μm was formed around the conductive film 3 using the same electrodeposition paint as the insulating film 4 and under the same conditions as those for forming the insulating film 4. [0078] Finally, the substrate is washed with water, and then heated to 97°C ± 1
The circuit board of the present invention was obtained by placing the board in an oven at .degree. C. and heating it for 150 minutes. [0079] Physical properties of this circuit board (adhesion, acid resistance,
Alkali resistance, combustibility), insulation resistance, volume resistivity, and electromagnetic shielding were measured in the same manner as in Example 1. As a result, good effects similar to those of Example 1 were obtained. [00801 Furthermore, when the cross section of the substrate was observed in the same manner as in Example 1, it was found that each film was formed to have a uniform thickness. [0081] Example 5 A copper pattern circuit and an insulating film 4 were formed in the same manner as in Example 1 on a 0.6 mm thick glass epoxy resin substrate. [0082] Next, separately prepared acrylic/melamine resin (trade name Honeybright CL-1, manufactured by Honey Kasei Co., Ltd.)
100 parts by weight of copper powder with an average particle size of 0.03 μm
Disperse the weight parts and further add demineralized water to make a mixture of resin and powder.
Insulating film 4 in an electrodeposition paint diluted to 5 wt%.
A thickness of 17 mm was formed around the insulating film 4 under the same conditions as the formation conditions of
A conductive film 3 having a thickness of μm was formed. [0083] Furthermore, an insulating film 5 having a thickness of 15 μm was formed around the conductive film 3 using the same electrodeposition paint as the insulating film 4 and under the same conditions as those for forming the insulating film 4. [0084] Finally, the substrate is washed with water, and then heated to 97°C±
The substrate was placed in an oven at 1° C. and heat-treated for 150 minutes to obtain a circuit board of the present invention. [0085] Physical properties of this circuit board (adhesion, acid resistance,
Alkali resistance, combustibility), insulation resistance, volume resistivity, and electromagnetic shielding were measured in the same manner as in Example 1. As a result, good effects similar to those of Example 1 were obtained. [0086] Furthermore, when the cross section of the substrate was observed in the same manner as in Example 1, it was found that each film was formed to have a uniform thickness. [0087] Example 6 A copper pattern circuit and an insulating film 4 were formed in the same manner as in Example 1 on a 0.6 mm thick glass epoxy resin substrate. [0088] Next, separately prepared acrylic/melamine resin (trade name Honeybright CL-1, manufactured by Honey Kasei Co., Ltd.)
100 parts by weight of copper powder with an average particle size of 0.02 μm
Disperse the weight parts and further add demineralized water to make a mixture of resin and powder.
Insulating film 4 in an electrodeposition paint diluted to 5 wt%.
A thickness of 15 mm was formed around the insulating film 4 under the same conditions as the formation conditions of
A conductive film 3 having a thickness of μm was formed. [0089] Finally, the substrate is washed with water, and then heated to 97°C±
The substrate was placed in an oven at 1° C. and heat-treated for 150 minutes to obtain a circuit board of the present invention. [00901 The physical properties (adhesion, acid resistance, alkali resistance, combustibility) and electromagnetic shielding effect of this circuit board were measured in the same manner as in Example 1. As a result, good effects similar to those of Example 1 were obtained. [0091] Furthermore, when the cross section of the substrate was observed in the same manner as in Example 1, it was found that each film had a uniform thickness. [0092] Example 7 A copper pattern circuit and an insulating film 4 were formed in the same manner as in Example 1 on a 0.6 mm thick glass epoxy resin substrate. [0093] After that, alkyd resin (trade name TF 121, manufactured by Shinto Toyo Co., Ltd.) was added to a concentration of 1 using demineralized water.
Using an electrodeposition paint diluted to 5 tw%, under conditions of pH 8.5 and bath temperature of 25°C, a DC voltage of 150 V was applied for 3 minutes using the substrate as an anode and a stainless steel plate as a cathode.
A μm thick insulating film 4 was formed on the copper pattern circuit. [00941]Next, 15 parts by weight of nickel powder with an average particle size of 0.03 μm was dispersed in 100 parts by weight of an alkyd resin (trade name TF 121, manufactured by Shinto Paint Co., Ltd.) prepared separately, and further desorbed. 15wt of resin and powder mixture in salt water
A conductive film 3 having a thickness of 20 μm was formed around the insulating film 4 under the same conditions as those for forming the insulating film 4 in an electrodeposition paint diluted to a concentration of 20 μm. [0095] Further, an insulating film 5 having a thickness of 15 μm was formed around the conductive film 3 using the same electrodeposition paint as the insulating film 4 and under the same conditions as those for forming the insulating film 4. [0096] Finally, the substrate was washed with water, and then heated to 97°C ± 1
The circuit board of the present invention was obtained by placing the board in an oven at .degree. C. and heating it for 150 minutes. [0097] Physical properties of this circuit board (adhesion, acid resistance,
