JPH04202655A - Method for preventing pollution in thin film forming apparatus and pollution preventing material used therefor - Google Patents
Method for preventing pollution in thin film forming apparatus and pollution preventing material used thereforInfo
- Publication number
- JPH04202655A JPH04202655A JP33004590A JP33004590A JPH04202655A JP H04202655 A JPH04202655 A JP H04202655A JP 33004590 A JP33004590 A JP 33004590A JP 33004590 A JP33004590 A JP 33004590A JP H04202655 A JPH04202655 A JP H04202655A
- Authority
- JP
- Japan
- Prior art keywords
- metal
- thin film
- mesh material
- film forming
- forming apparatus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 54
- 239000000463 material Substances 0.000 title claims abstract description 48
- 238000000034 method Methods 0.000 title claims description 30
- 229910052751 metal Inorganic materials 0.000 claims abstract description 72
- 239000002184 metal Substances 0.000 claims abstract description 72
- 239000010408 film Substances 0.000 claims description 43
- 238000011109 contamination Methods 0.000 claims description 37
- 239000000126 substance Substances 0.000 claims description 19
- 239000002245 particle Substances 0.000 claims description 18
- 238000001947 vapour-phase growth Methods 0.000 claims description 14
- 230000002265 prevention Effects 0.000 claims description 7
- 230000001464 adherent effect Effects 0.000 claims description 5
- 238000005507 spraying Methods 0.000 abstract description 9
- 238000003466 welding Methods 0.000 abstract description 7
- 238000007751 thermal spraying Methods 0.000 abstract description 5
- 239000013618 particulate matter Substances 0.000 abstract 1
- 238000004544 sputter deposition Methods 0.000 description 12
- 239000011888 foil Substances 0.000 description 11
- 239000000758 substrate Substances 0.000 description 8
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 7
- 229910052750 molybdenum Inorganic materials 0.000 description 7
- 239000011733 molybdenum Substances 0.000 description 7
- 229910052782 aluminium Inorganic materials 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000007323 disproportionation reaction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 238000010884 ion-beam technique Methods 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 238000007738 vacuum evaporation Methods 0.000 description 2
- 238000000927 vapour-phase epitaxy Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- LNSPFAOULBTYBI-UHFFFAOYSA-N [O].C#C Chemical group [O].C#C LNSPFAOULBTYBI-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000003779 heat-resistant material Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 238000007750 plasma spraying Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000002966 varnish Substances 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Physical Vapour Deposition (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、スパッタリング装置等の薄膜形成装置におい
で飛散した付着物質による該装置内面及び内部機器の汚
染並びに付着物質の再剥離による薄膜パーティクル汚染
を防止するための汚染防止方法並びにそこで使用される
メツシュ付き金属溶射膜汚染防止材に関するものである
。本発明は、気相成長法による半導体デバイスその他の
品質の向上並びにそのための設備や機器の保守に有益で
ある。Detailed Description of the Invention (Field of Industrial Application) The present invention is directed to the prevention of contamination of the inner surface and internal equipment of a thin film forming apparatus such as a sputtering apparatus due to scattered adhesion substances, and thin film particle contamination due to re-peeling of the adhesion substances. The present invention relates to a method for preventing contamination and a material for preventing contamination of a metal sprayed film with a mesh used therein. INDUSTRIAL APPLICABILITY The present invention is useful for improving the quality of semiconductor devices and other devices by vapor phase growth, and for maintaining equipment and equipment therefor.
(発明の背景)
従来より、集積回路の電極や拡散バリヤ等用の薄膜、磁
気記録媒体用磁性薄膜、液晶表示装置のITO透明透明
膜導膜多くの薄膜の形成に気相成長技術が使用されてい
る。この気相成長技術による薄膜形成技術には、熱分解
法、水素還元法、不均化反応法、プラズマCVD法等の
化学気相成長法、スパッタリング法、真空蒸着法、イオ
ンビーム法、放電重合法その他がある。(Background of the Invention) Conventionally, vapor phase growth technology has been used to form many thin films, such as thin films for electrodes and diffusion barriers in integrated circuits, magnetic thin films for magnetic recording media, and ITO transparent conductive films for liquid crystal display devices. ing. Thin film formation techniques using this vapor phase growth technique include thermal decomposition, hydrogen reduction, disproportionation reaction, chemical vapor deposition such as plasma CVD, sputtering, vacuum evaporation, ion beam method, discharge gravity There are legal and other options.
