JPH07102366A - Thin film forming device - Google Patents

Thin film forming device

Info

Publication number
JPH07102366A
JPH07102366A JP27727293A JP27727293A JPH07102366A JP H07102366 A JPH07102366 A JP H07102366A JP 27727293 A JP27727293 A JP 27727293A JP 27727293 A JP27727293 A JP 27727293A JP H07102366 A JPH07102366 A JP H07102366A
Authority
JP
Japan
Prior art keywords
thin film
aluminum
substrate
titanium
deformation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27727293A
Other languages
Japanese (ja)
Inventor
Takuma Sano
琢磨 佐野
Tatsuya Matsuo
達也 松尾
Koichiro Takahashi
晧一郎 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vacuum Metallurgical Co Ltd
Original Assignee
Vacuum Metallurgical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vacuum Metallurgical Co Ltd filed Critical Vacuum Metallurgical Co Ltd
Priority to JP27727293A priority Critical patent/JPH07102366A/en
Publication of JPH07102366A publication Critical patent/JPH07102366A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To prevent the peeling and scattering of stuck deposits and to enable the reprocessing use by constituting apparatus or constituting parts in a thin film forming device of a contamination preventing material obtd. by coating the surface of Ti or a Ti alloy with an Al or Al alloy layer. CONSTITUTION:The surface of a substrate holder 5 arranged in a sputtering chamber 1 is mounted with a substrate 4, a target 6 is oppositely arranged on a cathode 7 across a shutter plate 9, and the circumference is provided with a shield plate 8. A reaction gas is introduced into the sputtering chamber 1 from a gas introducing port 2, the target is sputtered, and sputtering grains are deposited on the substrate 4 to form a thin film. In the thin film forming device, apparatus or constituting parts therein such as a shield plate 8, a shutter plate 9 and a substrate holder 5 are constituted of a contamination preventing material obtd. by coating the surface of Ti or a Ti alloy with an Al layer or an Al alloy layer. Thus, the peeling and scattering of stuck deposits from the apparatus and parts is prevented in the process of the formation of a thin film, and the deformation and gaseous release caused by the heat and stress in the apparatus or the like are prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、薄膜形成装置に関し、
更に詳細には真空中で基板上に物理的、或いは物理化学
的に薄膜を形成する際に用いる装置内の機器または構成
部品に汚染物が付着し、これが基板上に形成される薄膜
に再付着することを防止するための薄膜形成装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film forming apparatus,
More specifically, contaminants adhere to the equipment or components in the equipment used to physically or physically form a thin film on a substrate in a vacuum, and this reattaches to the thin film formed on the substrate. The present invention relates to a thin film forming apparatus for preventing this.

【0002】[0002]

【従来の技術】真空中で基板上に物理的、或いは物理化
学的に薄膜を形成するための薄膜形成方法としては、真
空蒸着、スパッタリング、プラズマCVD等の気相成長
法があり、工業的に広く利用されている。そして前記方
法で基板上に形成された薄膜の品質を著しく阻害する要
因として直径がサブミクロン程度以上もあるパーティク
ルと言われている微粒子が薄膜内に取り込まれるという
問題がある。
2. Description of the Related Art As a thin film forming method for physically or physicochemically forming a thin film on a substrate in vacuum, there are vapor phase growth methods such as vacuum deposition, sputtering and plasma CVD. Widely used. As a factor that significantly impairs the quality of the thin film formed on the substrate by the above method, there is a problem that fine particles, which are said to be particles having a diameter of about submicron or more, are taken into the thin film.

【0003】このパーテイクル発生源としては、薄膜形
成素材の純度、密度等に係わる場合と、薄膜形成装置内
の機器または構成部品に付着し、堆積した堆積物の剥離
飛散による汚染物質に係わる場合とがある。そして工業
的に種々検討されている後者の飛散による汚染物質に対
しての解決手段としては、 経験則により生産時のバツチ処理毎に物理的、機械
的に装置内の機器または構成部品に付着している付着堆
積物を除去クリーニング処理する アルミニウム(Al)や銅(Cu)等の箔で装置内
の機器または構成部品をカバーし、これをバッチ処理毎
に取り外し除去する シールド板、シャッター板、基板ホルダー等をアル
ミニウムまたはステンレス鋼の加工品にする チタンまたはステンレス鋼の加工品表面にアルミニ
ウム或いはモリブデンを溶射コーテイングする 特公平3−87356号、特公平3−87357号
で提案された蛇腹またはエンボス状に加工された銅箔に
て機器または構成部品を被覆するようにスポット溶接す
る等が知られている。
The particle generation source may be related to the purity or density of the thin film forming material, or may be related to contaminants caused by peeling and scattering of deposited deposits adhered to equipment or components in the thin film forming apparatus. There is. As a solution to the latter pollutants that have been industrially studied in various ways, the empirical rule is to adhere to the equipment or components inside the equipment physically or mechanically at each batch process during production. Removes adhered deposits and cleans them. Covers equipment or components inside the equipment with foils of aluminum (Al), copper (Cu), etc., and removes and removes them for each batch processing. Shield plate, shutter plate, substrate Making holders and the like processed products of aluminum or stainless steel Spray coating aluminum or molybdenum on the surface of processed products of titanium or stainless steel. It is known to perform spot welding to cover equipment or components with processed copper foil.

【0004】[0004]

【発明が解決しようとする課題】従来から実施されてい
る基板上への薄膜形成装置内の汚染防止対策技術の具体
的問題についてスパッタリング装置を例にして説明す
る。スパッタリング装置内で発生するパーティクル汚染
物質は装置内の機器、構成部品等にスパッタリングによ
り付着した堆積物が例えば付着力、熱膨脹応力等の物理
的、機械的作用により剥離し、飛散したものである。
A specific problem of a conventional technique for preventing contamination in a thin film forming apparatus on a substrate, which has been conventionally practiced, will be described by taking a sputtering apparatus as an example. The particle contaminants generated in the sputtering apparatus are the deposits deposited on the equipment, components and the like in the apparatus by sputtering, and are separated and scattered by physical and mechanical actions such as adhesion and thermal expansion stress.

【0005】これらの防止対策としては、 バッチ処理毎、或いは付着堆積物量により物理的、
化学的または機械的に付着堆積物を除去する。この場合
においては、 イ)クリーン化処理(付着堆積物の除去)毎に機器、構
成部品材料の表面状態(クリーン度、アラサ、残留応
力)が変化し、結果としてパーチィクル発生が増加す
る、 ロ)クリーン化処理に実働薄膜形成時間の20%以上を
必要とし、生産性、作業性が低い、等の問題がある。
As a preventive measure against these problems, a physical treatment may be performed for each batch treatment or depending on the amount of deposited deposits.
Remove deposits chemically or mechanically. In this case, a) the surface condition (cleanliness, roughness, residual stress) of the equipment and component materials changes with each cleaning process (removal of adhered deposits), resulting in an increase in particle generation. The cleaning process requires 20% or more of the actual thin film formation time, and there are problems such as low productivity and workability.

【0006】 装置内の機器、構成部品をアルミニウ
ム或いは銅の箔で被覆し、バッチ処理毎、或いは付着堆
積物量により取り外す。この場合においては、 イ)装置内で取り外し作業中に発生する箔の変形によっ
て付着堆積物が箔表面より剥離し、飛散してパーティク
ルの発生源となる、 ロ)付着堆積物量の増加に伴い付着堆積物の内部応力が
原因で箔の変形が発生して剥離し、飛散してパーティク
ルの発生源となる、 ハ)被覆箔は取り外し後、廃棄処分するため経済性が悪
い、等の問題がある。
Equipment and components in the apparatus are covered with aluminum or copper foil, and removed by each batch process or by the amount of deposited deposits. In this case, a) Deposition of the foil that occurs during removal work inside the equipment causes the deposited deposits to separate from the foil surface and scatter to become a particle generation source. B) Attached as the amount of deposited deposits increases. Deformation of the foil occurs due to the internal stress of the deposits, peeling and scattering causes particles to be generated. C) There is a problem that the coating foil is removed and then discarded, which is not economical. .

【0007】 シールド板、シャッター板、基板ホル
ダー等の特に付着堆積物の増加が著しい機器、構成部品
をアルミニウム、銅の加工品とする。この場合において
は、 イ)スパッタリング時の発生熱による熱変形、付着堆積
物の内部応力による変形により、スパッタリング条件の
異常、特に異常放電の発生をきたし、結果として薄膜品
質のバラツキと付着堆積物の剥離、飛散によるパーティ
クル発生を起こす、 ロ)前記の被覆箔と同様に取り外し後は廃棄処分する
ため経済性が悪い、等の問題がある。
Equipment and components such as shield plates, shutter plates, and substrate holders where the amount of adhered deposits is particularly remarkable are processed products of aluminum and copper. In this case, a) the thermal deformation due to the heat generated during sputtering and the internal stress of the deposited deposits cause abnormal sputtering conditions, especially abnormal discharge, resulting in variations in thin film quality and deposits. Particles are generated due to peeling and scattering. (2) Similar to the above-mentioned coating foil, since it is discarded and discarded, it is economically disadvantageous.