Alkali resistance, combustibility), insulation resistance, volume resistivity, and electromagnetic shielding were measured in the same manner as in Example 1. As a result, good effects similar to those of Example 1 were obtained. [0098] Furthermore, when the cross section of the substrate was observed in the same manner as in Example 1, it was found that each film had a uniform thickness. [0099] Example 8 The 15 parts by weight of the nickel-plated alumina powder used in Example 1 was replaced with 7 parts by weight of the nickel-plated alumina powder and 5 parts by weight of the copper powder.
A circuit board of the present invention was produced in the same manner as in Example 1, except that the weight part of the mixture was changed. The plating thickness of nickel-plated alumina powder is 0. It was 2 μm. The average particle diameter of the alumina powder was 1.2 μm. The average particle diameter of the copper powder was 0.03 μm. [01001 The physical properties (adhesion, acid resistance, alkali resistance, combustibility), insulation resistance, volume resistivity, and electromagnetic shielding of this circuit board were measured in the same manner as in Example 1. As a result, good effects similar to those of Example 1 were obtained. [01011 Furthermore, when the cross section of the substrate was observed in the same manner as in Example 1, it was found that each film was formed to have a uniform thickness. [0102] Example 9 The same procedure as Example 6 was carried out except that 10 parts by weight of the copper powder used in Example 6 was replaced with a mixture of 5 parts by weight of nickel-plated alumina powder and 10 parts by weight of copper powder. A circuit board of the present invention was created. The plating thickness of the nickel-plated alumina powder was 0.2 μm. The average particle size of alumina powder is 1
.. It was 0 μm. The average particle size of copper powder is 0.02 μm
Met. [0103] Physical properties of this circuit board (adhesion, acid resistance,
The alkali resistance, combustibility) and electromagnetic shielding effect were measured in the same manner as in Example 1. As a result, good effects similar to those of Example 1 were obtained. [0104] Furthermore, when the cross section of the substrate was observed in the same manner as in Example 1, it was found that each film had a uniform thickness. [0105] Example 10 Same as Example 4 except that 7 parts by weight of nickel-plated alumina powder used in Example 4 was replaced with a mixture of 7 parts by weight of copper-plated alumina powder and 5 parts by weight of nickel powder. A circuit board according to the present invention was prepared. The plating thickness of the copper-plated alumina powder was 0.2 μm. The average particle diameter of the alumina powder was 1.0 μm. The average particle size of the nickel powder was 0.03 μm. [0106] Physical properties of this circuit board (adhesion, acid resistance,
Alkali resistance, combustibility), insulation resistance, volume resistivity, and electromagnetic shielding were measured in the same manner as in Example 1. As a result, good effects similar to those of Example 1 were obtained. [0107] Furthermore, when the cross section of the substrate was observed in the same manner as in Example 1, it was found that each film had a uniform thickness. [0108] Example 11 A copper pattern circuit was formed on a 0.6 mm thick glass epoxy resin substrate in the same manner as in Example 1. [0109] After that, aluminum nitride with an average particle size of 1.5 μm was dispersed in an acrylic/melamine resin (trade name: Honeyflight CL-1, manufactured by Honey Kasei Co., Ltd.) at 3% by weight of the resin, and then mixed with demineralized water. 15% by weight mixture of resin and powder
Using an electrodeposition paint diluted to give a pH of 8.5,
At a bath temperature of 25° C., a DC voltage of 150 μm was applied for 3 minutes using the substrate as an anode and a stainless steel plate as a cathode to form an insulating film 4 with a thickness of 15 μm and a powder eutectoid content of 25% by weight. Formed on top of a copper pattern circuit. [01101 Next, separately prepared acrylic melamine resin (trade name Honeybrite CL-1, manufactured by Honey Kasei Co., Ltd.) 1
Disperse 10 parts by weight of powder made of alumina with an average particle size of 1.0 μm and nickel plating to a thickness of 0.1 μm in 0.00 parts by weight, and further add 15 w of the resin and powder mixture with demineralized water.
In an electrodeposition paint diluted to 100% by weight, a thickness of 17 μm was applied around the insulating film 4 under the same conditions as those for forming the insulating film 4.
A conductive film 3 having a powder eutectoid content of 30% by weight was formed. [01111] Further, an insulating film 5 having a thickness of 15 μm was formed around the conductive film 3 using the same electrodeposition paint as the insulating film 4 and under the same conditions as those for forming the insulating film 4. [0112] Finally, the substrate was washed with water, and then heated to 97°C ± 1
The circuit board of the present invention was obtained by placing the board in an oven at .degree. C. and heating it for 150 minutes. [0113] Physical properties of the obtained circuit board (adhesion, acid resistance, alkali resistance, combustibility), insulation resistance, volume resistivity,
Hardness (pencil) and scratch resistance (eraser) were measured. The results are shown in Tables 4 to 6 below. (0114) The obtained insulating film and conductive film are dense and adhere well to adjacent films, and have acid resistance, alkali resistance,
The flame resistance, hardness and scratch resistance were also satisfactory. [0115] In addition, the transmission line method (
ASTM ES7.83). As a result, the electromagnetic shielding effect was as good as in Example 1. [01161 Furthermore, when the cross section of the substrate was observed in the same manner as in Example 1, it was found that each film had a uniform thickness. [0117]