このような気相成長法による薄膜形成プロセスは大量生
産技術として確立されてはいるが、薄膜形成部以外へ飛
散する気体蒸気により装置内部の内壁或いは装置内の機
器の汚染問題が生じ、更に現在では形成された薄膜上に
「パーティクル」と呼ばれる粗大化した微粒子が堆積す
ると云う問題がクローズアップされている。Although such a thin film formation process using the vapor phase growth method has been established as a mass production technology, there is a problem of contamination of the internal walls of the device or equipment within the device due to gas vapor scattering to areas other than the thin film forming area, and furthermore, In recent years, the problem of coarse particles called "particles" accumulating on the formed thin film has been highlighted.
この「パーティクル」とは、薄膜形成時にクラスター化
した微粒子が堆積したものを云うのであるが、これらは
数μmにまでも太き(なるものが多い。そのため、これ
らが基板上に堆積すると、例えばLSIの場合は配線の
短絡或いは逆に断線を引き起こす等の問題を生じ、不良
率増大の原因となる。こうしたパーティクルは、薄膜形
成法自体に起因するものや被覆装置に起因するもの等種
々の要因があって、その原因究明とその低減のための対
策に各種工夫が為されているのが現状である。These "particles" refer to the accumulation of fine particles that clustered during thin film formation, and these are often as thick as several micrometers. Therefore, when they are deposited on a substrate, for example, In the case of LSIs, problems such as short circuits or disconnections occur in the wiring, which causes an increase in the defect rate.These particles are caused by various factors such as those caused by the thin film formation method itself and those caused by the coating equipment. The current situation is that various efforts are being made to investigate the cause and take measures to reduce it.
上記のような薄膜形成装置に起因するパーティクルとし
ては、装置の内壁(炉壁)や基板周辺の機器類、例えば
シャッター、シールド板等に付着した、散逸した原料蒸
気が付着して生じた薄膜が再剥離し、それが飛散して基
板に堆積して汚染源となることが大きな要因の一つであ
る。Particles caused by the thin film forming equipment mentioned above include thin films caused by dissipated raw material vapor adhering to the inner walls of the equipment (furnace walls) and equipment around the substrate, such as shutters and shield plates. One of the major factors is that it peels off again, scatters and accumulates on the substrate, becoming a source of contamination.
(従来技術)
そのため、装置及び内部機器の保守の目的でまたこうし
た付着物質の再剥離に起因するパーティクルを防止する
ため、少なくとも薄膜形成装置の内壁及び機器を常に清
浄に維持しておく必要がある。(Prior art) Therefore, for the purpose of maintenance of the apparatus and internal equipment, and to prevent particles caused by re-peeling of such adhered substances, it is necessary to keep at least the inner walls and equipment of the thin film forming apparatus clean at all times. .
しかしながら、こうした内壁及び機器を常に清浄に維持
することは実際には難しく、完全に清浄にするには大変
な時間を要し、また内壁や機器の部位によっては清浄化
が実際には出来ないところもある。However, it is actually difficult to keep these inner walls and equipment clean at all times, and it takes a lot of time to completely clean them, and there are some parts of the inner walls and equipment that cannot be cleaned. There is also.
このため、
(1)平板、筒状その他の形態の遮蔽板を配置しそして
適宜交換すること、
(2)飛散物が付着し易い機器の部位には金属の溶射膜
を形成する物理的粗化処理を施して、付着した薄膜が剥
離しないように捕獲すること、及び(3)アルミニウム
、鉄、銅等のディスポーザル(使い捨て)金属箔を装置
内壁等に張り付け、薄膜形成操作終了後これらを除去す
ることといった対策がとられてきた。For this reason, (1) Placing shielding plates in the form of flat plates, cylinders, or other shapes and replacing them as appropriate; (2) Physical roughening by forming a sprayed metal film on parts of the equipment where flying debris is likely to adhere. (3) attach disposable metal foils such as aluminum, iron, copper, etc. to the inner walls of the device and remove them after the thin film forming operation is completed; Measures have been taken to:
(発明が解決しようとする課題)
薄膜形成装置内部は段部や突起部が組み合わさって複雑
な輪郭を形どっている部位が比較的多くまた基板シール
ド板のように複雑な形状部品を使用することが多い。こ
うした部位には平板状等の単純な形態の遮蔽板では、そ
の複雑な形状に沿って覆うことが出来ないのであまり役
立たない。飛散物が付着し易い機器の部位に金属の溶射
膜をあらかじめ形成する方法は、こうした複雑な形状部
に有用ではあるが、飛散物の付着が一定以上となると付
着した薄膜が剥離し易くなるため溶射膜の形成をやり直
す必要があるが、その際部品の再生(リサイクル)が非
常に困難である。装置内壁部への金属溶射は剥離作業が
大変なため何度も実施出来ず、有効寿命が短い。(Problem to be solved by the invention) Inside the thin film forming apparatus, there are relatively many parts that have complicated contours formed by combining steps and protrusions, and parts with complicated shapes, such as substrate shield plates, are used. There are many things. A shielding plate of a simple shape such as a flat plate is not very useful for such a part because it cannot cover the complex shape. The method of pre-forming a sprayed metal film on parts of equipment where flying debris is likely to adhere is useful for complex-shaped parts such as these, but if the amount of flying debris adheres above a certain level, the adhered thin film tends to peel off. Although it is necessary to re-form the sprayed film, it is extremely difficult to recycle the parts. Metal thermal spraying on the inner walls of the equipment is difficult to remove, so it cannot be repeated many times, and its useful life is short.