【0008】 シールド板、シャッター板、基板ホル
ダー等の機器、構成部品(チタン、ステンレス鋼)の加
工品表面にアルミニウム、或いはモリブデンの溶射コー
テイング層を形成させる。この場合においては、 イ)溶射コーテイング層のチタン、ステンレス鋼に対す
る密着力が溶射母材強度の20〜30%程度のため、付
着堆積物の増加による内部応力により剥離し、飛散して
パーティクルの発生源となる、 ロ)溶射コーテイング層の密度は溶射母材の密度の80
%程度となるため、吸蔵不純ガスが多く、スパッタリン
グ中でのガス放出による薄膜品質のバラツキと異常放電
によるパーティクルの発生源となる、 ハ)構成部品の凹凸或いは穴部分では溶射粒子間の結合
力が弱く、パーティクルの発生源となる、 等の問題がある。
A spray coating layer of aluminum or molybdenum is formed on the surface of equipment such as a shield plate, a shutter plate, a substrate holder, and processed products of components (titanium, stainless steel). In this case, a) the adhesion of the thermal spray coating layer to titanium and stainless steel is about 20 to 30% of the strength of the thermal spray base material, so the internal stress due to the increase of deposits causes delamination and scattering to generate particles. B) The density of the thermal spray coating layer is 80% of the density of the thermal spray base metal.
%, So there are a lot of occluded impure gases, which causes variations in thin film quality due to gas release during sputtering and the generation of particles due to abnormal discharge. C) Cohesive force between sprayed particles at irregularities or holes in components Is weak and is a source of particles.

【0009】 蛇腹、或いはエンボス状に加工された
銅箔にて機器または構成部品の表面を被覆するようにス
ポット溶接する。この場合においては、 イ)銅箔の蛇腹、或いはエンボス状への成形加工、機器
または構成部品の表面への凹凸形状の銅箔のスポット溶
接等の各工程での異物混入、特にスポット溶接部分から
のガス放出による異常放電の発生による薄膜品質のバラ
ツキとパーティクルの発生源となる、 ロ)銅箔の凹凸(蛇腹、エンボス模様)部分、穴部分等
がスポット溶接時の被覆不能部分となりこの部分からの
パーティクル発生がある、 ハ)形成加工された銅箔は取り外し後、廃棄処分するた
め経済性が悪い、等の問題がある。
Spot welding is performed so that the surface of the device or component is covered with a bellows- or embossed copper foil. In this case, a) foreign matter is mixed in each process such as a) bellows of copper foil or forming into embossed shape, spot welding of uneven copper foil on the surface of equipment or component parts, especially from spot welding part (2) Unevenness (bellows, embossed pattern) of copper foil, holes, etc., which are sources of thin film quality variations and particles due to abnormal discharge due to gas release from the product, become uncoverable parts during spot welding. (3) Particles are generated, and c) Formed copper foil is removed and then discarded, which is not economical.

【0010】本発明は、前記問題点を解消し、基板上へ
の薄膜の成膜中に付着堆積物が機器、或いは構成部品か
ら剥離し、飛散することがなく、また、成膜中に熱や応
力による変形およびガス放出がなく、しかも再処理使用
が可能な機器、構成部品を内部に備えた薄膜形成装置を
提供することを目的とする。
The present invention solves the above-mentioned problems, prevents adhered deposits from being separated from the equipment or components during film formation of a thin film on a substrate, and does not scatter. It is an object of the present invention to provide a thin film forming apparatus which does not undergo deformation and gas release due to stress and which can be reprocessed and used and which is internally equipped with components and components.

【0011】[0011]

【課題を解決するための手段】本発明者らは、前記目的
を達成すべく鋭意検討した結果、チタンまたはその合金
で機器、構成部品を形成し、その表面にアルミニウムま
たはその合金を溶融状態で被覆してアルミニウム層また
はアルミニウム合金層を形成した加工品を機器または構
成部品として薄膜形成装置内に設置し、使用することが
最適であることを知見した。
Means for Solving the Problems As a result of intensive studies to achieve the above-mentioned object, the present inventors formed equipments and components with titanium or its alloy, and aluminum or its alloy in a molten state on its surface. It has been found that it is optimal to install and use a processed product which is coated to form an aluminum layer or an aluminum alloy layer as a device or a component in a thin film forming apparatus.

【0012】本発明は前記知見に基いてなされたもので
あり、薄膜形成装置は、真空中で基板上に薄膜を形成す
る薄膜形成装置において、該薄膜形成装置内の機器また
は構成部品をチタンまたはチタン合金の表面にアルミニ
ウム層またはアルミニウム合金層を被覆形成した汚染防
止材で構成したことを特徴とする。また、前記薄膜形成
装置内の機器または構成部品はターゲットのシールド
板、シャッター板、基板ホルダーのいずれかである。
The present invention has been made on the basis of the above findings. A thin film forming apparatus is a thin film forming apparatus for forming a thin film on a substrate in a vacuum, and a device or a component in the thin film forming apparatus is made of titanium or It is characterized in that it is composed of a pollution control material in which a surface of a titanium alloy is coated with an aluminum layer or an aluminum alloy layer. The device or component in the thin film forming apparatus is a target shield plate, shutter plate, or substrate holder.

【0013】[0013]

【作用】機器または構成部品はチタンまたはチタン合金
の表面にアルミニウム層またはアルミニウム合金層で被
覆された汚染防止材で構成されているため、成膜中に機
器または構成部品に基板上に形成する薄膜素材の微粒子
が付着すると確実に付着堆積して容易に剥離しないの
で、成膜中或いは点検時において機器または構成部品よ
りパーティクルの発生はなく、また、吸蔵ガスの放出が
ない。
The thin film formed on the substrate of the device or component during film formation because the device or component is composed of a pollution-preventing material in which the surface of titanium or a titanium alloy is coated with an aluminum layer or an aluminum alloy layer. When the fine particles of the material adhere, they are surely adhered and accumulated and do not peel off easily, so that no particles are generated from the device or the component during film formation or inspection, and no occluded gas is released.

【0014】[0014]

【実施例】以下添付図面に従って本発明の実施例を説明
する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0015】先ず、薄膜形成装置内に配設する例えばタ
ーゲットのシールド板、シャッター板、基板ホルダー等
の機器または構成部品(以下機器という)について説明
する。
First, equipment or components (hereinafter referred to as equipment) such as a target shield plate, a shutter plate, and a substrate holder, which are provided in the thin film forming apparatus, will be described.

【0016】例えば厚さ1mmのチタン板を真空焼鈍処
理後、機器の所定寸法に仕上加工を施し、アセトン等に
より表面を洗浄処理する。その寸法仕上加工の際、機器
の仕上がり表面のアラサは特に問題とはならないが、そ
の表面アラサは#400番程度がその後のアルミニウム
層またはアルミニウム合金層の被覆形成性がよい。
For example, a titanium plate having a thickness of 1 mm is subjected to a vacuum annealing treatment, and then a finishing process is performed to a predetermined size of the equipment, and the surface is washed with acetone or the like. At the time of the dimensional finishing process, the roughness of the finished surface of the equipment does not cause any particular problem, but the surface roughness of about # 400 has a good coating formability of the subsequent aluminum layer or aluminum alloy layer.

【0017】次に、真空度5×10−5Torr程度の
例えば純度99.999%のようなアルゴンガス中でイ
ンダクション等により700〜800℃に加熱溶融した
アルミニウムの溶融用ルツボ内に、前記機器を0.5〜
1.0分間浸漬した後、直ちに該溶融用ルツボ内より引
上げて炉内で自然放冷して、チタン製の機器表面にアル
ミニウム層を被覆形成する。尚、アルミニウムの溶融用
ルツボは高純度高密度黒鉛製がよく、真空中で1400
〜1500℃の加熱脱ガス処理を施したものであればよ
く、また、真空溶解アルミ材を機器の表面に被覆形成す
る溶融用素材として用いれば機器表面へのアルミニウム
の被覆形成膜の密着強度、純度、ピンホールフリー等の
品質向上が顕著である。
Next, the equipment is placed in a melting crucible of aluminum which is heated and melted to 700 to 800 ° C. by induction or the like in an argon gas having a degree of vacuum of about 5 × 10 −5 Torr, for example, a purity of 99.999%. 0.5 to
After soaking for 1.0 minute, the aluminum crucible is immediately pulled up from the melting crucible and naturally cooled in the furnace to form an aluminum layer on the surface of a titanium device. The aluminum melting crucible is preferably made of high-purity high-density graphite, and the
Any material that has been subjected to a heat degassing treatment at ˜1500 ° C. may be used, and if a vacuum melting aluminum material is used as a melting material for forming a coating on the surface of the equipment, the adhesion strength of the aluminum coating forming film to the equipment surface, Significant improvements in quality such as purity and pinhole-free.