【表4】 表 [0118]  (注)上記表の試験方法は下記のとお
りである。 [0119] (1)付着性・・・JIS  DO202(2)耐酸性
−10Vol  %H2S 04で常温、20分間浸漬
処理 (3)耐アルカリ性・・・5wt%NaOHで常温、3
0分間浸漬処理 (4)耐燃性・・・UL94試験法 (5)硬度・・・JIS  K5400(6)耐傷性・
・・絶縁塗膜を消しゴムで擦したときの下地の露出に要
した回数 [01201
[Table 4] Table [0118] (Note) The test method in the above table is as follows. [0119] (1) Adhesion... JIS DO202 (2) Acid resistance - Immersion treatment in 10 Vol% H2S 04 at room temperature for 20 minutes (3) Alkali resistance... 5 wt% NaOH at room temperature, 3
0 minute immersion treatment (4) Flame resistance...UL94 test method (5) Hardness...JIS K5400 (6) Scratch resistance
・・Number of times required to expose the underlying layer when the insulating coating is rubbed with an eraser [01201

【表5] 表 (01211(注)上記表の絶縁抵抗は、JIS  Z
3197は準拠し、くし型電極G−10、基材吸湿処理
は55℃、98%RH,DC500Vで1分値を示す。 抵抗値の測定はYHP社製、超絶縁抵抗測定器HP43
29Aを用いた。 [0122] 【表6】 表 [0123]  (注)上記表の固有抵抗値は、JIS
  C6481により測定した値である。 [0124]実施例12 0.6mm厚のガラスエポキシ樹脂基板上に、実施例1
と同様にして銅パターン回路を形成した。 [0125]その後、実施例11の絶縁膜4に使用した
窒化アルミニウム粉体3重量%を、平均粒子径1.0μ
mのアルミナ粉体5重量%にかえた以外は実施例11と
同様にして絶縁膜4を形成した。 [0126]次に、別に用意したアクリルメラミン系樹
脂(商品名ハニブライトCL−1、ハニー化成社製)1
00重量部に、平均粒子径1.0μmのアルミナ上にニ
ッケルめっきを0. 3μmの厚さで施した粉体15重
量部を分散し、更に脱塩水で樹脂と粉体の混合物が15
wt%になるように稀釈した電着塗料中で、絶縁膜4の
形成条件と同一条件下で、絶縁膜4の周囲に厚さ15μ
m、粉体の共析量27重量%の導電膜3を形成した。 [0127]さらに絶縁膜4と同じ電着塗料を用いて、
絶縁膜4の形成条件と同じ条件で導電膜3の周囲に厚さ
15μm厚の絶縁膜5を形成した。 [0128]最後に基板を水洗し、その後、97℃±1
℃のオーブンに基板を入れて150分間加熱処理して本
発明の回路基板を得た。 [0129] この回路基板の物性(付着性、耐酸性、
耐アルカリ性、燃焼性、硬度及び耐傷性)、絶縁抵抗、
体積固有抵抗、及び電磁波シールドを実施例11と同様
の方法で測定した。その結果、実施例11と同様の良好
な効果が得られた。 [01301また、実施例11と同様にして基板の断面
を観察したところ、各膜とも均一の厚みに形成されてい
た。 [0131]実施例13 0.6mm厚のガラスエポキシ樹脂基板上に実施例1と
同様にして銅パターン回路を形成した。 [0132]その後、アルキッド系樹脂(商品名TFI
21、神東塗料(株)社製)中に平均粒径2.0μmの
炭化ケイ素を樹脂の1重量%分散させた後、脱塩水で樹
脂と粉体の混合物が15重量%になるように稀釈した電
着塗料を用いて、pH8,5、浴温25℃の条件下で、
基板を陽極として、陰極にステンレス板を用いて、15
0■の直流電圧を、3分間印加し、15μm厚、粉体の
共析量25重量%の絶縁膜4を銅パターン回路の上に形
成した。 [01331次に、別に用意したアルキッド系樹脂(商
品名TF 121、神東塗料(株)社製)100重量部
に、平均粒子径1.0μmのアルミナ上に銅めっきを0
.2μmの厚さで施した粉体10重量部を分散し、更に
脱塩水で樹脂と粉体の混合物が15wt%になるように
稀釈した電着塗料中で、絶縁膜4の形成条件と同一条件
下で、絶縁膜4の周囲に厚さ17μm、粉体の共析量3
0重量%の導電膜3を形成した。 [0134]さらに、絶縁膜4と同じ電着塗料を用いて
、絶縁膜4の形成条件と同じ条件で導電膜3の周囲に厚
さ15μm厚の絶縁膜5を形成した。 [0135]最後に基板を水洗し、その後、97℃±1
℃のオーブンに基板を入れて150分間加熱処理して本
発明の回路基板を得た。 [0136] この回路基板の物性(付着性、耐酸性、
耐アルカリ性、燃焼性、硬度及び耐傷性)、絶縁抵抗、
体積固有抵抗、及び電磁波シールドを実施例11と同様
の方法で測定した。その結果、実施例11と同様の良好
な効果が得られた。 [0137]また、実施例11と同様にして基板の断面
を観察したところ、各膜とも均一の厚みに形成されてい
た。 [0138]実施例14 0.6mm厚のガラスエポキシ樹脂基板上に実施例1と
同様にして銅パターン回路を形成した。 [0139]その後、実施例11の絶縁膜4に使用した
窒化アルミニウム粉体3重量%を、平均粒子径5.0μ
mのアルミナ粉体1.5軍事%にかえた以外は実施例1
1と同様にして絶縁膜4を形成した。 [01401次に、実施例11と同様の導電膜5を実施
例11と同様にして形成した。 [01411最後に、基板を水洗いし、その後97℃±
1℃のオーブンに基板を入れて150分間加熱処理して
本発明の回路基板を得た。 [0142] この回路基板の物性(付着性、耐酸性、
耐アルカリ性、燃焼性、硬度及び耐傷性)及び電磁波シ
ールド効果を実施例11と同様の方法で測定した。その
結果、実施例11と同様の良好な効果が得られた。 [0143]また、実施例11と同様にして基板の断面
を観察したところ、各膜とも均一の厚みに形成されてい
た。 [0144]実施例15 0.6mm厚のガラスエポキシ樹脂基板上に実施例1と
同様にして銅パターン回路及び絶縁膜4を形成した。 [0145]その後、実施例5と同様の導電膜3を実施
例5と同様にして形成した。 [0146]更に、実施例11と同様の絶縁膜5を実施
例11と同様にして形成し、最後は実施例11と同様に
して膜の硬化を行ない本発明の回路基板を作成した。 [0147] この回路基板の物性(付着性、耐酸性、
耐アルカリ性、燃焼性、硬度及び耐傷性)、絶縁抵抗、
体積固有抵抗、及び電磁波シールドを実施例11同様の
方法で測定した。その結果、実施例11と同様の良好な
効果が得られた。 [0148]また、実施例11と同様にして基板の断面
を観察したところ、各膜とも均一の厚みに形成されてい
た。 [0149]実施例16 実施例12の導電膜3で用いたニッケルめっきアルミナ
