JPH04199736A - Manufacture of pin type radiation fin - Google Patents

Manufacture of pin type radiation fin

Info

Publication number
JPH04199736A
JPH04199736A JP2332606A JP33260690A JPH04199736A JP H04199736 A JPH04199736 A JP H04199736A JP 2332606 A JP2332606 A JP 2332606A JP 33260690 A JP33260690 A JP 33260690A JP H04199736 A JPH04199736 A JP H04199736A
Authority
JP
Japan
Prior art keywords
pin
heat dissipation
pins
radiation fin
micro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2332606A
Other languages
Japanese (ja)
Inventor
Toshihiro Tsuboi
敏宏 坪井
Masayuki Shirai
優之 白井
Kanji Otsuka
寛治 大塚
Takashi Miwa
孝志 三輪
Toshio Hatada
畑田 敏夫
Hitoshi Matsushima
均 松島
Yoshihiro Kondo
義広 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi ULSI Engineering Corp
Hitachi Ltd
Original Assignee
Hitachi ULSI Engineering Corp
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi ULSI Engineering Corp, Hitachi Ltd filed Critical Hitachi ULSI Engineering Corp
Priority to JP2332606A priority Critical patent/JPH04199736A/en
Publication of JPH04199736A publication Critical patent/JPH04199736A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16195Flat cap [not enclosing an internal cavity]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To obtain a pin type radiation fin having high radiation efficiency by manufacturing pins constituting the radiation fin every single substance and connecting a fixed number of pins to a substance to be irradiated. CONSTITUTION:Pins 1 constituting a radiation fin are previously manufactured one by one in single substances, and later a fixed number of pins 1 are connected with a substance to be irradiated such as an LSI package. A shape of the pin has no special restriction, however, for instance, columnar metal pins 1 having high thermal conductivity are integrally formed with the connection parts 2. In this way, a pin pitch can be made minute as compared with a prior base-pin integrated type radiation fin. Thereby, a pin type radiation fin 3 having high radiation efficiency can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、放熱フィンの製造技術に関し、特にピン形放
熱フィンに適用して有効な技術に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a technology for manufacturing heat radiation fins, and particularly to a technology that is effective when applied to pin-shaped heat radiation fins.

〔従来の技術〕[Conventional technology]

LSIパッケージを始めとする各種電子機器の冷却方式
には、強制空冷方式と伝導水冷方式とがある。このうち
、放熱フィン(ヒートシンク)を使用した強制空冷方式
は、構造が簡単であることから、最も広範に利用されて
いる。なお、上記LSIパッケージの冷却技術について
は、日経BP社発行、[日経エレクトロニクス1987
.7.13J P167〜P176において論じられて
いる。
Cooling methods for various electronic devices including LSI packages include forced air cooling and conduction water cooling. Among these, the forced air cooling method using radiation fins (heat sinks) is the most widely used because of its simple structure. Regarding the cooling technology of the above LSI package, please refer to Nikkei Electronics 1987, published by Nikkei BP.
.. 7.13J P167-P176.

ところで、従来の放熱フィンは、AI!の押出し成形で
製造したリブ状のフィンを有するものが一般的であった
が、近年、より放熱効率の高い放熱フィンとして、ベー
ス上に多数のピンを立てたピン形放熱フィンが注目され
ている。
By the way, conventional heat dissipation fins are AI! It was common to have rib-shaped fins manufactured by extrusion molding, but in recent years, pin-shaped heat dissipation fins with a large number of pins on the base have been attracting attention as a heat dissipation fin with higher heat dissipation efficiency. .

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、従来のピン形放熱フィンは、ピンとベースと
を一体に成形しているので加工性が悪く、そのため、ベ
ース上にピンを密に立てることが困難で、放熱効率か充
分に得られないという問題や、製造コス)・が高いとい
う問題かあった。
However, conventional pin-shaped heat dissipation fins have poor workability because the pin and base are integrally molded, making it difficult to stand the pins closely on the base, making it difficult to achieve sufficient heat dissipation efficiency. There was also the problem of high manufacturing costs.