【0018】表面にアルミニウム層が被覆形成された機
器は、その表面に付着堆積物の増加が著しいターゲット
のシールド板、シャッター板等の場合は、アルミニウム
層の膜厚は200〜500μm程度とし、六角柱凹型ミ
ゾ加工を被覆形成されたアルミニウム層に成型加工を行
い、その後温度550〜600℃、時間20〜30分間
の加熱処理を施すことが好ましい。また、機器の構造に
よってはチタン材の表面にアルミニウム層を被覆形成す
る前に加工成形を行ってもよい。
In the case of a device having a surface coated with an aluminum layer, in the case of a target shield plate, shutter plate, etc. on which the amount of deposited deposits is remarkably increased, the thickness of the aluminum layer is set to about 200 to 500 μm. It is preferable that the aluminum layer on which the columnar recessed groove processing has been formed is subjected to molding processing, and then subjected to heat treatment at a temperature of 550 to 600 ° C. for a time of 20 to 30 minutes. In addition, depending on the structure of the device, work molding may be performed before forming the aluminum layer on the surface of the titanium material by coating.

【0019】また、これらの機器の表面に堆積物が付着
し、機器が使用済みになった場合は、機器を濃度15%
の塩酸溶液中に浸漬し、黒色のチタン面が表れるまで反
応処理を施して付着堆積物とアルミニウム層とを除去し
た後、該塩酸液より引上げ、水洗する。続いてHF、H
NO、HSOの混合酸液で常温で、酸洗いを行
う。そしてチタンの金属色面が出現後、これを水洗し、
速やかに乾燥させて保管する。この処理により機器自体
のチタン材はその表層が約5〜6μm/回程度の厚さロ
スを生ずるが、チタン厚さ0.5mmとして10回程度
の再使用が強度的に可能となり、経済的メリットが大き
い。
When deposits adhere to the surfaces of these devices and the devices are used up, the concentration of the devices is 15%.
After immersing in the hydrochloric acid solution of No. 1 and performing a reaction treatment until a black titanium surface appears to remove the deposited deposits and the aluminum layer, it is pulled up from the hydrochloric acid solution and washed with water. Then HF, H
Pickling is performed with a mixed acid solution of NO 3 and H 2 SO 4 at room temperature. And after the metallic surface of titanium appears, wash it with water,
Properly dry and store. By this treatment, the titanium material of the equipment itself causes a thickness loss of about 5 to 6 μm / cycle, but with a titanium thickness of 0.5 mm, it can be reused about 10 times in terms of strength, which is an economic advantage. Is big.

【0020】再生処理が施された機器は、前記条件によ
り真空溶解アルミニウム中で浸漬(ディプ)処理を施す
ことにより再生機器の表面にアルミニウム層が被覆され
て再度使用することが出来ることになる。
The equipment subjected to the regeneration treatment can be reused because the aluminum layer is coated on the surface of the regeneration equipment by subjecting the equipment to the immersion treatment (dip) in the vacuum-melted aluminum under the above conditions.

【0021】本発明の汚染防止材は前記のように、真空
度5×10−5Torr程度中で高純度高密度黒鉛ルツ
ボおよび真空溶解アルミニウムを用いて、チタンの表面
に直接アルミニウムを被覆形成することが出来るので高
品質のアルミニウム被覆汚染防止材を提供することが出
来ることになる。
As described above, the antifouling material of the present invention directly coats aluminum on the surface of titanium using a high-purity high-density graphite crucible and vacuum-melted aluminum in a vacuum degree of about 5 × 10 −5 Torr. Therefore, it is possible to provide a high-quality aluminum-coated pollution control material.

【0022】次に、チタン製部材(例えば厚さ1mm)
の表面にアルミニウム層を被覆した汚染防止材から成る
機器の品質について説明する。
Next, a titanium member (for example, a thickness of 1 mm)
The quality of equipment made of a pollution control material having an aluminum layer coated on its surface will be described.

【0023】図1にチタン製部材の表面へ被覆するアル
ミニウムの溶融温度とアルミニウム被覆厚さおよびアル
ミニウム化合物層(チタンとアルミニウムの界面に形成
される両者の化合物層)厚さとの関係を示す。尚、溶融
アルミニウム中へのチタン製部材の浸漬時間は1分間と
した。
FIG. 1 shows the relationship between the melting temperature of aluminum with which the surface of the titanium member is coated, the thickness of the aluminum coating, and the thickness of the aluminum compound layer (the compound layers of both compounds formed at the interface between titanium and aluminum). The titanium member was immersed in the molten aluminum for 1 minute.

【0024】図1に示すようにチタン製部材の表面に被
覆するアルミニウム層の厚さを厚くしたい場合は、アル
ミニウムの溶融温度を700〜750℃とし、チタン製
部材の溶融アルミニウム中への浸漬、引上げを数回繰り
返し行えばよく、その際の1回当たりの浸漬時間は5秒
程度にすることがチタン製部材にアルミニウム層が良好
に被覆される。また、アルミニウムの溶融温度が高いと
チタン製部材の表面に被覆されるアルミニウム層の厚さ
は薄くなるが、その界面付近におけるチタンとアルミニ
ウムの化合物層の厚さは厚くなる。従って、薄膜形成装
置内に配設する機器の構造、薄膜を形成する薄膜材の種
類に対応させてチタン製部材の溶融アルミニウムヘの浸
漬時間と浸漬回数およびアルミニウムの溶融温度を調整
すればチタン製部材の表面に形成被覆するアルミニウム
層の厚さを任意に設定することが出来ることになる。
When it is desired to increase the thickness of the aluminum layer coating the surface of the titanium member as shown in FIG. 1, the melting temperature of aluminum is set to 700 to 750 ° C., and the titanium member is immersed in the molten aluminum. The pulling may be repeated several times, and the immersion time per one time at that time may be set to about 5 seconds so that the aluminum member is well covered with the aluminum layer. Further, when the melting temperature of aluminum is high, the thickness of the aluminum layer coated on the surface of the titanium member becomes thin, but the thickness of the compound layer of titanium and aluminum near the interface becomes thick. Therefore, by adjusting the dipping time and the number of dipping of the titanium member in molten aluminum and the melting temperature of aluminum according to the structure of the equipment installed in the thin film forming apparatus and the type of thin film material for forming the thin film, The thickness of the aluminum layer formed and coated on the surface of the member can be set arbitrarily.

【0025】図2にチタン製部材の溶融アルミニウム中
への浸漬を温度800℃で10分間行った後、引上げ、
同一真空炉内で保管し、溶融アルミニウムの温度が70
0℃になった時点で更に2分間浸漬を行った場合におけ
るチタン(基材)およびアルミニウム(被覆材)と硬度
との関係を示す。尚、溶融アルミニウム中へのチタンの
浸漬時における圧力は5×10−5Torrとし、ま
た、雰囲気は純度99.999%のアルゴンガスとし
た。また、硬度測定における荷重は50gとした。ま
た、チタン(基材)とアルミニウム(被覆材)の硬度の
測定位置(測定点を白丸印でスポット表示)を図2の右
側に表した。その測定個所におけるアルミニウム化合物
層とはチタン(基材)とアルミニウム(被覆材)の界面
において形成されたチタンとアルミニウムの化合物であ
り、その層の厚さはおおよそ50μmであった。
In FIG. 2, the titanium member was immersed in molten aluminum at a temperature of 800 ° C. for 10 minutes and then pulled up.
Stored in the same vacuum furnace, the temperature of molten aluminum is 70
The relationship between hardness (titanium (base material) and aluminum (coating material)) and hardness when immersion is further performed for 2 minutes at 0 ° C. is shown. The pressure during immersion of titanium in the molten aluminum was 5 × 10 −5 Torr, and the atmosphere was argon gas with a purity of 99.999%. Moreover, the load in hardness measurement was 50 g. Further, the hardness measurement positions of titanium (base material) and aluminum (coating material) (measurement points are indicated by white circles in spots) are shown on the right side of FIG. The aluminum compound layer at the measurement point was a compound of titanium and aluminum formed at the interface between titanium (base material) and aluminum (coating material), and the thickness of the layer was about 50 μm.