粉体10重量部を、平均粒子径0.02μmの銀粉体5
重量部にかえた以外は、実施例12と同様にして本発明
の回路基板を作成した。 [0150] この回路基板の物性(付着性、耐酸性、
耐アルカリ性、燃焼性、硬度及び耐傷性)、絶縁抵抗、
体積固有抵抗、及び電磁波シールドを実施例11と同様
の方法で測定した。その結果、実施例11と同様の良好
な効果が得られた。 [01511また、実施例11と同様にして基板の断面
を観察したところ、各膜とも均一の厚みに形成されてい
た。 [0152]実施例17 0.6mm厚のガラスエポキシ樹脂基板上に実施例1と
同様にして銅パターン回路を形成した。 [0153]その後、絶縁膜4.導電膜3及び絶縁膜5
を、それぞれ実施例11.実施例8及び実施例11と同
様に形成し、本発明の回路基板を作成した。 [0154] この回路基板の物性(付着性、耐酸性、
耐アルカリ性、燃焼性、硬度及び耐傷性)、絶縁抵抗、
体積固有抵抗、及び電磁波シールドを実施例11と同様
の方法で測定した。その結果、実施例11と同様の良好
な効果が得られた。 [0155]また、実施例11と同様にして基板の断面
を観察したところ、各膜とも均一の厚みに形成されてい
た。 [0156]
[Table 5] Table (01211 (Note) The insulation resistance in the above table is JIS Z
3197 is compliant, and the comb-shaped electrode G-10 and the substrate moisture absorption treatment show a 1 minute value at 55° C., 98% RH, and DC 500V. The resistance value was measured using a super insulation resistance measuring device HP43 manufactured by YHP.
29A was used. [0122] [Table 6] Table [0123] (Note) The specific resistance values in the above table are based on JIS
This is a value measured using C6481. [0124] Example 12 Example 1 was prepared on a 0.6 mm thick glass epoxy resin substrate.
A copper pattern circuit was formed in the same manner as above. [0125] Thereafter, 3% by weight of the aluminum nitride powder used for the insulating film 4 of Example 11 was mixed with an average particle size of 1.0 μm.
The insulating film 4 was formed in the same manner as in Example 11 except that the alumina powder was changed to 5% by weight. [0126] Next, separately prepared acrylic melamine resin (trade name Honeybright CL-1, manufactured by Honey Kasei Co., Ltd.) 1
0.00 parts by weight of nickel plating on alumina with an average particle size of 1.0 μm. Disperse 15 parts by weight of the powder applied to a thickness of 3 μm, and further add 15 parts by weight of the resin and powder mixture with demineralized water.
In an electrodeposition paint diluted to %wt, a thickness of 15 μm was applied around the insulating film 4 under the same conditions as those for forming the insulating film 4.
A conductive film 3 having a powder eutectoid content of 27% by weight was formed. [0127] Furthermore, using the same electrodeposition paint as the insulating film 4,
An insulating film 5 having a thickness of 15 μm was formed around the conductive film 3 under the same conditions as those for forming the insulating film 4. [0128] Finally, the substrate was washed with water, and then heated to 97°C ± 1
The circuit board of the present invention was obtained by placing the board in an oven at .degree. C. and heating it for 150 minutes. [0129] Physical properties of this circuit board (adhesion, acid resistance,
Alkali resistance, flammability, hardness and scratch resistance), insulation resistance,
Volume resistivity and electromagnetic shielding were measured in the same manner as in Example 11. As a result, good effects similar to those of Example 11 were obtained. [01301 Furthermore, when the cross section of the substrate was observed in the same manner as in Example 11, it was found that each film had a uniform thickness. [0131] Example 13 A copper pattern circuit was formed on a 0.6 mm thick glass epoxy resin substrate in the same manner as in Example 1. [0132] After that, alkyd resin (trade name TFI