金属箔の使用は、非常に簡便な方法であるが、金属箔の
材質が限定され、高温で、高融点金属のスパッターが飛
散ししかもプラズマの発生場所に近い苛酷な条件のとこ
ろでは必ずしも有用ではない。金属箔は薄いだけにかえ
って複雑な形状部に沿って折り曲げたり押さえ付けたり
する際またスポット溶接やろう接により装着する際破れ
易く、取扱いが面倒である。箔に付着した飛散物薄膜の
再剥離も生じ易いことが見出された。The use of metal foil is a very simple method, but the material of the metal foil is limited, and it is not necessarily useful in harsh conditions such as high temperatures, high melting point metal sputtering, and close proximity to the plasma generation site. do not have. Although metal foil is thin, it is easy to tear when bent or pressed along a complex shape, or when attached by spot welding or brazing, making it troublesome to handle. It has also been found that the thin film of scattered particles adhering to the foil is likely to be peeled off again.
複雑な部品の場合、金属箔は、対象とする部品の形に合
わせて金型を作製し、この金型を用いてプレス成形する
ことにより作製されるが、シールド板のような外形が入
り組んだ複雑な形状の場合には、成形自体が不可能であ
る。In the case of complex parts, metal foil is produced by creating a mold according to the shape of the target part and press-forming using this mold. In the case of complex shapes, molding itself is impossible.
本発明の課題は、薄膜形成装置内部の複雑な形状の部位
或いは部品に適用できしかもそこから容易に除去するこ
とができ、耐久性、取扱い性、装着性において金属箔の
欠点を排除しつる、薄膜形成時の薄膜のパーティクル汚
染及び装置内部及び機器の汚染防止対策を確立すること
である。The object of the present invention is to be able to apply it to parts or parts with complex shapes inside a thin film forming apparatus, and to be able to easily remove them therefrom, while eliminating the drawbacks of metal foil in terms of durability, ease of handling, and ease of installation. The objective is to establish measures to prevent particle contamination of thin films during thin film formation and contamination of the inside of the device and equipment.
(課題を解決するための手段)
金属溶射膜は、その粗い表面性状により基本的に飛散し
た付着物質を剥離しないように捕獲する能力に優れまた
耐熱性のある材料から形成することが出来る。この金属
溶射膜の長所を生かしたまま、上述した課題を解決する
べ(検討の結果、金属溶射膜にメツシュ材を併用するこ
とを想到した。部品表面にメツシュ材を被着し、該メツ
シュ材被着部品表面に金属を溶射すると、溶射膜は交換
時部品表面から容易に剥すことが出来、部品の再生(リ
サイクル)が可能であることがわかった。また別の様相
において、金属板等上にメツシュ材を被着し、該メツシ
ュ材上に金属を溶射し、そして後金属板等からメツシュ
材付き金属溶射膜を分離して得られるメツシュ材付き金
属溶射膜が金属箔に替わる汚染防止材として非常に有用
であることも判明した。メツシュ材付き金属溶射膜は複
雑な形状に沿って賦形することが出来る。付着部表面或
いは金属板等表面へのメツシュの適用と金属溶射膜とう
まく組み合わせることにより従来からの課題を解決した
ものである。(Means for Solving the Problems) The metal sprayed film basically has an excellent ability to capture scattered adhering substances without peeling due to its rough surface properties, and can be formed from a heat-resistant material. In order to solve the above-mentioned problems while taking advantage of the advantages of this metal sprayed film, we came up with the idea of using a mesh material in combination with the metal sprayed film. It was found that when metal is thermally sprayed onto the surface of a adhered part, the sprayed film can be easily peeled off from the surface of the part when it is replaced, making it possible to recycle the part. A pollution prevention material in which a metal sprayed film with a mesh material, which is obtained by depositing a mesh material on a metal plate, thermally spraying a metal onto the mesh material, and then separating the metal sprayed film with a mesh material from a metal plate, etc., replaces metal foil. It has also been found that it is very useful as a metal spray coating.The metal spray coating with a mesh material can be formed into complex shapes. This combination solves the conventional problems.