【0026】図2に示すように、チタンとアルミニウム
はその界面で強固に結合されていることが分かる。ま
た、この試料を2Rにて90°変形折り曲げ試験を行っ
たが、界面近傍において剥離の発生はなかった。従っ
て、使用中にチタンとアルミニウム被覆の界面での剥離
の発生はないことが十分にうかがえる。
As shown in FIG. 2, it can be seen that titanium and aluminum are strongly bonded at the interface. Further, this sample was subjected to a 90 ° deformation bending test at 2R, but no peeling occurred near the interface. Therefore, it can be sufficiently seen that no peeling occurs at the interface between the titanium and the aluminum coating during use.

【0027】図3に温度750℃で10分間の浸漬処理
を施してチタン製部材の表面にアルミニウム層を被覆し
た試料の走査電子顕微鏡(SEM)による断面状態、図
4にチタン部分における電子線マイクロアナライザー
(EPMA)によるアルミニウムの分布状態、図5にア
ルミニウム部分における電子線マイクロアナライザー
(EPMA)によるチタンの分布状態、図6にチタンと
アルミニウム部分における電子線マイクロアナライザー
(EPMA)による酸素(O)の分布状態を示す。図
3(倍率×250)、図4(倍率×250)、図5(倍
率×250)、図6(倍率×250)に示すように、チ
タンとアルミニウムの界面ではチタンがアルミニウム層
内に溶融状態で拡散しており、また、チタン層およびア
ルミニウム層にはピンホールやスラグはなく、チタン材
にアルミニウム層が確実に被覆されていることが分か
り、これにより使用中にチタンとアルミニウムとが剥離
したり、吸蔵ガスが発生しないことが分かる。
FIG. 3 is a sectional view of a sample in which the surface of the titanium member is coated with an aluminum layer by immersion treatment at a temperature of 750 ° C. for 10 minutes by a scanning electron microscope (SEM), and FIG. Distribution state of aluminum by analyzer (EPMA), FIG. 5 shows distribution state of titanium by electron beam microanalyzer (EPMA) in aluminum portion, FIG. 6 shows oxygen (O 2 ) by electron beam microanalyzer (EPMA) in titanium and aluminum portion. Shows the distribution state of. As shown in FIG. 3 (magnification × 250), FIG. 4 (magnification × 250), FIG. 5 (magnification × 250), and FIG. 6 (magnification × 250), titanium is molten in the aluminum layer at the interface between titanium and aluminum. In addition, it was found that the titanium layer and the aluminum layer had no pinholes or slag, and that the titanium material was surely covered with the aluminum layer. It can be seen that no occluded gas is generated.

【0028】図7、図8、図9、図10にチタン材の表
面に被覆したアルミニウム層の表面状態(走査電子顕微
鏡写真)を示す。図7(倍率×50)、図8(倍率×2
50)、図9(倍率×1000)、図10(倍率×30
00)に示すように、アルミニウム層の表面はグレイン
が生成しており、異物等もなく、前記図3、図4、図
5、図6に示す断面同様にアルミニウム層の表面は極め
て健全な状態であることが分かる。これにより成膜中に
装置内で発生し、基板上に形成される薄膜の品質低下の
原因となる微小の異物を確実にアルミニウム層へ付着さ
せてその付着堆積物の密着性が極めて良好となり、付着
堆積物の増加による内部応力の吸収がアルミニウム層の
「ヤワサ」によりなされて機器の変形や、堆積物の剥離
・飛散によるパーティクルは発生し難いこと分かる。
FIG. 7, FIG. 8, FIG. 9, and FIG. 10 show the surface condition (scanning electron microscope photograph) of the aluminum layer coated on the surface of the titanium material. FIG. 7 (magnification x50), FIG. 8 (magnification x2)
50), FIG. 9 (magnification × 1000), FIG. 10 (magnification × 30)
(00), grains are generated on the surface of the aluminum layer, there are no foreign matters, etc., and the surface of the aluminum layer is in a very healthy state like the cross sections shown in FIGS. 3, 4, 5 and 6. It turns out that As a result, minute foreign matter that occurs in the apparatus during film formation and causes deterioration of the quality of the thin film formed on the substrate is reliably adhered to the aluminum layer, and the adhesion of the adhered deposit becomes extremely good, It can be seen that the internal stress due to the increase of the deposited deposit is absorbed by the "Yawasawa" of the aluminum layer, and it is difficult to generate particles due to the deformation of the device and the peeling and scattering of the deposit.

【0029】図11は本発明の薄膜形成装置の1実施例
(スパッタ法による薄膜形成装置)を示す。図中、1は
スパッタ室を示し、該スパッタ室1にスパッタ室1内に
スパッタガスを導入するためのスパッタガス導入口2
と、スパッタ室1内を所定の真空度にするための排気口
3を設けた。
FIG. 11 shows an embodiment (thin film forming apparatus by sputtering method) of the thin film forming apparatus of the present invention. In the figure, reference numeral 1 denotes a sputtering chamber, and a sputtering gas inlet 2 for introducing the sputtering gas into the sputtering chamber 1 is provided in the sputtering chamber 1.
Then, an exhaust port 3 for providing a predetermined degree of vacuum in the sputtering chamber 1 was provided.

【0030】また、スパッタ室1内の上方に薄膜を形成
するための基板4を基板ホルダー5によって下向き保持
するようにした。また、スパッタ室1内の下方の該基板
4に対向する位置に薄膜材のターゲット6を載置するカ
ソード7を配置した。また、ターゲット6およびカソー
ド7の周囲に壁状のシールド板8を囲繞し、基板4とタ
ーゲット6との間にシャッター板9を配置した。そし
て、図11実施例では基板ホルダー5、ターゲットのシ
ールド板8、シャッター板9をチタンの表面にアルミニ
ウム層を被覆形成した汚染防止材で構成した。図中、1
0はカソード7に所定の電圧を印加するための電源、1
1は絶縁板を示す。
The substrate 4 for forming a thin film in the upper portion of the sputtering chamber 1 is held downward by the substrate holder 5. Further, a cathode 7 on which a target 6 made of a thin film material is placed is arranged at a position facing the substrate 4 below in the sputtering chamber 1. Further, a wall-shaped shield plate 8 was surrounded around the target 6 and the cathode 7, and a shutter plate 9 was arranged between the substrate 4 and the target 6. In the embodiment of FIG. 11, the substrate holder 5, the shield plate 8 of the target, and the shutter plate 9 are made of a pollution preventing material in which the surface of titanium is covered with an aluminum layer. 1 in the figure
0 is a power source for applying a predetermined voltage to the cathode 7, 1
Reference numeral 1 indicates an insulating plate.

【0031】次に、本発明の具体的実施例を比較例と共
に説明する。
Next, specific examples of the present invention will be described together with comparative examples.

【0032】実施例1 イオンプレーティング装置内の内壁に薄膜形成素材の蒸
発方向に直角に120μmの純度99.999%のアル
ミニウム層を被覆した総厚1mm、大きさ50mmの方
形状の試料板を配置し、該試料板と蒸発源との間の距離
を400mmに維持した。また、該試料板上に形成する
薄膜素材としてチタンを用意した。続いて、イオンプレ
ーティング装置内を圧力5×10−5Torrにした
後、成膜雰囲気ガスとしてアルゴン・窒素ガス(混合率
1:4)を導入し、装置内を5×10−2Torrに維
持した後、試料板を温度150℃に加熱しながら、イオ
ンプレーティング法で試料板上に蒸着速度0.2μm/
分で、膜厚180μmのチタンナイトライドの薄膜を形
成した。
Example 1 A square sample plate having a total thickness of 1 mm and a size of 50 mm was prepared by coating the inner wall of the ion plating apparatus with an aluminum layer having a purity of 99.999% of 120 μm at right angles to the evaporation direction of the thin film forming material. It was placed and the distance between the sample plate and the evaporation source was maintained at 400 mm. In addition, titanium was prepared as a thin film material to be formed on the sample plate. Subsequently, after the pressure inside the ion plating apparatus was set to 5 × 10 −5 Torr, argon / nitrogen gas (mixing ratio 1: 4) was introduced as a film forming atmosphere gas, and the inside of the apparatus was adjusted to 5 × 10 −2 Torr. After maintaining, while heating the sample plate to a temperature of 150 ° C., a vapor deposition rate of 0.2 μm / on the sample plate by the ion plating method.
In a minute, a titanium nitride thin film having a thickness of 180 μm was formed.