本発明の目的は、ピン形放熱フィンの放熱効率を向上さ
せる技術を提供することにある。
An object of the present invention is to provide a technique for improving the heat radiation efficiency of pin-shaped radiation fins.

本発明の他の目的は、ピン形放熱フィンの製造コストを
低減する技術を提供することにある。
Another object of the present invention is to provide a technique for reducing manufacturing costs of pin-shaped heat dissipating fins.

本発明の前記ならびにその他の目的と新規な特徴は、本
明細書の記述および添付図面から明らかになるであろう
The above and other objects and novel features of the present invention will become apparent from the description of this specification and the accompanying drawings.

〔課題を解決するための手段〕[Means to solve the problem]

本願において開示される発明のうち、代表的なものの概
要を簡単に説明すれば、次のとおりである。
A brief overview of typical inventions disclosed in this application is as follows.

本発明によるピン形放熱フィンの製造方法は、放熱フィ
ンを構成するピンをあらかじめ一本ずつ単体で製造して
おき、その後、上記ピンの所定本数をLSTパッケージ
などの被放熱体に接合するものである。
The method for manufacturing a pin-shaped heat dissipation fin according to the present invention is to manufacture the pins constituting the heat dissipation fin individually one by one in advance, and then bond a predetermined number of the pins to a heat dissipation object such as an LST package. be.

〔作用〕[Effect]

上記した手段によれば、あらかじめ単体で製造したピン
を被放熱体に接合することにより、従来のベース・ピン
一体形放熱フィンに比へてピンピッチを微細化すること
ができるので、放熱効率の高いピン形放熱フィンが得ら
れる。
According to the above-mentioned method, by bonding the pin manufactured as a single unit to the heat dissipation object, the pin pitch can be made finer than that of the conventional base/pin integrated heat dissipation fin, thereby achieving high heat dissipation efficiency. A pin-shaped heat dissipation fin is obtained.

また、寸法や形状の異なる被放熱体毎に放熱フィンを設
計、製造する必要かないので、低コストのピン形放熱フ
ィンが得られる。
Further, since it is not necessary to design and manufacture a radiation fin for each heat radiation object having a different size or shape, a low-cost pin-shaped radiation fin can be obtained.

以下、実施例により本発明を説明する。The present invention will be explained below with reference to Examples.

〔実施例1〕 本実施例1によるピン形放熱フィンの製造方法では、ま
ず第1図に示すようなマイクロピン1を多数本用意する
。上記マイクロピン1は、AA、Cuなとのような熱伝
導度の高い金属からなり、例えば長さ20mm程度、直
径0.5−程度の円柱状をなしている。上記マイクロピ
ンjは、プレス、ダイキャスト、エツチングなど、従来
の金属加工技術を利用して簡単に製造することができる
[Example 1] In the method for manufacturing a pin-shaped heat dissipation fin according to Example 1, first, a large number of micro pins 1 as shown in FIG. 1 are prepared. The micro pin 1 is made of a metal with high thermal conductivity such as AA or Cu, and has a cylindrical shape with a length of about 20 mm and a diameter of about 0.5 mm. The micro pin j can be easily manufactured using conventional metal processing techniques such as pressing, die casting, and etching.

上記マイクロピンlの一端には、必要に応じて太径の接
合部2が設けられる。上記接合部2は、■マイクロピン
l同士の間隔を規制する、■マイクロピンlの接合面積
を確保する、■マイクロピン1の整列を容易にする、な
どの機能を有している。上記接合部2は、例えばマイク
ロピン1の本体と一体成形で製造することができる。ま
た、マイクロピン1の一端をプレスなどで潰して製造す
ることもできる。さらに、マイクロピン1の本体と接合
部2とを別体で製造し、その後接合部2に設けた孔にマ
イクロピン1の一端を挿入して製造することもできる。
A large-diameter joint 2 is provided at one end of the micropin 1, if necessary. The joint portion 2 has the following functions: (1) regulating the distance between the micro-pins 1; (2) securing the joint area of the micro-pins 1; and (2) facilitating the alignment of the micro-pins 1. The joint portion 2 can be manufactured, for example, by integral molding with the main body of the micropin 1. Alternatively, it can also be manufactured by crushing one end of the micropin 1 with a press or the like. Furthermore, it is also possible to manufacture the main body of the micropin 1 and the joining part 2 separately, and then inserting one end of the micropin 1 into a hole provided in the joining part 2.