こうした知見に基づいて、本発明は、
l)気相成長による薄膜形成装置において、飛散した付
着物質による該装置内面及び内部機器の汚染並びに付着
物質の再剥離による薄膜パーティクル汚染を防止するた
めに、対象とする付着部表面にメツシュ材を被着し、該
メツシュ材を被着した付着部表面に金属を溶射して金属
溶射膜を形成することを特徴とする薄膜形成装置におけ
る汚染防止方法、
2)気相成長による薄膜形成装置において、飛散した付
着物質による該装置内面及び内部機器の汚染並びに付着
物質の再剥離による薄膜パーティクル汚染を防止するた
めに、金属板等上にメツシュ材を被着し、該メツシュ材
上に金属を溶射し、そして後前記金属板等からメツシュ
材付き金属溶射膜を分離し、該メツシュ材付き金属溶射
膜を薄膜形成装置における対象とする付着部表面に装着
することを特徴とする薄膜形成装置における汚染防止方
法、及び
3)気相成長による薄膜形成装置において、飛散した付
着物質による該装置内面及び内部機器の汚染並びに付着
物質の再剥離による薄膜パーティクル汚染を防止するた
めに使用される汚染防止材にして、一面にメツシュ材を
有する金属溶射膜から成ることを特徴とする汚染防止材
を提供するものである。Based on these findings, the present invention provides the following: l) In a thin film forming apparatus using vapor phase growth, in order to prevent contamination of the inner surface and internal equipment of the apparatus by scattered adherent substances and thin film particle contamination due to re-peeling of the adhered substances, A method for preventing contamination in a thin film forming apparatus, characterized in that a mesh material is applied to the surface of a target adhesion part, and a metal is thermally sprayed onto the surface of the adhesion part covered with the mesh material to form a metal sprayed film. ) In a thin film forming device using vapor phase growth, a mesh material is applied onto a metal plate, etc. in order to prevent contamination of the inner surface and internal equipment of the device by scattered adherent substances and thin film particle contamination due to re-peeling of the adhered substances. , spraying metal onto the mesh material, and then separating the metal sprayed film with the mesh material from the metal plate, etc., and attaching the metal sprayed film with the mesh material to the surface of the target attachment part in the thin film forming apparatus. 3) A method for preventing contamination in a thin film forming apparatus characterized by: and 3) preventing contamination of the inner surface and internal equipment of the apparatus by scattered adherent substances and thin film particle contamination due to re-peeling of the adhered substances in a thin film forming apparatus using vapor phase growth. The purpose of the present invention is to provide a contamination preventive material used for this purpose, which is characterized by being made of a metal sprayed film having a mesh material on one surface.
(発明の詳細な説明)
本発明に係わる気相成長による薄膜形成装置とは、熱分
解法、水素還元法、不均化反応法、輸送反応法、プラズ
マCVD法、減圧CVD法等の化学的気相成長法(CV
D)、気相エピタキシー法(VPE)、スパッタリング
法、真空蒸着法、分子線エピタキシー法(MBE)、イ
オンビーム法、放電重合法その他の気相成長を利用して
薄膜を形成する装置を意味する。(Detailed Description of the Invention) The device for forming a thin film by vapor phase growth according to the present invention is a method for forming a thin film using a chemical method such as a thermal decomposition method, a hydrogen reduction method, a disproportionation reaction method, a transport reaction method, a plasma CVD method, or a low pressure CVD method. Vapor phase growth method (CV
D) refers to equipment that forms thin films using vapor phase epitaxy (VPE), sputtering, vacuum evaporation, molecular beam epitaxy (MBE), ion beam method, discharge polymerization, and other vapor phase growth methods. .
こうした気相成長薄膜形成装置おいては、薄膜形成部以
外にも不可避的に原料蒸気が周囲に飛散し、装置内部の
内壁やシャッター、シールドその他の機器に付着して、
それらを汚染しまたその機能を害し、また付着物が再剥
離して先に説明した薄膜のパーティクル汚染を引き起こ
す。従って、本発明と関連しては、装置・機器自体の汚
染と薄膜のパーティクル汚染という2重の汚染が問題と
なる。In such a vapor phase growth thin film forming apparatus, raw material vapor inevitably scatters to the surroundings other than the thin film forming part, and adheres to the inner walls, shutters, shields, and other equipment inside the apparatus.