21. After dispersing silicon carbide with an average particle size of 2.0 μm at 1% by weight of the resin in Shinto Toyo Co., Ltd.), the mixture of resin and powder was adjusted to 15% by weight with demineralized water. Using diluted electrodeposition paint, under conditions of pH 8.5 and bath temperature 25°C,
Using the substrate as an anode and a stainless steel plate as a cathode, 15
A DC voltage of 0 cm was applied for 3 minutes to form an insulating film 4 having a thickness of 15 μm and a powder eutectoid content of 25% by weight on the copper pattern circuit. [01331] Next, 100 parts by weight of an alkyd resin (trade name TF 121, manufactured by Shinto Paint Co., Ltd.) prepared separately was coated with copper plating on alumina with an average particle size of 1.0 μm.
.. 10 parts by weight of the powder applied to a thickness of 2 μm was dispersed in an electrodeposition paint that was further diluted with demineralized water so that the mixture of resin and powder was 15 wt% under the same conditions as those for forming the insulating film 4. Below, the thickness is 17 μm around the insulating film 4, and the eutectoid amount of powder is 3.
A conductive film 3 containing 0% by weight was formed. [0134] Further, an insulating film 5 having a thickness of 15 μm was formed around the conductive film 3 using the same electrodeposition paint as the insulating film 4 and under the same conditions as those for forming the insulating film 4. [0135] Finally, the substrate was washed with water, and then heated to 97°C ± 1
The circuit board of the present invention was obtained by placing the board in an oven at .degree. C. and heating it for 150 minutes. [0136] Physical properties of this circuit board (adhesion, acid resistance,
Alkali resistance, flammability, hardness and scratch resistance), insulation resistance,
Volume resistivity and electromagnetic shielding were measured in the same manner as in Example 11. As a result, good effects similar to those of Example 11 were obtained. [0137] Furthermore, when the cross section of the substrate was observed in the same manner as in Example 11, it was found that each film had a uniform thickness. [0138] Example 14 A copper pattern circuit was formed on a 0.6 mm thick glass epoxy resin substrate in the same manner as in Example 1. [0139] Thereafter, 3% by weight of the aluminum nitride powder used for the insulating film 4 of Example 11 was mixed with an average particle size of 5.0 μm.
Example 1 except that the alumina powder was changed to 1.5% military
An insulating film 4 was formed in the same manner as in Example 1. [01401 Next, the same conductive film 5 as in Example 11 was formed in the same manner as in Example 11. [01411Finally, the substrate was washed with water and then heated to 97℃±
The substrate was placed in an oven at 1° C. and heat-treated for 150 minutes to obtain a circuit board of the present invention. [0142] Physical properties of this circuit board (adhesion, acid resistance,