【0033】そして、試料板のスコッチテープによる付
着堆積物の剥離性(JIS−H−8504に準拠)を調
べ、また、試料板の変形度(平面における最大変形高
さ)を測定した。調べた付着堆積物の剥離性と、測定し
た変形度の結果を表1に示す。
Then, the peelability (according to JIS-H-8504) of the deposited deposit on the sample plate by the Scotch tape was examined, and the degree of deformation of the sample plate (the maximum deformation height in a plane) was measured. Table 1 shows the peelability of the deposited deposits examined and the results of the measured degree of deformation.

【0034】比較例1 試料板として厚さ1mm、大きさ50mm方形状のSU
S 304(ステンレス鋼)製板を用いた以外は、前記
実施例1と同様の方法で試料板上に膜厚180μmのチ
タンナイトライドの薄膜を形成した。そして、前記実施
例1に準じて試料板のスコッチテープによる付着堆積物
の剥離性を調べ、また、試料板の変形度を測定した。調
べた付着堆積物の剥離性と、測定した変形度の結果を表
1に示す。
Comparative Example 1 As a sample plate, a SU having a thickness of 1 mm and a size of 50 mm was rectangular.
A thin film of titanium nitride having a film thickness of 180 μm was formed on the sample plate in the same manner as in Example 1 except that the S 304 (stainless steel) plate was used. Then, according to the above-mentioned Example 1, the peelability of the adhered deposits by the Scotch tape on the sample plate was examined, and the degree of deformation of the sample plate was measured. Table 1 shows the peelability of the deposited deposits examined and the results of the measured degree of deformation.

【0035】比較例2 試料板として厚さ1mm、大きさ50mm方形状のチタ
ン製板を用いた以外は、前記実施例1と同様の方法で試
料板上に膜厚180μmのチタンナイトライドの薄膜を
形成した。そして、前記実施例1に準じて試料板のスコ
ッチテープによる付着堆積物の剥離性を調べ、また、試
料板の変形度を測定した。調べた付着堆積物の剥離性
と、測定した変形度の結果を表1に示す。
Comparative Example 2 A thin film of titanium nitride having a film thickness of 180 μm was formed on a sample plate in the same manner as in Example 1 except that a rectangular titanium plate having a thickness of 1 mm and a size of 50 mm was used as the sample plate. Was formed. Then, according to the above-mentioned Example 1, the peelability of the adhered deposits by the Scotch tape on the sample plate was examined, and the degree of deformation of the sample plate was measured. Table 1 shows the peelability of the deposited deposits examined and the results of the measured degree of deformation.

【0036】比較例3 試料板として厚さ1mm、大きさ50mm方形状の無酸
素銅製板を用いた以外は、前記実施例1と同様の方法で
試料板上に膜厚180μmのチタンナイトライドの薄膜
を形成した。そして、前記実施例1に準じて試料板のス
コッチテープによる付着堆積物の剥離性を調べ、また、
試料板の変形度を測定した。調べた付着堆積物の剥離性
と、測定した変形度の結果を表1に示す。
Comparative Example 3 A titanium nitride film having a thickness of 180 μm was formed on a sample plate in the same manner as in Example 1 except that a rectangular oxygen-free copper plate having a thickness of 1 mm and a size of 50 mm was used as the sample plate. A thin film was formed. Then, according to the above-mentioned Example 1, the peelability of the adhered deposits on the sample plate with the Scotch tape was examined, and
The degree of deformation of the sample plate was measured. Table 1 shows the peelability of the deposited deposits examined and the results of the measured degree of deformation.

【0037】比較例4 試料板として厚さ1mm、大きさ50mm方形状の高純
度アルミニウム製板を用いた以外は、前記実施例1と同
様の方法で試料板上に膜厚180μmのチタンナイトラ
イドの薄膜を形成した。そして、前記実施例1に準じて
試料板のスコッチテープによる付着堆積物の剥離性を調
べ、また、試料板の変形度を測定した。調べた付着堆積
物の剥離性と、測定した変形度の結果を表1に示す。
Comparative Example 4 A titanium nitride film having a thickness of 180 μm was formed on a sample plate in the same manner as in Example 1 except that a rectangular plate made of high-purity aluminum having a thickness of 1 mm and a size of 50 mm was used as the sample plate. Thin film was formed. Then, according to the above-mentioned Example 1, the peelability of the adhered deposits by the Scotch tape on the sample plate was examined, and the degree of deformation of the sample plate was measured. Table 1 shows the peelability of the deposited deposits examined and the results of the measured degree of deformation.

【0038】[0038]

【表1】 尚、表1中の一部剥離とは引き剥がしたテープの粘着面
に付着堆積物が認められることを示す。
[Table 1] The partial peeling in Table 1 means that an adhered deposit is observed on the adhesive surface of the peeled tape.

【0039】表1から明らかなように、実施例1は付着
堆積物の剥離がなく、しかも変形度が極めて小さいのに
対し、比較例1,2は変形度は極めて小さかったが、付
着堆積物の一部に剥離が認められた。また、比較例3,
4は付着堆積物の剥離はなかったが、変形度が大きかっ
た。従って、本発明の汚染防止材は使用中に薄膜の品質
低下の要因となるパーテイクルの発生がなく、また、使
用中に機器部材に変形のおそれがないことが確認され
た。
As is clear from Table 1, in Example 1, the adhered deposits were not peeled and the degree of deformation was extremely small, whereas in Comparative Examples 1 and 2, the degree of deformation was extremely small, but the adhered deposits were very small. Peeling was observed in a part of. In addition, Comparative Example 3,
In No. 4, the deposited deposit was not peeled off, but the degree of deformation was large. Therefore, it was confirmed that the pollution control material of the present invention does not generate particles that cause deterioration of the quality of the thin film during use, and there is no risk of deformation of the equipment members during use.

【0040】実施例2 前記図11に示すスパッタ室1内の基板ホルダー5、シ
ールド板8、シャッター板9の夫々を厚さ0.8mmの
チタン製基材の表面に厚さ100μmの純度99.99
9%のアルミニウム層を被覆形成した汚染防止材で構成
した。
Example 2 Each of the substrate holder 5, the shield plate 8 and the shutter plate 9 in the sputtering chamber 1 shown in FIG. 11 was formed on a surface of a titanium base material having a thickness of 0.8 mm and a purity of 99. 99
It was composed of a pollution control material coated with a 9% aluminum layer.

【0041】そして、基板ホルダー5に基板4として表
面に100μmの純度99.999%のアルミニウム層
を被覆したチタン製の総厚1mm、大きさ50mm方形
状板を取り付けると共に、基板4上に形成する薄膜素材
のターゲット6として純度99.999%のアルミニウ
ムを用意し、また、基板ホルダー5とターゲット6との
間の距離を50mmに維持した。続いて、スパッタ室1
内を圧力5×10−7Torrにした後、スパッタガス
としてアルゴンガスを導入してスパッタ室1内の圧力を
5×10−3Torrに維持し、基板4を温度150℃
に維持しながら、ターゲット6に出力6KWを印加し
て、スパッタ法で基板4上に成膜速度60μm/時間で
膜厚500μmのアルミニウムの薄膜を基板4上に形成
した。
Then, a rectangular plate having a total thickness of 1 mm and a size of 50 mm made of titanium having a surface coated with an aluminum layer having a purity of 99.999% of 100 μm is attached to the substrate holder 5 and formed on the substrate 4. Aluminum having a purity of 99.999% was prepared as the target 6 of the thin film material, and the distance between the substrate holder 5 and the target 6 was maintained at 50 mm. Then, sputter chamber 1
After setting the pressure to 5 × 10 −7 Torr, argon gas is introduced as a sputtering gas to maintain the pressure in the sputtering chamber 1 at 5 × 10 −3 Torr, and the substrate 4 is heated to 150 ° C.
While maintaining the above, an output of 6 KW was applied to the target 6 to form an aluminum thin film having a film thickness of 500 μm on the substrate 4 by the sputtering method at a film forming rate of 60 μm / hour.

【0042】そして、前記実施例1に準じて基板のスコ
ッチテープによる付着堆積物の剥離性を調べ、また、基
板の変形度を測定した。調べた付着堆積物の剥離性と、
測定した変形度の結果を表2に示す。
Then, according to the above-mentioned Example 1, the peelability of the deposited deposit on the substrate by the Scotch tape was examined, and the degree of deformation of the substrate was measured. The peelability of the deposited deposits examined,
The results of the measured deformation degree are shown in Table 2.