It contaminates them and impairs their function, and the deposits are peeled off again, causing the particle contamination of the thin film described above. Therefore, in connection with the present invention, there is a double contamination problem: contamination of the device/equipment itself and particle contamination of the thin film.
そのため、本発明では、飛散物が付着し易い部分或いは
部位(付着部という)表面を遮蔽してそこへの飛散物の
付着を防止し且つ自身に付着した付着物をしっかりと捕
獲して剥離しないようにする汚染防止方法が実施される
。Therefore, in the present invention, the surface of a part or region (referred to as an adhesion part) where flying debris tends to adhere is shielded to prevent flying debris from adhering there, and the debris that has adhered to itself is firmly captured so that it does not peel off. Contamination prevention methods are implemented to ensure that:
本発明の第1の方法において、例えば基板シールド板の
ような複雑形状部品といった対象とする装置内面或いは
装置内機器部品にステンレス鋼、ニッケル等の金属製メ
ツシュ材がスポット溶接等により取付けられる。メツシ
ュ寸法は、ある程度細かい、例えば200〜400メツ
シユ範囲のものでよい。そして、この上から金属が溶射
されて金属溶射膜を形成する。この場合、対象とする部
品或いは部位のリサイクル(再生)を考え、対象表面は
サンドブラスト面のような凹凸を持たないようにするこ
とが好ましい。こうしておくと、メツシュ材上に堆積し
た金属溶射膜はメツシュ材とは強固な結合力を有するが
その下にある付着部表面とは実質上結合力をもたず、金
属溶射膜をメツシュ材と共に付着部表面から容易に剥す
ことが出来る。従って、金属溶射膜で覆われていた部品
(部位)のリサイクル(再生)が可能となる。金属溶射
膜は付着物がある水準以上累積すると付着物の捕獲能力
が落ちるので、適宜の間隔で剥離され、再度、メツシュ
材の適用後金属溶射が為される。In the first method of the present invention, a mesh material made of a metal such as stainless steel or nickel is attached to the target inner surface of the device or a component in the device, such as a complex-shaped component such as a substrate shield plate, by spot welding or the like. The mesh size may be fine to some extent, for example, in the range of 200 to 400 meshes. Then, metal is thermally sprayed from above to form a metal sprayed film. In this case, in consideration of recycling (reproduction) of the target parts or parts, it is preferable that the target surface does not have irregularities like a sandblasted surface. If this is done, the metal sprayed film deposited on the mesh material will have strong bonding strength with the mesh material, but will have virtually no bonding strength with the surface of the attached part below, and the metal sprayed film will be bonded to the mesh material together with the mesh material. It can be easily peeled off from the surface of the attached part. Therefore, it becomes possible to recycle (regenerate) the parts (parts) covered with the metal sprayed film. Since the ability of the metal sprayed film to capture deposits decreases when the deposits accumulate above a certain level, the film is peeled off at appropriate intervals, and the metal spraying is performed again after applying the mesh material.
第2の方法においては、アルミニウムその他の適宜の材
料製の金属板等が用意され、メツシュ材が例えば端部を
クランプ化めすることによりその上に固定される。金属
板以外に、金型等が使用され得る。メツシュ材の材質及
びメツシュ寸法は先と同様である。そして、この上から
、金属が溶射されて金属溶射膜を形成する。先に述べた
理由により、金属溶射膜はメツシュ材と共に簡単に剥す
ことが可能である。剥したメツシュ付き金属溶射膜が対
象とする部品或いは部位表面にスポット溶接等により装
着される。メツシュ材付き金属溶射膜は屈撓性が良好で
あり、複雑な形状部にも容易に沿わせて装着することが
出来る。メツシュ材は剥離機能と補強機能とを果たす。In the second method, a metal plate or the like made of aluminum or other suitable material is provided and the mesh material is secured thereon, for example by clamping the ends. In addition to the metal plate, a mold or the like may be used. The material of the mesh material and the mesh dimensions are the same as before. Then, metal is thermally sprayed from above to form a metal sprayed film. For the reasons stated above, the metal spray coating can be easily peeled off together with the mesh material. The peeled metal sprayed film with mesh is attached to the surface of the target part or part by spot welding or the like. The metal sprayed film with a mesh material has good flexibility and can be easily attached to a complex-shaped part. The mesh material performs a peeling function and a reinforcing function.