Alkali resistance, combustibility, hardness, and scratch resistance) and electromagnetic shielding effect were measured in the same manner as in Example 11. As a result, good effects similar to those of Example 11 were obtained. [0143] Furthermore, when the cross section of the substrate was observed in the same manner as in Example 11, it was found that each film was formed to have a uniform thickness. [0144] Example 15 A copper pattern circuit and an insulating film 4 were formed in the same manner as in Example 1 on a 0.6 mm thick glass epoxy resin substrate. [0145] Thereafter, the same conductive film 3 as in Example 5 was formed in the same manner as in Example 5. [0146] Further, an insulating film 5 similar to that in Example 11 was formed in the same manner as in Example 11, and finally the film was cured in the same manner as in Example 11 to produce a circuit board of the present invention. [0147] Physical properties of this circuit board (adhesion, acid resistance,
Alkali resistance, flammability, hardness and scratch resistance), insulation resistance,
Volume resistivity and electromagnetic shielding were measured in the same manner as in Example 11. As a result, good effects similar to those of Example 11 were obtained. [0148] Furthermore, when the cross section of the substrate was observed in the same manner as in Example 11, it was found that each film had a uniform thickness. [0149] Example 16 10 parts by weight of the nickel-plated alumina powder used in the conductive film 3 of Example 12 was mixed with silver powder 5 with an average particle diameter of 0.02 μm.
A circuit board of the present invention was produced in the same manner as in Example 12, except that the parts by weight were changed. [0150] Physical properties of this circuit board (adhesion, acid resistance,
Alkali resistance, flammability, hardness and scratch resistance), insulation resistance,
Volume resistivity and electromagnetic shielding were measured in the same manner as in Example 11. As a result, good effects similar to those of Example 11 were obtained. [01511 Furthermore, when the cross section of the substrate was observed in the same manner as in Example 11, it was found that each film was formed to have a uniform thickness. [0152] Example 17 A copper pattern circuit was formed in the same manner as in Example 1 on a 0.6 mm thick glass epoxy resin substrate. [0153] After that, insulating film 4. Conductive film 3 and insulating film 5
and Example 11., respectively. A circuit board of the present invention was produced in the same manner as in Example 8 and Example 11. [0154] Physical properties of this circuit board (adhesion, acid resistance,
Alkali resistance, flammability, hardness and scratch resistance), insulation resistance,
Volume resistivity and electromagnetic shielding were measured in the same manner as in Example 11. As a result, good effects similar to those of Example 11 were obtained. [0155] Furthermore, when the cross section of the substrate was observed in the same manner as in Example 11, it was found that each film had a uniform thickness. [0156]