【0043】比較例5 基板として厚さ1mm、大きさ50mm方形状のSUS
304製板を用いた以外は、前記実施例2と同様の方
法で基板上に膜厚500μmのアルミニウムの薄膜を形
成した。そして、前記実施例1に準じて基板のスコッチ
テープによる付着堆積物の剥離性を調べ、また、基板の
変形度を測定した。調べた付着堆積物の剥離性と、測定
した変形度の結果を表2に示す。
Comparative Example 5 As a substrate, a square SUS having a thickness of 1 mm and a size of 50 mm
An aluminum thin film having a thickness of 500 μm was formed on the substrate by the same method as in Example 2 except that the 304 plate was used. Then, according to the above-mentioned Example 1, the peelability of the adhered deposits on the substrate by the Scotch tape was examined, and the degree of deformation of the substrate was measured. Table 2 shows the results of the peelability of the deposited deposits examined and the measured deformation degree.

【0044】比較例6 基板として厚さ1mm、大きさ50mm方形状のチタン
製板を用いた以外は、前記実施例2と同様の方法で基板
上に膜厚500μmのアルミニウムの薄膜を形成した。
そして、前記実施例1に準じて基板のスコッチテープに
よる付着堆積物の剥離性を調べ、また、基板の変形度を
測定した。調べた付着堆積物の剥離性と、測定した変形
度の結果を表2に示す。
Comparative Example 6 An aluminum thin film having a film thickness of 500 μm was formed on a substrate by the same method as in Example 2 except that a rectangular titanium plate having a thickness of 1 mm and a size of 50 mm was used as the substrate.
Then, according to the above-mentioned Example 1, the peelability of the adhered deposits on the substrate by the Scotch tape was examined, and the degree of deformation of the substrate was measured. Table 2 shows the results of the peelability of the deposited deposits examined and the measured deformation degree.

【0045】比較例7 基板として厚さ1mm、大きさ50mm方形状の無酸素
銅製板を用いた以外は、前記実施例2と同様の方法で基
板上に膜厚500μmのアルミニウムの薄膜を形成し
た。そして、前記実施例1に準じて基板のスコッチテー
プによる付着堆積物の剥離性を調べ、また、基板の変形
度を測定した。調べた付着堆積物の剥離性と、測定した
変形度の結果を表2に示す。
Comparative Example 7 An aluminum thin film having a thickness of 500 μm was formed on a substrate in the same manner as in Example 2 except that a rectangular oxygen-free copper plate having a thickness of 1 mm and a size of 50 mm was used as the substrate. . Then, according to the above-mentioned Example 1, the peelability of the adhered deposits on the substrate by the Scotch tape was examined, and the degree of deformation of the substrate was measured. Table 2 shows the results of the peelability of the deposited deposits examined and the measured deformation degree.

【0046】[0046]

【表2】 表2から明らかなように、実施例2は付着堆積物の剥離
がなく、しかも変形度が極めて小さいのに対し、比較例
5,6,7は付着堆積物の剥離はなかったが、変形度が
大きかった。従って、本発明の汚染防止材は使用中に薄
膜の品質低下の要因となるパーティクルの発生がなく、
また、使用中に機器部材に変形のおそれがないことが確
認された。
[Table 2] As is clear from Table 2, in Example 2, the adhered deposits did not peel, and the degree of deformation was extremely small, whereas in Comparative Examples 5, 6 and 7, the adhered deposits did not peel, but the degree of deformation did not occur. Was great. Therefore, the pollution control material of the present invention does not generate particles that cause deterioration of the quality of the thin film during use,
It was also confirmed that there is no risk of deformation of the equipment members during use.

【0047】実施例3 前記図11に示すスパッタ室1内の基板ホルダー5、シ
ールド板8、シャッター板9の夫々を厚さ0.6mmの
チタン製基材の表面に厚さ220μmの純度99.99
9%のアルミニウム層を被覆形成した汚染防止材で構成
した。
Example 3 Each of the substrate holder 5, the shield plate 8 and the shutter plate 9 in the sputtering chamber 1 shown in FIG. 11 was formed on a surface of a titanium base material having a thickness of 0.6 mm and a purity of 99. 99
It was composed of a pollution control material coated with a 9% aluminum layer.

【0048】そして、基板ホルダー5に基板4として表
面に220μmの純度99.999%のアルミニウム層
を被覆したチタン製の総厚1mm、大きさ50mm方形
状板を取り付けると共に、基板4上に形成する薄膜素材
のターゲット6としてMo−37wt%Siを用意し、
また、基板ホルダー5とターゲット6との間の距離を5
0mmに維持した。続いて、スパッタ室1内を圧力5×
10−7Torrにした後、スパッタガスとしてアルゴ
ンを導入してスパッタ室1内の圧力を5×10−3To
rrに維持し、基板4を温度150℃に維持しながら、
ターゲット6に出力2KWを印加して、スパッタ法で基
板4上に成膜速度13μm/時間で膜厚500μmのM
o−Si合金の薄膜を基板4上に形成した。
Then, a rectangular plate having a total thickness of 1 mm and a size of 50 mm made of titanium having a surface coated with an aluminum layer of 220 μm and a purity of 99.999% is attached to the substrate holder 5 and is formed on the substrate 4. Prepare Mo-37wt% Si as the target 6 of the thin film material,
In addition, the distance between the substrate holder 5 and the target 6 is set to 5
It was maintained at 0 mm. Then, the pressure in the sputtering chamber 1 is set to 5 ×.
After the pressure is set to 10 −7 Torr, argon is introduced as a sputtering gas to adjust the pressure in the sputtering chamber 1 to 5 × 10 −3 To.
While maintaining the temperature at rr and the substrate 4 at a temperature of 150 ° C.,
An output of 2 kW is applied to the target 6 to form an M film having a film thickness of 500 μm on the substrate 4 by a sputtering method at a film forming rate of 13 μm / hour.
A thin film of o-Si alloy was formed on the substrate 4.

【0049】そして、前記実施例1に準じて基板のスコ
ッチテープによる付着堆積物の剥離性を調べ、また、基
板4の変形度を測定した。調べた付着堆積物の剥離性
と、測定した変形度の結果を表3に示す。
Then, according to the first embodiment, the peelability of the adhered deposit on the substrate by the Scotch tape was examined, and the degree of deformation of the substrate 4 was measured. Table 3 shows the results of the peelability of the deposited deposits examined and the measured degree of deformation.

【0050】比較例8 基板として厚さ1mm、大きさ50mm方形状のSUS
304製板を用いた以外は、前記実施例3と同様の方
法で基板上に膜厚500μmのMo−Si合金の薄膜を
形成した。そして、前記実施例1に準じて基板のスコツ
チテープによる付着堆積物の剥離性を調べ、また、基板
の変形度を測定した。調べた付着堆積物の剥離性と、測
定した変形度の結果を表3に示す。
Comparative Example 8 A SUS substrate having a thickness of 1 mm and a size of 50 mm
A Mo—Si alloy thin film having a film thickness of 500 μm was formed on the substrate in the same manner as in Example 3 except that the 304 plate was used. Then, according to the above-mentioned Example 1, the peelability of the deposited deposit on the substrate with the Scott tape was examined, and the degree of deformation of the substrate was measured. Table 3 shows the results of the peelability of the deposited deposits examined and the measured degree of deformation.

【0051】比較例9 基板として厚さ1mm、大きさ50mm方形状のチタン
製板を用いた以外は、前記実施例3と同様の方法で基板
上に膜厚500μmのMo−Si合金の薄膜を形成し
た。そして、前記実施例1に準じて基板のスコッチテー
プによる付着堆積物の剥離性を調べ、また、基板の変形
度を測定した。調べた付着堆積物の剥離性と、測定した
変形度の結果を表3に示す。
Comparative Example 9 A Mo-Si alloy thin film having a thickness of 500 μm was formed on a substrate in the same manner as in Example 3 except that a rectangular titanium plate having a thickness of 1 mm and a size of 50 mm was used as the substrate. Formed. Then, according to the above-mentioned Example 1, the peelability of the adhered deposits on the substrate by the Scotch tape was examined, and the degree of deformation of the substrate was measured. Table 3 shows the results of the peelability of the deposited deposits examined and the measured degree of deformation.

【0052】比較例10 基板として厚さ1mm、大きさ50mm方形状の無酸素
銅製板を用いた以外は、前記実施例3と同様の方法で基
板上に膜厚500μmのMo−Si合金の薄膜を形成し
た。そして、前記実施例1に準じて基板のスコッチテー
プによる付着堆積物の剥離性を調べ、また、基板の変形
度を測定した。調べた付着堆積物の剥離性と、測定した
変形度の結果を表3に示す。
Comparative Example 10 An Mo-Si alloy thin film having a thickness of 500 μm was formed on a substrate in the same manner as in Example 3 except that a rectangular oxygen-free copper plate having a thickness of 1 mm and a size of 50 mm was used as the substrate. Was formed. Then, according to the above-mentioned Example 1, the peelability of the adhered deposits on the substrate by the Scotch tape was examined, and the degree of deformation of the substrate was measured. Table 3 shows the results of the peelability of the deposited deposits examined and the measured degree of deformation.

【0053】比較例11 基板として厚さ1mm、大きさ50mm方形状の高純度
アルミニウム製板を用いた以外は、前記実施例3と同様
の方法で基板上に膜厚500μmのMo−Si合金の薄
膜を形成した。そして、前記実施例1に準じて基板のス
コッチテープによる付着堆積物の剥離性を調べ、また、
基板の変形度を測定した。調べた付着堆積物の剥離性
と、測定した変形度の結果を表3に示す。
Comparative Example 11 A Mo—Si alloy having a film thickness of 500 μm was formed on a substrate in the same manner as in Example 3 except that a square high-purity aluminum plate having a thickness of 1 mm and a size of 50 mm was used as the substrate. A thin film was formed. Then, according to the above-mentioned Example 1, the peelability of the adhered deposits of the substrate by the Scotch tape was examined, and
The degree of deformation of the substrate was measured. Table 3 shows the results of the peelability of the deposited deposits examined and the measured degree of deformation.

【0054】[0054]

【表3】 尚、表3中の一部剥離とは引き剥がしたテープの粘着面
に付着堆積物が認められることを示し、また、変形部一
部剥離とは変形頭部に付着堆積物の割れ剥離が認められ
ることを示す。
[Table 3] Partial peeling in Table 3 means that adhered deposits are found on the adhesive surface of the peeled tape, and partial peeling at the deformed part means cracking and peeling of adhered deposits at the deformed head. It is indicated that.

【0055】表3から明らかなように、実施例3は付着
堆積物の剥離がなく、しかも変形度が極めて小さいのに
対し、比較例8は付着堆積物の一部に剥離が認められる
と共に変形度は大きく、また、比較例9は付着堆積物の
剥離はなかったが、変形度が大きかった。また、比較例
10,11は肉眼で変形が認められる大きな変形があ
り、その変形部分に付着堆積物の割れが見られ、しかも
変形部分の一部に剥離が認められた。従って、本発明の
汚染防止材は使用中に薄膜の品質低下の要因となるパー
ティクルの発生がなく、また、使用中に機器部材に変形
のおそれがないことが確認された。
As is clear from Table 3, in Example 3, there was no peeling of the deposited deposit, and the degree of deformation was extremely small, whereas in Comparative Example 8, peeling was observed in a part of the deposited deposit and deformation occurred. The degree of deformation was large, and in Comparative Example 9, the degree of deformation was large, although the adhered deposits did not peel off. Further, in Comparative Examples 10 and 11, there was a large deformation in which deformation was observed with the naked eye, cracking of the adhered deposit was observed in the deformed portion, and peeling was observed in part of the deformed portion. Therefore, it was confirmed that the pollution control material of the present invention does not generate particles that cause deterioration of the quality of the thin film during use, and there is no risk of deformation of the equipment members during use.

【0056】実施例4 基板として表面に200μmの純度99.999%のア
ルミニウム層を被覆したTi−5wt%Al−2.5w
t%Sn(チタン合金)製の総厚1mm、大きさ50m
m方形状板を用いた以外は、前記実施例3と同様の方法
で基板上に膜厚500μmのMo−Si合金の薄膜を形
成した。そして、前記実施例1に準じて基板のスコッチ
テープによる付着堆積物の剥離性を調べたところなかっ
た。また、基板の変形度を測定したところ最大値は0.
1mmであった。
Example 4 Ti-5 wt% Al-2.5w having a surface coated with an aluminum layer having a purity of 99.999% of 200 μm as a substrate
Made of t% Sn (titanium alloy), total thickness 1 mm, size 50 m
A Mo—Si alloy thin film having a film thickness of 500 μm was formed on the substrate in the same manner as in Example 3 except that the m-square plate was used. Then, according to the above-described Example 1, the peelability of the adhered deposit on the substrate by the Scotch tape was not examined. When the deformation degree of the substrate was measured, the maximum value was 0.
It was 1 mm.

【0057】実施例5 基板として表面に200μmのAl−1wt%Siのア
ルミニウム合金層を被覆したチタン製の総厚1mm、大
きさ50mmの方形状板を用いた以外は、前記実施例3
と同様の方法で基板上に膜厚500μmのMo−Si合
金の薄膜を形成した。そして、前記実施例1に準じて基
板のスコッチテープによる付着堆積物の剥離性を調べた
ところなかった。また、基板の変形度を測定したところ
最大値は0.1mmであった。
Example 5 Example 3 was repeated except that a rectangular plate made of titanium with a total thickness of 1 mm and a size of 50 mm, the surface of which was coated with an aluminum alloy layer of Al-1 wt% Si of 200 μm, was used as the substrate.
A thin film of a Mo—Si alloy having a film thickness of 500 μm was formed on the substrate by the same method as described above. Then, according to the above-described Example 1, the peelability of the adhered deposit on the substrate by the Scotch tape was not examined. Further, when the degree of deformation of the substrate was measured, the maximum value was 0.1 mm.

【0058】従つて、実施例4,5は前記実施例1,
2,3と同様に使用中に薄膜の品質低下の要因となるパ
ーパーティクルの発生がなく、また、使用中に機器の変
形のおそれがないことが確認された。
Therefore, the fourth and fifth embodiments are the same as the first and second embodiments.
As in Nos. 2 and 3, it was confirmed that there was no generation of per-particles that would cause deterioration of the quality of the thin film during use, and there was no fear of deformation of the device during use.

【0059】前記実施例では表面にアルミニウム層また
はアルミニウム合金層を被覆する基材となるチタン合金
としてTi−Al−Snを用いたが、本発明はこれに限
定されるものではなく、前記Ti−AlーSnの他に、
Ti中にV、Mo、Mnを1〜8wt%程度含有するチ
タン合金が挙げられる。
Although Ti-Al-Sn was used as the titanium alloy as the base material for coating the aluminum layer or aluminum alloy layer on the surface in the above-mentioned embodiment, the present invention is not limited to this, and the Ti- In addition to Al-Sn,
An example is a titanium alloy containing V, Mo, and Mn in Ti in an amount of 1 to 8 wt%.

【0060】また、前記実施例では基材のチタン、また
はチタン合金の表面に被覆するアルミニウム合金層とし
てAl−Siを用いたが、本発明はこれに限定されるも
のではなく、前記Al−Siの他に、Al中にCu、T
i、Snを0.5〜10wt%程度含有するアルミニウ
ム合金が挙げられる。
Although Al-Si is used as the aluminum alloy layer for coating the surface of the titanium or titanium alloy of the base material in the above-mentioned embodiment, the present invention is not limited to this and the above-mentioned Al-Si is used. In addition to Cu, T in Al
An aluminum alloy containing 0.5 to 10 wt% of i and Sn can be used.

【0061】[0061]

【発明の効果】このように本発明の薄膜形成装置による
ときは、チタンまたはチタン合金の表面にアルミニウム
層またはアルミニウム合金層を被覆形成した汚染防止材
で装置内の機器または構成部品を構成するようにしたの
で、スパッタリング法等により真空中で基板上への薄膜
の成膜中に発生せる薄膜形成素材の微粒子がこれら機器
または構成部品に付着すると、確実に付着堆積するた
め、成膜中に容易に剥離、飛散することがないから、品
質低下の要因となるパーティクルを顕著に制御すること
が出来、また吸蔵ガスの放出もないから高品質の薄膜を
基板上に容易に形成することが出来る薄膜形成装置を提
供することが出来る効果がある。また、本発明の薄膜形
成装置内に設置し、基板上への薄膜の形成後の汚染防止
材は使用後、再処理して再使用することが出来るので、
極めて経済性に優れる。
As described above, according to the thin film forming apparatus of the present invention, the equipment or the constituent parts in the apparatus are constituted by the pollution preventing material in which the surface of titanium or titanium alloy is coated with the aluminum layer or the aluminum alloy layer. Therefore, if the fine particles of the thin film forming material that are generated during the thin film formation on the substrate in a vacuum by the sputtering method, etc., adhere to these devices or components, they will surely adhere and accumulate. Since it does not peel off or scatter on the surface, it is possible to remarkably control the particles that cause the deterioration of quality, and since there is no release of stored gas, it is possible to easily form a high quality thin film on the substrate. There is an effect that a forming apparatus can be provided. Further, since the contamination preventing material after being installed in the thin film forming apparatus of the present invention and having formed the thin film on the substrate can be reprocessed and reused after use,
Extremely economical.

【図面の簡単な説明】[Brief description of drawings]

【図1】 アルミニウム溶融温度とアルミニウム被覆厚
さおよびアルミニウム化合物層厚さとの関係を表す特性
線図。
FIG. 1 is a characteristic diagram showing a relationship between an aluminum melting temperature and an aluminum coating thickness and an aluminum compound layer thickness.

【図2】 チタンおよびアルミニウムの硬度測定点並び
に、チタンおよびアルミニウムと硬度との関係を表す特
性線図。
FIG. 2 is a characteristic diagram showing hardness measurement points of titanium and aluminum and a relationship between titanium and aluminum and hardness.

【図3】 チタン材の表面にアルミニウム層を被覆形成
した汚染防止材の金属組織を表す図面代用写真。
FIG. 3 is a drawing-substituting photograph showing a metallographic structure of a pollution control material in which an aluminum layer is coated on a surface of a titanium material.

【図4】 汚染防止材のチタン部分のアルミニウム状態
の金属組織を表す図面代用写真。
FIG. 4 is a drawing-substituting photograph showing a metal structure of an aluminum state of a titanium portion of a pollution control material.

【図5】 汚染防止材のアルミニウム部分のチタン状態
の金属組織を表す図面代用写真。
FIG. 5 is a drawing-substituting photograph showing the metal structure of titanium state of the aluminum portion of the pollution control material.

【図6】 汚染防止材のチタンおよびアルミニウム部分
における酸素の含有状態の金属組織を表す図面代用写
真。
FIG. 6 is a drawing-substituting photograph showing a metallographic structure in a state where oxygen is contained in titanium and aluminum portions of a pollution control material.

【図7】 汚染防止材のアルミニウム表面の粒子構造を
表す図面代用写真。
FIG. 7 is a drawing-substituting photograph showing a grain structure of an aluminum surface of a pollution control material.

【図8】 汚染防止材のアルミニウム表面の粒子構造を
表す図面代用写真。
FIG. 8 is a drawing-substituting photograph showing a grain structure of an aluminum surface of a pollution control material.

【図9】 汚染防止材のアルミニウム表面の粒子構造を
表す図面代用写真。
FIG. 9 is a drawing-substituting photograph showing a grain structure of an aluminum surface of a pollution control material.

【図10】 汚染防止材のアルミニウム表面の粒子構造
を表す図面代用写真。
FIG. 10 is a photograph as a substitute for a drawing showing a grain structure of an aluminum surface of a pollution control material.

【図11】 本発明の薄膜形成装置の1実施例の説明線
図。
FIG. 11 is an explanatory diagram of one embodiment of the thin film forming apparatus of the invention.

【符号の説明】[Explanation of symbols]

4 基板 5 基板ホルダー 8 シールド板 9 シャッター板 4 substrate 5 substrate holder 8 shield plate 9 shutter plate

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 真空中で基板上に薄膜を形成する薄膜形
成装置において、該薄膜形成装置内の機器または構成部
品をチタンまたはチタン合金の表面にアルミニウム層ま
たはアルミニウム合金層を被覆形成した汚染防止材で構
成したことを特徴とする薄膜形成装置。
1. A thin film forming apparatus for forming a thin film on a substrate in a vacuum, wherein equipment or components in the thin film forming apparatus are coated with an aluminum layer or an aluminum alloy layer on the surface of titanium or a titanium alloy to prevent contamination. A thin film forming apparatus characterized by being made of a material.
【請求項2】 前記薄膜形成装置内の機器または構成部
品はターゲットのシールド板、シャッター板、基板ホル
ダーのいずれかであることを特徴とする請求項第1項に
記載の薄膜形成装置。
2. The thin film forming apparatus according to claim 1, wherein the device or component in the thin film forming apparatus is any one of a target shield plate, a shutter plate, and a substrate holder.
JP27727293A 1993-10-01 1993-10-01 Thin film forming device Pending JPH07102366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27727293A JPH07102366A (en) 1993-10-01 1993-10-01 Thin film forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27727293A JPH07102366A (en) 1993-10-01 1993-10-01 Thin film forming device

Publications (1)

Publication Number Publication Date
JPH07102366A true JPH07102366A (en) 1995-04-18

Family

ID=17581219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27727293A Pending JPH07102366A (en) 1993-10-01 1993-10-01 Thin film forming device

Country Status (1)

Country Link
JP (1) JPH07102366A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5972114A (en) * 1995-03-10 1999-10-26 Tokyo Electron Limited Film deposition apparatus with anti-adhesion film and chamber cooling means
US6286452B1 (en) 1998-12-02 2001-09-11 Matsushita Electric Industrial Co., Ltd. Sputtering apparatus
JP2007100218A (en) * 2006-12-18 2007-04-19 Toshiba Corp Component for vacuum film deposition system, vacuum film deposition system using the same, and target and backing plate
US7648782B2 (en) 2006-03-20 2010-01-19 Tokyo Electron Limited Ceramic coating member for semiconductor processing apparatus
US7767268B2 (en) 2005-09-08 2010-08-03 Tocalo Co., Ltd. Spray-coated member having an excellent resistance to plasma erosion and method of producing the same
JP2010236094A (en) * 2010-05-31 2010-10-21 Toshiba Corp Method of manufacturing component for vacuum film forming device
US7850864B2 (en) 2006-03-20 2010-12-14 Tokyo Electron Limited Plasma treating apparatus and plasma treating method
JP2011094239A (en) * 2011-01-21 2011-05-12 Toshiba Corp Method for producing component for vacuum film deposition system
US8083912B2 (en) * 2005-09-24 2011-12-27 Applied Materials Gmbh & Co. Kg. Substrate carrier

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5972114A (en) * 1995-03-10 1999-10-26 Tokyo Electron Limited Film deposition apparatus with anti-adhesion film and chamber cooling means
US6286452B1 (en) 1998-12-02 2001-09-11 Matsushita Electric Industrial Co., Ltd. Sputtering apparatus
US7767268B2 (en) 2005-09-08 2010-08-03 Tocalo Co., Ltd. Spray-coated member having an excellent resistance to plasma erosion and method of producing the same
US8083912B2 (en) * 2005-09-24 2011-12-27 Applied Materials Gmbh & Co. Kg. Substrate carrier
US7648782B2 (en) 2006-03-20 2010-01-19 Tokyo Electron Limited Ceramic coating member for semiconductor processing apparatus
US7850864B2 (en) 2006-03-20 2010-12-14 Tokyo Electron Limited Plasma treating apparatus and plasma treating method
JP2007100218A (en) * 2006-12-18 2007-04-19 Toshiba Corp Component for vacuum film deposition system, vacuum film deposition system using the same, and target and backing plate
JP2010236094A (en) * 2010-05-31 2010-10-21 Toshiba Corp Method of manufacturing component for vacuum film forming device
JP2011094239A (en) * 2011-01-21 2011-05-12 Toshiba Corp Method for producing component for vacuum film deposition system

Similar Documents

Publication Publication Date Title
JP5197935B2 (en) Method for the application of twin wire arc spray coating
US6783863B2 (en) Plasma processing container internal member and production method thereof
JP2002069611A (en) Method for extending line in re-using treatment kit
JP6505126B2 (en) Multilayer substrate and manufacturing method
JPH09272965A (en) Parts for vacuum film forming device, vacuum film forming device using the same, target and backing plate
EP1524682B1 (en) Component for vacuum apparatus, production method thereof and apparatus using the same
JPH07102366A (en) Thin film forming device
JP3076768B2 (en) Method for manufacturing member for thin film forming apparatus
JPH0387357A (en) Thin film forming device
JP4769181B2 (en) Target and backing plate
JP2002146523A (en) Sputtering target, and sputtering system using it
JPH07113182A (en) Method and apparatus for coating metallic substrate with coating layer of metal or metal alloy
JP4095764B2 (en) Metal material member for film forming apparatus and film forming apparatus using the same
JP4709358B2 (en) Sputtering target and sputtering apparatus, thin film, and electronic component using the same
JPS59208071A (en) Method and device for forming film
JPH11100665A (en) Sputtering device
JP5254277B2 (en) Manufacturing method of parts for vacuum film forming apparatus
JPH05247634A (en) Sputtering device
JP4519416B2 (en) Anti-contamination device for thin film forming equipment
JP2005154896A (en) Component for vacuum device, method for manufacturing the same, and device for using the same
JP2000204469A (en) Member for film forming device, film forming device, film formation and film-formed substrate for magnetic head
JP2006104496A (en) Part for vacuum film-forming apparatus, and vacuum film-forming apparatus
JP2626823B2 (en) Thin film forming equipment
JP5059993B2 (en) VACUUM DEPOSITION DEVICE COMPONENT AND VACUUM DEPOSITION DEVICE, TARGET DEVICE, AND VACUUM DEPOSITION METHOD USING THE SAME
JPH06220618A (en) Vacuum film forming device and surface treatment of its component