このように、本発明は、飛散した付着物質による該装置
内面及び内部機器の汚染並びに付着物質の再剥離による
薄膜パーティクル汚染を防止するために使用される汚染
防止材にして、一面にメツシュ材を有する金属溶射膜を
対象とする表面に一体に或いは別個の部材として適用す
ることを特徴とする。As described above, the present invention provides a contamination prevention material that is used to prevent contamination of the inner surface and internal equipment of the device by scattered adhesion substances and thin film particle contamination due to re-peeling of the adhesion substances, and a mesh material is coated on one surface. It is characterized in that the metal sprayed film is applied to the target surface either integrally or as a separate member.
溶射される金属としては、装置の種類及び装着場所に応
じて適宜選定されるが、モリブデン、タングステン等の
高融点金属、ニッケル、アルミニウム等が使用されつる
。特に、高温で、高融点金属のスパッターが飛散ししか
もプラズマの発生場所に近い苛酷な条件のところではモ
リブデン、タングステン等の高融点金属の使用が好まし
い。The metal to be thermally sprayed is appropriately selected depending on the type of equipment and the installation location, but high melting point metals such as molybdenum and tungsten, nickel, aluminum, etc. are used. In particular, it is preferable to use a high melting point metal such as molybdenum or tungsten under severe conditions such as high temperatures, high melting point metal sputtering, and close proximity to the plasma generation site.
金属溶射膜の厚さは、200〜300μmの範囲をとり
、ガスまたはプラズマ溶射によりもたらされる。溶射条
件は、通常的な溶射コーティング膜を形成する条件でよ
い。付着物捕獲能を増進するために、表面は適度な粗さ
を有するものとされる。The thickness of the metal spray coating ranges from 200 to 300 μm and is produced by gas or plasma spraying. The thermal spraying conditions may be those for forming a normal thermal spray coating film. In order to enhance the ability to capture deposits, the surface is made to have an appropriate roughness.
使用される金属様等については、溶射膜が付着しない程
度の平滑な表面状態を与えるものであれば任意の方法が
採用出来1例えばサンドベーパ仕上げが有用な方法の一
つである。Regarding the metal used, any method can be used as long as it provides a smooth surface condition to the extent that the sprayed film will not adhere. For example, sand vapor finishing is one useful method.
一つの装置内で、2つの方法を部位に応じて使い分ける
ことも有益である。It is also beneficial to use two methods depending on the site within one device.
(実施例1)
スパッタリング装置内部の基板シールド仮にその表面を
サンドペーパで研磨した後、300メツシユのステンレ
ス鋼メツシュの網をシールド板に沿わせながらスポット
溶接により取付け、そしてその上からモリブデンをガス
溶射した。溶射は、酸素−アセチレンバーナを使用して
、5 kg/+nm2(圧縮空気)の圧力において行な
った。溶射膜の厚みは200〜300LLmであった。(Example 1) Substrate shield inside sputtering equipment After temporarily polishing its surface with sandpaper, a 300-mesh stainless steel mesh was attached by spot welding along the shield plate, and molybdenum was gas-sprayed on top of it. . Thermal spraying was carried out using an oxygen-acetylene burner at a pressure of 5 kg/+nm2 (compressed air). The thickness of the sprayed film was 200 to 300 LLm.
このようにしてモリブデン溶射膜を形成した基板シール
ド板をスパッタリング装置にセットし、スパッタリング
によりW −T i ll*を形成した。The substrate shield plate on which the molybdenum sprayed film was formed in this manner was set in a sputtering device, and W-Till* was formed by sputtering.
W −T i膜スパッタリング条件は次の通りとしたニ
スバッターパワー: 5.5 W/cm2Ar分圧・l
Pa
シールド〜
ターゲット間の距離:15mm
W−Ti付着速度:約25 μm / h rW −T
i膜を200μm付けた後でメツシュの網入りモリブ
デン膜の状況を調査したが、その変形量は1mm以下で
ありまた剥離は観察されなかった。The W-Ti film sputtering conditions were as follows: Varnish batter power: 5.5 W/cm2Ar partial pressure/l
Distance between Pa shield and target: 15 mm W-Ti deposition rate: Approx. 25 μm/hr W -T
After applying the i-film to a thickness of 200 μm, the condition of the mesh mesh molybdenum film was investigated, and the amount of deformation was less than 1 mm, and no peeling was observed.
(実施例2)
アルミニウム製の金型を使用して、実施例1と同様に3
00メツシユのステンレス鋼メツシュの網をクランプ止
めし、その上からモリブデンをガス溶射した。溶射条件
は実施例1と同じとした。(Example 2) Using an aluminum mold, 3
A stainless steel mesh of 00 mesh was clamped and molybdenum was gas sprayed onto it. The thermal spraying conditions were the same as in Example 1.
モリブデン付着メツシュは容易に剥すことが出来た。こ
れをW−Ti膜形成用スパッタリング装置内部の部品で
あるシールド板にスポット溶接により取付けた。実施例
1と同じ条件でW−Ti膜を200μm付けた後でメツ
シュの網入りモリブデン膜の状況を調査したが、その変
形量は1 mm以下でありまた剥離は観察されなかった
。The molybdenum-attached mesh could be easily peeled off. This was attached to a shield plate, which is a component inside a sputtering apparatus for forming a W-Ti film, by spot welding. After attaching a 200 μm W-Ti film under the same conditions as in Example 1, the state of the mesh molybdenum film was investigated, and the amount of deformation was less than 1 mm, and no peeling was observed.
(比較例)
基板シールドに厚さ200μmの純アルミニウム圧延箔
を取付ける場合、手で折り曲げながらシールド板の形状
に沿わせて密着状態で変形させることは不可能なので、
先ずシールド板の形に合わせて金型を作製し、この金型
を用いてプレス加工にて成形した。(Comparative example) When attaching a rolled pure aluminum foil with a thickness of 200 μm to a substrate shield, it is impossible to bend it by hand and deform it in a tight state along the shape of the shield plate.
First, a mold was made to match the shape of the shield plate, and this mold was used to perform press working.
このようにして作製したアルミニウム箔型成形品をスポ
ット溶接によりW−Ti膜形成用スパッタリング装置内
部のシールド板に取付けた後、実施例1と同じ条件でW
−Ti膜をスパッタリングにより200μmの厚さに形
成した。変形量は1mm以上であり、膜の剥離が認めら
れた。After attaching the aluminum foil molded product thus produced to the shield plate inside the sputtering device for forming a W-Ti film by spot welding,
- A Ti film was formed to a thickness of 200 μm by sputtering. The amount of deformation was 1 mm or more, and peeling of the film was observed.
シールド板の外形が入り組んだ形で複雑な場合には、実
際上、成形自体が不可能であった。When the outer shape of the shield plate is intricate and complicated, it is practically impossible to form the shield plate itself.
(発明の効果)
薄膜形成装置内部の、苛酷な条件下に置かれる複雑な形
状の部位或いは部品に適用できしかもそこから容易に除
去することができ、耐久性、取扱い性、装着性におい優
れる薄膜形成時の薄膜のパーティクル汚染及び装置内部
及び機器の汚染防止対策を確立することに成功した。本
発明のメツシュ材付き金属溶射膜汚染防止材は、従来か
らの金属箔に比較して成形の自由度が大きく、着脱、特
に装着性に優れしかも装着に関与するコストも安い。(Effects of the invention) A thin film that can be applied to parts or parts with complex shapes that are placed under harsh conditions inside a thin film forming apparatus, can be easily removed from there, and has excellent durability, ease of handling, and ease of installation. We succeeded in establishing measures to prevent particle contamination of thin films during formation and contamination of the inside of the device and equipment. The metal sprayed film contamination prevention material with a mesh material of the present invention has a greater degree of freedom in molding than conventional metal foils, is excellent in attaching and detaching, especially easy to attach, and is low in cost involved in attaching.