マイクロピン1の本体や接合部2は、前記第1図に示す
形状に限定されない。例えば第2図や第3図に示すよう
に、マイクロピンlの本体を四角柱状にしたり、接合部
2を円板状にしたりするなど、適宜設計変更することが
できる。また、第4図に示すように、複数本のマイクロ
ピンIのそれぞれの一端に共通の接合部2を設けてもよ
い。このようなマイクロピン1は、例えば第5図に示す
ように、Al、Cuなとの薄い板材をエツチングやプレ
スで加工してマイクロピン1の本体と接合部2とを一=
一体成形し、その後本体部分を直角に折り曲げ加工する
ことによって容易に製造することができる。
The main body and joint portion 2 of the micropin 1 are not limited to the shape shown in FIG. 1 above. For example, as shown in FIGS. 2 and 3, the design can be changed as appropriate, such as by making the main body of the micro pin l into a quadrangular prism shape or making the joint part 2 into a disk shape. Further, as shown in FIG. 4, a common joint portion 2 may be provided at one end of each of the plurality of micro pins I. For example, as shown in FIG. 5, such a micro pin 1 is made by processing a thin plate material such as Al or Cu by etching or pressing to connect the main body of the micro pin 1 and the joint part 2.
It can be easily manufactured by integrally molding and then bending the main body portion at right angles.

次に、上記のようにして製造したマイクロピン1同士を
接合することにより、第6図に示すようなピン形放熱フ
ィン4が得られる。上記ピン形放熱フィン4は、例えば
第1図に示す形状のマイクロピンIを64本用意し、そ
れらの接合部2同士を接合することによって組立てたも
のである。マイクロピン1同士は、例えば高熱伝導性の
シリコーン系接着剤や、半田のような低融点ろう材を使
って接合する。また、第7図に示すように、それぞれの
マイクロピン1の接合部2に凹部4aと凸部4bとから
なる嵌合部を設け、1つのマイクロピンIの凸部4bを
他のマイクロピン1の凹部4aに挿入して接合すること
もできる。なお、ピン形放熱フィン4の組立てを容易に
するため、接合部2の表面にニッケルメッキなどの磁性
体膜を被着し、磁石を使ってマイクロピン1同士を速や
かに整列させることもできる。
Next, by joining the micropins 1 manufactured as described above to each other, a pin-shaped heat dissipation fin 4 as shown in FIG. 6 is obtained. The pin-shaped heat dissipation fin 4 is assembled by preparing, for example, 64 micro pins I having the shape shown in FIG. 1, and joining their joining parts 2 together. The micro pins 1 are bonded to each other using, for example, a highly thermally conductive silicone adhesive or a low melting point brazing material such as solder. Further, as shown in FIG. 7, a fitting portion consisting of a recess 4a and a projection 4b is provided in the joint 2 of each micro pin 1, and the projection 4b of one micro pin I is connected to the other micro pin 1. They can also be joined by being inserted into the recess 4a. In order to facilitate the assembly of the pin-shaped radiation fins 4, a magnetic film such as nickel plating may be applied to the surface of the joint portion 2, and the micro pins 1 may be quickly aligned using a magnet.

また、上記した組立て方法の他、被放熱体の表面にマイ
クロピン1を一本ずつ接合することによって、被放熱体
上で直接ピン形放熱フィン4を組立ててもよい。
In addition to the above assembly method, the pin-shaped heat dissipation fins 4 may be assembled directly on the heat dissipation target by joining the micro pins 1 one by one to the surface of the heat dissipation target.

第8図は、上記ピン形放熱フィン3を装着したピングリ
ッドアレイ(Pin Grid Array) 5であ
る。
FIG. 8 shows a pin grid array 5 equipped with the pin-shaped heat dissipating fins 3 described above.