【発明の効果】以上説明したように、本発明によれば回
路基板の絶縁膜、導電膜を緻密で均一な厚みの薄膜とす
ることができる。また、絶縁不良がなく、優れた電磁波
シールド効果を有する回路基板を得ることができる。
As described above, according to the present invention, the insulating film and conductive film of a circuit board can be made into thin films with a dense and uniform thickness. Further, a circuit board having no insulation defects and excellent electromagnetic shielding effect can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明による回路基板の一例を示す断面図であ
る。
FIG. 1 is a sectional view showing an example of a circuit board according to the present invention.

【図2】本発明による回路基板のシールド効果を示すグ
ラフの一例である。
FIG. 2 is an example of a graph showing the shielding effect of the circuit board according to the present invention.

【符号の説明】 1 基板 2 導線 3 導電膜 4 絶縁膜 5 絶縁膜[Explanation of symbols] 1 Board 2 Conductor wire 3 Conductive film 4 Insulating film 5 Insulating film

【図1】[Figure 1]

【図2】[Figure 2]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 基板上に設けられた導線と、前記導線を
被覆する第1の絶縁膜と、前記第1の絶縁膜を被覆する
導電膜とを有し、前記第1の絶縁膜及び前記導電膜のう
ち少なくとも1つの膜を電着塗装法により形成したこと
を特徴とする回路基板。
1. A conductive wire provided on a substrate, a first insulating film that covers the conductive wire, and a conductive film that covers the first insulating film, the first insulating film and the A circuit board characterized in that at least one of the conductive films is formed by an electrodeposition coating method.
【請求項2】 基板上に導線からなる回路パターンを形
成する第1の工程と、前記回路パターンに第1の絶縁膜
を被覆する第2の工程と、前記第1の絶縁膜に導電膜を
被覆する第3の工程とを有し、前記第2の工程及び前記
第3の工程のうち少なくとも1つの工程に、電着塗料中
に前記基板を浸漬して前記導線を電極とした電着塗装法
を用いることを特徴とする回路基板の製造方法。
2. A first step of forming a circuit pattern made of conductive wires on a substrate, a second step of coating the circuit pattern with a first insulating film, and a second step of coating the first insulating film with a conductive film. and a third step of coating, and in at least one of the second step and the third step, the substrate is immersed in an electrodeposition paint and the conductive wire is used as an electrode for electrodeposition coating. A method for manufacturing a circuit board, characterized by using a method.
JP3058817A 1990-03-22 1991-03-22 Circuit board manufacturing method Expired - Fee Related JP2810554B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3058817A JP2810554B2 (en) 1990-03-22 1991-03-22 Circuit board manufacturing method

Applications Claiming Priority (13)

Application Number Priority Date Filing Date Title
JP7514890 1990-03-22
JP7465390 1990-03-23
JP7217790 1990-03-23
JP7420390 1990-03-24
JP2-72177 1990-03-26
JP2-77495 1990-03-26
JP2-77494 1990-03-26
JP7749590 1990-03-26
JP2-74203 1990-03-26
JP2-74653 1990-03-26
JP2-75148 1990-03-26
JP7749490 1990-03-26
JP3058817A JP2810554B2 (en) 1990-03-22 1991-03-22 Circuit board manufacturing method

Publications (2)

Publication Number Publication Date
JPH04211189A true JPH04211189A (en) 1992-08-03
JP2810554B2 JP2810554B2 (en) 1998-10-15

Family

ID=27564959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3058817A Expired - Fee Related JP2810554B2 (en) 1990-03-22 1991-03-22 Circuit board manufacturing method

Country Status (1)

Country Link
JP (1) JP2810554B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001192570A (en) * 1999-11-01 2001-07-17 Jsr Corp Aqueous dispersive liquid for forming conductive layer, conductive layer, electronic part, circuit board and its manufacturing method
JP2008227147A (en) * 2007-03-13 2008-09-25 National Institute Of Advanced Industrial & Technology Conduction line path structure, its production method, and wiring substrate
US7830331B2 (en) 2007-11-29 2010-11-09 Kabushiki Kaisha Toshiba Electronic device
JP2012036314A (en) * 2010-08-09 2012-02-23 Shimizu:Kk Resin composition for electrodeposition coating, water-based electrodeposition coating, coating method, and coated article
JP2012036315A (en) * 2010-08-09 2012-02-23 Shimizu:Kk Colored resin composition for electrodeposition coating, water-based electrodeposition coating, coating method, and coated article
JP2012156443A (en) * 2011-01-28 2012-08-16 Nichia Chem Ind Ltd Method of manufacturing light-emitting device
JP2016096208A (en) * 2014-11-13 2016-05-26 株式会社フジクラ Wiring board and manufacturing method of the same
CN110798966A (en) * 2019-11-19 2020-02-14 江苏上达电子有限公司 Method for implementing novel electromagnetic shielding for circuit board