Claims (1)
着物質による該装置内面及び内部機器の汚染並びに付着
物質の再剥離による薄膜パーティクル汚染を防止するた
めに、対象とする付着部表面にメッシュ材を被着し、該
メッシュ材を被着した付着部表面に金属を溶射して金属
溶射膜を形成することを特徴とする薄膜形成装置におけ
る汚染防止方法。 2)気相成長による薄膜形成装置において、飛散した付
着物質による該装置内面及び内部機器の汚染並びに付着
物質の再剥離による薄膜パーティクル汚染を防止するた
めに、金属板等上にメッシュ材を被着し、該メッシュ材
上に金属を溶射し、そして後前記金属板等からメッシュ
材付き金属溶射膜を分離し、該メッシュ材付き金属溶射
膜を薄膜形成装置における対象とする付着部表面に装着
することを特徴とする薄膜形成装置における汚染防止方
法。 3)気相成長による薄膜形成装置において、飛散した付
着物質による該装置内面及び内部機器の汚染並びに付着
物質の再剥離による薄膜パーティクル汚染を防止するた
めに使用される汚染防止材にして、一面にメッシュ材を
有する金属溶射膜から成ることを特徴とする汚染防止材
。[Claims] 1) In a thin film forming apparatus by vapor phase growth, in order to prevent contamination of the inner surface and internal equipment of the apparatus by scattered adherent substances and thin film particle contamination due to re-peeling of the adhered substances, target adhesion 1. A method for preventing contamination in a thin film forming apparatus, characterized in that a mesh material is attached to the surface of the part, and a metal is sprayed onto the surface of the attached part covered with the mesh material to form a metal sprayed film. 2) In a thin film forming device using vapor phase growth, a mesh material is coated on a metal plate, etc. to prevent contamination of the inner surface and internal equipment of the device by scattered adherent substances and thin film particle contamination due to re-peeling of the adhered substances. Then, the metal is sprayed onto the mesh material, and then the metal sprayed film with the mesh material is separated from the metal plate, etc., and the metal sprayed film with the mesh material is attached to the surface of the target attachment part in the thin film forming apparatus. A method for preventing contamination in a thin film forming apparatus, characterized in that: 3) In a thin film forming apparatus by vapor phase growth, it is a contamination prevention material used to prevent contamination of the inner surface and internal equipment of the apparatus by scattered adhering substances and thin film particle contamination due to re-peeling of the adhering substances. A pollution prevention material comprising a metal sprayed film having a mesh material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33004590A JPH04202655A (en) | 1990-11-30 | 1990-11-30 | Method for preventing pollution in thin film forming apparatus and pollution preventing material used therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33004590A JPH04202655A (en) | 1990-11-30 | 1990-11-30 | Method for preventing pollution in thin film forming apparatus and pollution preventing material used therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04202655A true JPH04202655A (en) | 1992-07-23 |
Family
ID=18228162
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33004590A Pending JPH04202655A (en) | 1990-11-30 | 1990-11-30 | Method for preventing pollution in thin film forming apparatus and pollution preventing material used therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04202655A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007100218A (en) * | 2006-12-18 | 2007-04-19 | Toshiba Corp | Component for vacuum film deposition system, vacuum film deposition system using the same, and target and backing plate |
-
1990
- 1990-11-30 JP JP33004590A patent/JPH04202655A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007100218A (en) * | 2006-12-18 | 2007-04-19 | Toshiba Corp | Component for vacuum film deposition system, vacuum film deposition system using the same, and target and backing plate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH09272965A (en) | Parts for vacuum film forming device, vacuum film forming device using the same, target and backing plate | |
KR20070015037A (en) | Method and apparatus for the application of twin wire arc spray coatings | |
JP3815591B2 (en) | Method for manufacturing film forming apparatus parts and film forming apparatus parts | |
JPH05230628A (en) | Metal film forming device and metal recovery method in metal film forming device | |
TWI343420B (en) | Design of hardware features to facilitate arc-spray coating applications and functions | |
JP2002146524A (en) | Sputtering target hardly causing generation of particle | |
JP4894158B2 (en) | Vacuum equipment parts | |
JP3434947B2 (en) | Shower plate | |
JPH04202655A (en) | Method for preventing pollution in thin film forming apparatus and pollution preventing material used therefor | |
JPH0387357A (en) | Thin film forming device | |
JPH07102366A (en) | Thin film forming device | |
JP4820508B2 (en) | Sputtering target and manufacturing method thereof, sputtering apparatus, thin film manufacturing method, electronic component manufacturing method | |
JP2663025B2 (en) | Thin film forming equipment | |
JP4769181B2 (en) | Target and backing plate | |
JPH06196476A (en) | Sputtering device | |
JP4519416B2 (en) | Anti-contamination device for thin film forming equipment | |
JP3534989B2 (en) | Component parts for film forming equipment | |
JP2005154896A (en) | Component for vacuum device, method for manufacturing the same, and device for using the same | |
JPH1030174A (en) | Sputtering device and method for working backing plate used for the same device | |
JP2511545Y2 (en) | Particle getter jig cap | |
JP5254277B2 (en) | Manufacturing method of parts for vacuum film forming apparatus | |
JPS5917236A (en) | Forming device for film | |
JP2002069627A (en) | Sputtering target and sputtering apparatus using the same | |
JPH04232256A (en) | Device for forming thin film | |
JPS5884970A (en) | Vacuum plating apparatus |