ピングリッドアレイ5の絶縁基板6は、例えばガラス布
基材エポキシ樹脂(ガラエポ)またはガラス布基材ポリ
イミド樹脂などの合成樹脂で構成されており、その下面
には多数の配線7が形成されている。上記配線7は、例
えばCuからなり、その表面にはNi、Auの順でイッ
キか施されている。上記絶縁基板6の下面には、上記配
線7と電気的に接続された多数のリードピン8が挿入さ
れている。上記リードピン8は、4270イやコバール
などのFe系合金で構成されており、その表面にはSn
あるいは半田なとのメツキが施されている。
The insulating substrate 6 of the pin grid array 5 is made of a synthetic resin such as a glass cloth-based epoxy resin (glass-epoxy resin) or a glass cloth-based polyimide resin, and a large number of wiring lines 7 are formed on its lower surface. . The wiring 7 is made of, for example, Cu, and its surface is coated with Ni and then Au in that order. A large number of lead pins 8 electrically connected to the wiring 7 are inserted into the lower surface of the insulating substrate 6. The lead pin 8 is made of Fe-based alloy such as 4270I or Kovar, and its surface has Sn
Or it is decorated with solder.

上記絶縁基板6上には、例えばCuの薄板からなる熱拡
散板9が設けられている。上記熱拡散板9は、例えばエ
ポキシ樹脂系またはシリコーンゴム系の接着剤10によ
って絶縁基板6の上面に接着されている。また、上記熱
拡散板9上には、ピン形放熱フィン3が設けられている
。上記ピン形放熱フィン3は、例えば前記マイクロピン
1を一本ずつ熱拡散板9上に接合することによって、熱
拡散板9上で直接組立てたものである。マイクロピン1
と熱拡散板9との接着には、例えばエポキシ樹脂系また
はシリコーンゴム系の接着剤10を使用する。なお、マ
イクロピン1と熱拡散板9とが異なる材料で構成されて
いる場合は、マイクロピンlを熱拡散板9上に接合する
際、その接合部2と、隣接する他のマイクロピン1の接
合部2との間に僅かな隙間(図示せず)を設けるとよい
A heat diffusion plate 9 made of a thin plate of Cu, for example, is provided on the insulating substrate 6. The heat diffusion plate 9 is bonded to the upper surface of the insulating substrate 6 with an adhesive 10 made of, for example, epoxy resin or silicone rubber. Further, on the heat diffusion plate 9, a pin-shaped radiation fin 3 is provided. The pin-shaped heat dissipation fin 3 is assembled directly on the heat diffusion plate 9 by, for example, bonding the micro pins 1 one by one onto the heat diffusion plate 9. Micro pin 1
For adhering the heat diffusion plate 9 to the heat diffusion plate 9, an epoxy resin-based or silicone rubber-based adhesive 10 is used, for example. Note that if the micro pin 1 and the heat diffusion plate 9 are made of different materials, when the micro pin l is bonded onto the heat diffusion plate 9, the bonded portion 2 and the other adjacent micro pin 1 may be It is preferable to provide a slight gap (not shown) between the joint part 2 and the joint part 2.

このようにすると、マイクロピンlと熱拡散板9との熱
膨張係数差に起因してピン形放熱フィン3と熱拡散板9
との界面に発生する応力を有効に緩和することができる
ので、ピン形放熱フィン3と熱拡散板9との密着不良な
どによる放熱効率の低下を有効に防止することができる
In this way, due to the difference in thermal expansion coefficient between the micro pins l and the heat diffusion plate 9, the pin-shaped heat dissipation fin 3 and the heat diffusion plate 9
Since the stress generated at the interface between the pin-shaped heat dissipating fins 3 and the heat diffusion plate 9 can be effectively alleviated, a decrease in heat dissipation efficiency due to poor adhesion between the pin-shaped heat dissipating fins 3 and the heat diffusion plate 9 can be effectively prevented.

上記熱拡散板9の下面中央部には、半導体チップIIが
その集積回路形成面を下に向けた状態で接合されている
。すなわち、ピングリッドアレイ5は、半導体チップ1
1から発生した熱を熱拡散板9の全面を通じてピン形放
熱フィン3に伝達し、それぞれのマイクロピン1の表面
から外部に逃がす冷却構造になっている。上記半導体チ
ップ11は、接着剤12によって前記熱拡散板9の下面
に接着されている。上記接着剤12は、半導体チップ1
1と熱拡散板9との熱膨張係数の不整合に起因する応力
を緩和する能力の高い、例えばシリコーンゴムのような
低ヤング率の接着剤からなる。
A semiconductor chip II is bonded to the center of the lower surface of the heat diffusion plate 9 with its integrated circuit forming surface facing downward. That is, the pin grid array 5 is connected to the semiconductor chip 1.
The cooling structure is such that the heat generated from the micro pins 1 is transmitted to the pin-shaped radiation fins 3 through the entire surface of the heat diffusion plate 9, and is released from the surface of each micro pin 1 to the outside. The semiconductor chip 11 is bonded to the lower surface of the heat diffusion plate 9 with an adhesive 12. The adhesive 12 is applied to the semiconductor chip 1
It is made of an adhesive with a low Young's modulus, such as silicone rubber, which has a high ability to relieve stress caused by mismatching of the coefficients of thermal expansion between the heat diffusion plate 1 and the thermal expansion plate 9.

上記半導体チップ11と絶縁基板6の配線7とは、Au
またはAAなどからなるワイヤ13によって電気的に接
続されている。上記半導体チップ11は、熱拡散板9、
絶縁基板6、エポキシ樹脂などの合成樹脂からなるダム
14およびキャップ15によって隔成されたキャビティ
16内に封止されており、上記キャビティ16内には、
水分の浸入による半導体チップ11およびワイヤ13の
腐食を防止するためのシリコーンゲル17が注入されて
いる。
The wiring 7 between the semiconductor chip 11 and the insulating substrate 6 is made of Au.
Alternatively, they are electrically connected by a wire 13 made of AA or the like. The semiconductor chip 11 includes a heat diffusion plate 9,
It is sealed in a cavity 16 separated by an insulating substrate 6, a dam 14 made of synthetic resin such as epoxy resin, and a cap 15.
Silicone gel 17 is injected to prevent corrosion of the semiconductor chip 11 and wires 13 due to moisture intrusion.

このように、本実施例1のピン形放熱フィンlの製造方
法によれば、下記の効果を得ることができる。
As described above, according to the method of manufacturing the pin-shaped heat dissipation fin l of the first embodiment, the following effects can be obtained.

(1)、あらかじめ−本ずつ製造したマイクロピン1同
士を接合してピン形放熱フィン3を製造することにより
、従来のベース・ピン一体形放熱フィンに比べてピンピ
ッチを微細化することができるので、ピン形放熱フィン
3の放熱効率を向上させることかできる。
(1) By manufacturing the pin-shaped heat dissipation fin 3 by bonding the micro pins 1 that have been produced in advance one by one, the pin pitch can be made finer than the conventional base/pin integrated heat dissipation fin. , the heat dissipation efficiency of the pin-shaped heat dissipation fins 3 can be improved.

(2)、あらかじめ−本ずつ製造したマイクロピン1同
士を接合してピン形放熱フィン3を製造することにより
、ベースとピンとを一体成形する従来のピン形放熱フィ
ンの製造方法に比べて加工性が向上する。
(2) By manufacturing the pin-shaped heat dissipation fin 3 by joining together the micro pins 1 that have been manufactured one by one in advance, the processability is improved compared to the conventional manufacturing method of the pin-shaped heat dissipation fin in which the base and the pin are integrally molded. will improve.

(3)、あらかじめ−本ずつ製造したマイクロピンI同
士を接合してピン形放熱フィン3を製造することにより
、ピン形放熱フィン3の外形寸法を自由に拡大または縮
小することができるので、寸法や形状の異なるピングリ
ッドアレイ毎に放熱フィンを設計、製造する必要がない
(3) By manufacturing the pin-shaped heat dissipation fin 3 by joining together the micro pins I that have been produced in advance one by one, the external dimensions of the pin-shaped heat dissipation fin 3 can be freely enlarged or reduced. There is no need to design and manufacture radiation fins for each pin grid array with a different shape.

(4)上記(2)、(3)により、ピン形放熱フィンの
製造コストを低減することができる。
(4) According to (2) and (3) above, the manufacturing cost of the pin-shaped radiation fin can be reduced.

〔実施例2〕 第9図および第1O図に示すように、本実施例2による
ピン形放熱フィンの製造方法は、被放熱体であるピング
リッドアレイ5の熱拡散板9の上面にあらかじめ多数の
孔18を設けておき、上記孔18内にマイクロピン1を
一本ずつ挿入することによって、熱拡散板9上で直接ピ
ン形放熱フィン3の組立てを行うものである。マイクロ
ピン1は、例えばかしめ、または接着剤(ろう材)によ
って孔18内に固定される。あるいはマイクロピン1の
一端および孔18の内部にそれぞれネジを設けて両者を
固定してもよい。
[Example 2] As shown in FIG. 9 and FIG. The pin-shaped heat dissipating fins 3 are assembled directly on the heat diffusion plate 9 by providing holes 18 and inserting the micro pins 1 one by one into the holes 18. The micropin 1 is fixed in the hole 18 by caulking or adhesive (brazing material), for example. Alternatively, screws may be provided at one end of the micropin 1 and inside the hole 18 to fix the two.

以上、本発明者によってなされた発明を実施例に基づき
具体的に説明したが、本発明は前記実施例1.2に限定
されるものてはなく、その要旨を逸脱しない範囲で種々
変更可能であることはいうまでもない。
The invention made by the present inventor has been specifically explained based on Examples above, but the present invention is not limited to Examples 1 and 2, and can be modified in various ways without departing from the gist thereof. It goes without saying that there is.

以上の説明では、主として本発明者によってなされた発
明をその背景となった利用分野である半導体集積回路装
置用の放熱フィンについて説明したか、本発明はそれに
限定されるものではなく、特に小形電子機器の冷却に用
いる放熱フィンに広く適用することができる。
In the above description, the invention made by the present inventor has mainly been explained in relation to heat dissipation fins for semiconductor integrated circuit devices, which is the background field of application, but the present invention is not limited thereto, and is particularly applicable to small electronic devices. It can be widely applied to radiation fins used for cooling equipment.

〔発明の効果〕〔Effect of the invention〕

本願において開示される発明のうち、代表的なものによ
って得られる効果を簡単に説明すれば、下記のとおりで
ある。
Among the inventions disclosed in this application, the effects obtained by typical inventions are briefly described below.

放熱フィンを構成するピンを単体毎に製造し、上記ピン
の所定本数を被放熱体に接合することにより、従来のベ
ース・ピン一体形放熱フィンに比べてピンピッチを微細
化することができるので、放熱効率の高いピン形放熱フ
ィンが得られる。
By manufacturing the pins that make up the heat dissipation fin individually and bonding a predetermined number of the pins to the heat dissipation target, the pin pitch can be made finer than the conventional base/pin integrated heat dissipation fin. A pin-shaped heat dissipation fin with high heat dissipation efficiency can be obtained.

また、寸法や形状の異なる被放熱体毎に放熱フィンを設
計、製造する必要がないので、低コストのピン形放熱フ
ィンが得られる。
Further, since it is not necessary to design and manufacture a radiation fin for each heat radiation object having a different size or shape, a low-cost pin-shaped radiation fin can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例であるピン形放熱フィンの
製造方法を示すマイクロピンの斜視図、第2図〜第4図
は、マイクロピンの別例をそれぞれ示す斜視図、 第5図は、第4図に示すマイクロピンの製造方法を示す
斜視図、 第6図は、ピン形放熱フィンの斜視図、第7図は、ピン
形放熱フィンの製造方法の別例を示す断面図、 第8図は、ピン形放熱フィンを装着したピングリッドア
レイの断面図、 第9図および第10図は、ピン形放熱フィンの製造方法
の別例を工程順に示す斜視図である。 1・・・マイクロピン、2・・・接合部、3・・・ピン
形放熱フィン、4a・・・凹部、4b・・・凸部、5・
・・ピングリッドアレイ、6・・・絶縁基板、7・・・
配線、8・・・リードピン、9・・・熱拡散板、10.
12・・・接着剤、11・・・半導体チップ、13・・
・ワイヤ、14・・・ダム、15・・・キャップ、16
・・・キャピティ、17・・・ソリコーンゲル、18・
・・孔。 区               区 寸                     0転 
            銖 区 rつ 沫 綜       八 −LI      区 口 〈 第7図
FIG. 1 is a perspective view of a micro pin showing a method of manufacturing a pin-shaped heat dissipation fin according to an embodiment of the present invention, FIGS. 2 to 4 are perspective views showing other examples of the micro pin, and FIG. The figure is a perspective view showing a method for manufacturing the micro pin shown in FIG. 4, FIG. 6 is a perspective view of a pin-shaped heat dissipation fin, and FIG. 7 is a cross-sectional view showing another example of the method for producing the pin-type heat dissipation fin. , FIG. 8 is a sectional view of a pin grid array equipped with pin-shaped heat dissipation fins, and FIGS. 9 and 10 are perspective views showing another example of the manufacturing method of pin-shaped heat dissipation fins in the order of steps. DESCRIPTION OF SYMBOLS 1... Micro pin, 2... Joint part, 3... Pin-shaped radiation fin, 4a... Concave part, 4b... Convex part, 5...
...Pin grid array, 6...Insulating substrate, 7...
Wiring, 8... Lead pin, 9... Heat diffusion plate, 10.
12...Adhesive, 11...Semiconductor chip, 13...
・Wire, 14...Dam, 15...Cap, 16
... Capity, 17... Soricone gel, 18.
...hole. Ward Ward size 0 rotation
Figure 7

Claims (1)

【特許請求の範囲】 1、放熱フィンを構成するピンを単体毎に製造し、前記
ピンの所定本数を被放熱体に接合することを特徴とする
ピン形放熱フィンの製造方法。 2、前記ピンの一端に太径の接合部を設けることを特徴
とする請求項1記載のピン形放熱フィンの製造方法。 3、前記ピンの一端に嵌合部を設け、前記嵌合部を介し
て所定本数をピン同士を接合することを特徴とする請求
項1記載のピン形放熱フィンの製造方法。 4、前記ピンを前記被放熱体に設けたピン挿入孔に挿入
することを特徴とする請求項1記載のピン形放熱フィン
の製造方法。
[Claims] 1. A method for manufacturing a pin-shaped heat dissipation fin, characterized in that each pin constituting the heat dissipation fin is produced individually, and a predetermined number of the pins are bonded to a heat dissipation target. 2. The method for manufacturing a pin-shaped heat dissipation fin according to claim 1, characterized in that a large-diameter joint portion is provided at one end of the pin. 3. The method of manufacturing a pin-shaped heat dissipation fin according to claim 1, characterized in that a fitting portion is provided at one end of the pin, and a predetermined number of pins are joined to each other via the fitting portion. 4. The method for manufacturing a pin-shaped heat dissipation fin according to claim 1, characterized in that the pin is inserted into a pin insertion hole provided in the heat dissipation target.
JP2332606A 1990-11-29 1990-11-29 Manufacture of pin type radiation fin Pending JPH04199736A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2332606A JPH04199736A (en) 1990-11-29 1990-11-29 Manufacture of pin type radiation fin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2332606A JPH04199736A (en) 1990-11-29 1990-11-29 Manufacture of pin type radiation fin

Publications (1)

Publication Number Publication Date
JPH04199736A true JPH04199736A (en) 1992-07-20

Family

ID=18256830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2332606A Pending JPH04199736A (en) 1990-11-29 1990-11-29 Manufacture of pin type radiation fin

Country Status (1)

Country Link
JP (1) JPH04199736A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5419041A (en) * 1992-08-04 1995-05-30 Aqty Co., Ltd. Process for manufacturing a pin type radiating fin
US5988266A (en) * 1997-10-29 1999-11-23 Eastman Kodak Company Bonded cast, pin-finned heat sink and method of manufacture
US6026895A (en) * 1998-02-06 2000-02-22 Fujitsu Limited Flexible foil finned heatsink structure and method of making same
WO2002070977A1 (en) * 2001-03-01 2002-09-12 Norsk Hydro Asa Heat exchanger having fins
US7448439B2 (en) * 2002-07-09 2008-11-11 Fujitsu Limited Heat exchanger
EP2242256A1 (en) * 2008-02-06 2010-10-20 Panasonic Corporation Solid-state imaging device and method for manufacturing the same
US7964958B2 (en) 2007-02-20 2011-06-21 Panasonic Corporation Heatsink structure for solid-state image sensor
JP2015226039A (en) * 2014-05-30 2015-12-14 Dowaメタルテック株式会社 Comb tooth-shaped heat radiation pin member, manufacturing method of the same, and heat radiation plate with pins

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5419041A (en) * 1992-08-04 1995-05-30 Aqty Co., Ltd. Process for manufacturing a pin type radiating fin
US5988266A (en) * 1997-10-29 1999-11-23 Eastman Kodak Company Bonded cast, pin-finned heat sink and method of manufacture
US6026895A (en) * 1998-02-06 2000-02-22 Fujitsu Limited Flexible foil finned heatsink structure and method of making same
US6223814B1 (en) 1998-02-06 2001-05-01 Fujitsu Limited Flexible foil finned heatsink structure and method of making same
WO2002070977A1 (en) * 2001-03-01 2002-09-12 Norsk Hydro Asa Heat exchanger having fins
US7448439B2 (en) * 2002-07-09 2008-11-11 Fujitsu Limited Heat exchanger
US7964958B2 (en) 2007-02-20 2011-06-21 Panasonic Corporation Heatsink structure for solid-state image sensor
EP2242256A1 (en) * 2008-02-06 2010-10-20 Panasonic Corporation Solid-state imaging device and method for manufacturing the same
EP2242256A4 (en) * 2008-02-06 2012-04-18 Panasonic Corp Solid-state imaging device and method for manufacturing the same
JP2015226039A (en) * 2014-05-30 2015-12-14 Dowaメタルテック株式会社 Comb tooth-shaped heat radiation pin member, manufacturing method of the same, and heat radiation plate with pins

Similar Documents

Publication Publication Date Title
TWI281238B (en) Thermal enhanced package for block mold assembly
JP3526788B2 (en) Method for manufacturing semiconductor device
US7772036B2 (en) Lead frame based, over-molded semiconductor package with integrated through hole technology (THT) heat spreader pin(s) and associated method of manufacturing
KR100442880B1 (en) Stacked semiconductor module and manufacturing method thereof
JPS60227457A (en) Integrated circuit package
JP2009540572A (en) Method for manufacturing array package using substrate with improved thermal characteristics
JP2001094020A (en) Flip-chip pakcage provided with strip-shaped heat spreader and production method
JP3367299B2 (en) Resin-sealed semiconductor device and method of manufacturing the same
JP2009528699A (en) No-lead package with heat dissipation means
TWI301652B (en) Semiconductor device and its manufacturing method
JPH04199736A (en) Manufacture of pin type radiation fin
JPH11214606A (en) Resin molded semiconductor device and lead frame
JP2593702B2 (en) Method for manufacturing semiconductor device
JP3628058B2 (en) Resin-sealed semiconductor device
JP3655338B2 (en) Resin-sealed semiconductor device and manufacturing method thereof
JP3442721B2 (en) Semiconductor device
JP2004335493A (en) Packaging structure of semiconductor device
JP2000003981A (en) Semiconductor device and its manufacture
KR100487135B1 (en) Ball Grid Array Package
JPS61168926A (en) Resin substrate
JPH0812895B2 (en) Semiconductor device mounted pin grid array package substrate
JP2891426B2 (en) Semiconductor device
JP2001352008A (en) Semiconductor device and its manufacturing method
JPS61194753A (en) Semiconductor device
JP2003078101A (en) Semiconductor device, lead frame provided to the same, and its manufacturing method