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101144967B (en) * 2007-06-28 2011-04-06 武汉立胜超滤科技发展有限公司 Electrophoresis coating method and whole set apparatus for pattern transfer of positive electrophoresis coating on printing board

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61138268U (en) * 1985-02-19 1986-08-27
JPS6214800U (en) * 1985-07-10 1987-01-29
JPS643476U (en) * 1987-06-26 1989-01-10
JPS6428994A (en) * 1987-07-24 1989-01-31 Meiko Electronics Co Ltd Manufacture of printed wiring board
JPH0195014U (en) * 1987-12-16 1989-06-22

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61138268U (en) * 1985-02-19 1986-08-27
JPS6214800U (en) * 1985-07-10 1987-01-29
JPS643476U (en) * 1987-06-26 1989-01-10
JPS6428994A (en) * 1987-07-24 1989-01-31 Meiko Electronics Co Ltd Manufacture of printed wiring board
JPH0195014U (en) * 1987-12-16 1989-06-22

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001192570A (en) * 1999-11-01 2001-07-17 Jsr Corp Aqueous dispersive liquid for forming conductive layer, conductive layer, electronic part, circuit board and its manufacturing method
JP2008227147A (en) * 2007-03-13 2008-09-25 National Institute Of Advanced Industrial & Technology Conduction line path structure, its production method, and wiring substrate
US7830331B2 (en) 2007-11-29 2010-11-09 Kabushiki Kaisha Toshiba Electronic device
JP2012036314A (en) * 2010-08-09 2012-02-23 Shimizu:Kk Resin composition for electrodeposition coating, water-based electrodeposition coating, coating method, and coated article
JP2012036315A (en) * 2010-08-09 2012-02-23 Shimizu:Kk Colored resin composition for electrodeposition coating, water-based electrodeposition coating, coating method, and coated article
JP2012156443A (en) * 2011-01-28 2012-08-16 Nichia Chem Ind Ltd Method of manufacturing light-emitting device
JP2016096208A (en) * 2014-11-13 2016-05-26 株式会社フジクラ Wiring board and manufacturing method of the same
CN110798966A (en) * 2019-11-19 2020-02-14 江苏上达电子有限公司 Method for implementing novel electromagnetic shielding for circuit board

Also Published As

Publication number Publication date
JP2810554B2 (en) 1998-10-15

Similar Documents

Publication Publication Date Title
EP0452701B1 (en) Electrically conductive covers, electrically conductive covers of electronic equipment and a method to manufacture electrically conductive covers
KR100339001B1 (en) Metal body with deposition treatment layer and adhesion promoter layer
EP0146152B1 (en) Solderable palladium-nickel coatings
JP5489305B2 (en) Circuit board and conductive film forming method
JPH04211189A (en) Circuit board and its manufacture
US5158657A (en) Circuit substrate and process for its production
US4711822A (en) Metal core printed circuit boards
JP2002531961A (en) Process for depositing a conductive layer on a substrate
JPH0753843B2 (en) Conductive paint that can be soldered
JP2840471B2 (en) Method of manufacturing conductive cover
US5145733A (en) Electro-deposition coated member
WO2018135458A1 (en) Silver-coated silicone rubber particles, conductive paste containing same, and a conductive film production method using conductive paste
TWI321431B (en) Multi-layer circuit assembly and process for preparing the same
CN109104851B (en) Preparation method of electromagnetic shielding film
JP2008088491A (en) Composite plating material and method of manufacturing the same
US5234558A (en) Electrically conductive circuit member, method of manufacturing the same and electrically conductive paste
JP3618441B2 (en) Conductive metal composite powder and manufacturing method thereof
JPH0680894B2 (en) Metal core printed circuit board manufacturing method
JPH04211193A (en) Conductive circuit member and its manufacture, conductive paste, and electronic equipment
JP2012174375A (en) Method for producing conductive coating film and conductive coating film
JPH10134636A (en) Conductive powder, conductive paste, and electric circuit using conductive paste
JP3596563B2 (en) Conductive paste
JPH04218696A (en) Electrodeposition coated member and its production
JP2019173139A (en) Surface treated copper foil and copper-clad laminate
JP3082864B2 (en) Electrodeposition coating member and method of manufacturing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees