JP2015226039A - Comb tooth-shaped heat radiation pin member, manufacturing method of the same, and heat radiation plate with pins - Google Patents

Comb tooth-shaped heat radiation pin member, manufacturing method of the same, and heat radiation plate with pins Download PDF

Info

Publication number
JP2015226039A
JP2015226039A JP2014112054A JP2014112054A JP2015226039A JP 2015226039 A JP2015226039 A JP 2015226039A JP 2014112054 A JP2014112054 A JP 2014112054A JP 2014112054 A JP2014112054 A JP 2014112054A JP 2015226039 A JP2015226039 A JP 2015226039A
Authority
JP
Japan
Prior art keywords
pin
pins
comb
heat radiation
average
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014112054A
Other languages
Japanese (ja)
Other versions
JP6360722B2 (en
Inventor
智胤 青山
Tomotane Aoyama
智胤 青山
啓二 本多
Keiji Honda
啓二 本多
中村 直明
Naoaki Nakamura
直明 中村
歴 米澤
Reki Yonezawa
歴 米澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Metaltech Co Ltd
Original Assignee
Dowa Metaltech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Metaltech Co Ltd filed Critical Dowa Metaltech Co Ltd
Priority to JP2014112054A priority Critical patent/JP6360722B2/en
Publication of JP2015226039A publication Critical patent/JP2015226039A/en
Application granted granted Critical
Publication of JP6360722B2 publication Critical patent/JP6360722B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3672Foil-like cooling fins or heat sinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3677Wire-like or pin-like cooling fins or heat sinks

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a pin member, suitable for mass production, effective for improving a degree of freedom for a sectional shape of a pin and pin disposition.SOLUTION: The comb tooth-shaped heat radiation pin member with pins is a press molded article formed by die-punching a plate-like blank of copper or a copper alloy. A plurality of pins 1 arranged side by side in a comb shape and a substrate 2 for holding the pins at root parts form an integral structure having no joining part. The comb tooth-shaped heat radiation pin member has an end face 3 to be joined by blazing to a base plate member of a heat radiation plate on a back side of the pins 1 of the substrate 2.

Description

本発明は、半導体チップなどの発熱体を冷却するための放熱板の構成部品である、複数の放熱ピンを備えた部材、およびその製造方法に関する。また、その放熱ピン部材がベースプレートと一体化したピン付き放熱板に関する。   The present invention relates to a member having a plurality of heat dissipation pins, which is a component of a heat dissipation plate for cooling a heating element such as a semiconductor chip, and a method for manufacturing the member. Further, the present invention relates to a pin-equipped heat sink whose heat dissipating pin member is integrated with a base plate.

パワー半導体チップなど発熱量の大きい電子部品は、放熱板へ熱を逃がすことによって冷却される。放熱板の片面には一般に別体のヒートシンクがサーマルグリスを介して締結されるが、サーマルグリスは熱伝導度が金属材料よりも低いことから伝熱を妨げる要因となっている。   Electronic components that generate a large amount of heat, such as power semiconductor chips, are cooled by releasing heat to the heat sink. In general, a separate heat sink is fastened to one side of the heat sink via thermal grease, which is a factor that hinders heat transfer because its thermal conductivity is lower than that of a metal material.

これを解決する方法として、放熱板の片面に放熱用のフィンあるいはピンを直接成形する手法が提案されている。例えば特許文献1にはエッチングにより放熱板にフィンあるいはピンを形成する方法が開示されている。しかし、エッチングで深い空隙を形成するには時間とコストがかかり、また多数のフィンやピンを精度良く形成することは必ずしも容易ではない。   As a method for solving this problem, there has been proposed a method of directly forming a heat radiating fin or pin on one surface of a heat radiating plate. For example, Patent Document 1 discloses a method of forming fins or pins on a heat sink by etching. However, it takes time and cost to form deep voids by etching, and it is not always easy to form a large number of fins and pins with high accuracy.

エッチング以外の直接成形方法としては、熱間鍛造法や切削加工法が考えられる。しかし、熱間鍛造では、加工時の変形抵抗を低減するために再結晶温度以上の高温加熱が必要となるので材料が軟化し放熱板の強度不足を招きやすいこと、押出加工の圧力を均一化するのが難しくフィンやピンの高さが不均一となりやすいこと、丸型ピン以外の形状では金型から抜きにくく形状不良が発生しやすいこと、部品周囲のバリ除去と表面酸化皮膜除去の際に表面が粗くなること、金型の寿命が著しく短いことなどの問題を有する。また、切削加工法では、刃物で削るという工法のため直線的な加工が主であり丸型ピンの作製が非常に難しいこと、銅材は切削抵抗が大きく加工速度を高くできないため生産性に劣ること、製造コストが高いことなどの問題がある。   As a direct forming method other than etching, a hot forging method or a cutting method can be considered. However, in hot forging, high-temperature heating above the recrystallization temperature is required to reduce deformation resistance during processing, so the material softens and the heat sink tends to run out of strength, and the extrusion pressure is made uniform. The height of fins and pins is difficult to make difficult, the shapes other than round pins are difficult to remove from the mold, and shape defects are likely to occur, and when removing burrs around parts and removing the surface oxide film There are problems such as a rough surface and a very short life of the mold. Also, in the cutting method, it is mainly difficult to make a round pin because it is a method of cutting with a blade, and copper materials are very difficult to manufacture, and copper materials are inferior in productivity because of high cutting resistance and high processing speed. There are problems such as high manufacturing costs.

一方、特許文献2〜5に見られるように、予め作製したピン部材を、サーマルグリスを介さずに板状部材に取り付ける方法も提案されている。この場合、ピンを1本ずつ立てることから、個々のピンについて板状部材との接合強度を確保するための工夫か必要となる。例えば、隣り合うピン同士が嵌合し合うような特殊な土台を形成したピンを使用する方法(特許文献2)、板状部材にピン挿入孔を設け、その孔にピンをかしめ加工やろう付けなどで固定する方法(特許文献3〜5)が採用される。しかし、ピン1本毎に特殊な土台を形成するためには多大な手間がかかる。また、板状部材に設けた孔にピンを正確に挿入するためには手間がかかり、組立に時間を要する。さらに、かしめ加工の場合は、専用のかしめ治具を使用するための空間を確保する必要があり、ピン間隔をあまり狭められない。   On the other hand, as seen in Patent Documents 2 to 5, a method of attaching a pin member prepared in advance to a plate-like member without using thermal grease has been proposed. In this case, since the pins are erected one by one, it is necessary to devise measures for ensuring the bonding strength between the individual pins and the plate-like member. For example, a method of using a pin on which a special base is formed so that adjacent pins fit together (Patent Document 2), a pin insertion hole is provided in a plate-like member, and the pin is caulked and brazed. The method (patent documents 3-5) to fix by the method etc. is employ | adopted. However, it takes a lot of labor to form a special base for each pin. In addition, it takes time and labor to assemble the pin accurately into the hole provided in the plate member. Furthermore, in the case of caulking, it is necessary to secure a space for using a dedicated caulking jig, and the pin interval cannot be reduced so much.

特開2004−22914号公報JP 2004-22914 A 特開平4−199736号公報JP-A-4-199736 特開平9−203595号公報JP-A-9-203595 特開2004−103734号公報JP 2004-103734 A 特開2006−114688号公報JP 2006-114688 A

放熱ピンは、板状のフィンと比べ放熱性の面で有利となるが、ベースプレート部材の板面に多数の放熱ピンが一体化した「ピン付き放熱板」を製造することは、上述のように、生産性、強度確保、寸法精度、コストなどの面において問題が多く、大量生産に適した合理的なピン付き放熱板の製造手法は確立されていないのが現状である。
本発明は、大量生産に適し、かつピンの断面形状やピン配置に対する自由度の向上にも有効な放熱ピン部品を提供すること、およびその部品を用いて、強度や寸法精度に優れたピン付き放熱板を提供することを目的とする。
Although heat dissipation pins are advantageous in terms of heat dissipation compared to plate-like fins, manufacturing a “heat dissipation plate with pins” in which a large number of heat dissipation pins are integrated on the plate surface of the base plate member is as described above. However, there are many problems in terms of productivity, securing of strength, dimensional accuracy, cost, etc., and there is no rational method for manufacturing a heat sink with pins suitable for mass production.
The present invention provides a heat dissipating pin component suitable for mass production and effective in improving the flexibility of the cross-sectional shape and pin arrangement of the pin, and with the pin, the pin has excellent strength and dimensional accuracy. It aims at providing a heat sink.

上記目的は、銅または銅合金の板状素材を打抜いたプレス成形品であって、くし歯状に並列する複数のピンと、それらのピンを根本部分で支持する基部とが、接合部のない一体構造を成し、前記基部のピン背面側に放熱板のベースプレート部材とろう付け接合される端面を持つ、くし歯形放熱ピン部材によって達成される。前記端面は例えば「フラットな端面」である。また、前記端面は、打抜き加工により形成されたままの端面(打抜き端面)とすることができる。「接合部のない一体構造」とは、複数の部材を接合して一体化する工程を経ていない一体構造を意味する。   The above-mentioned object is a press-molded product obtained by punching a copper or copper alloy plate-shaped material, and a plurality of pins juxtaposed in a comb-like shape and a base portion that supports these pins at the root portion have no joint portion. This is achieved by a comb-shaped heat radiation pin member that has an integral structure and has an end surface that is brazed to the base plate member of the heat radiation plate on the back surface side of the pin of the base portion. The end face is, for example, a “flat end face”. Moreover, the said end surface can be made into the end surface (punching end surface) as formed by punching. The “integrated structure without a joint” means an integrated structure that has not undergone a step of joining and integrating a plurality of members.

上記くし歯形放熱ピン部材において、下記(A)で定義される平均ピン長さLpMは例えば3.0〜30.0mm、平均投影ピン径DpMは例えば0.8〜5.0mmである。平均ピン長さLpMと平均投影ピン径DpMの比で表されるピンの平均アスペクト比LpM/DpMは0.6〜37.5とすることができる。下記(B)で定義される平均投影ピン間隙ApMは例えば1.0〜5.0mmである。
(A)打抜き方向に見た投影面において、接合するベースプレート部材の板厚方向に対して直角方向となる基準線を、基部の前記端面よりピン背面側の任意位置に設定し、基準線からの距離を「高さ」と呼び、ピンの数をnとし、隣り合う2本のピン間における基部の最小高さをそのピン間の「ピン間高さ」と呼ぶとき、あるピンについて、ピン先端の高さHpと、隣り合うピンとの間のピン間高さ(両側のピン間高さが異なる場合は高い方のピン間高さ)Hbとの差Hp−Hbの値を「ピン長さLp」と定め、1/2ピン高さ(Hp−Hb)/2を表す線とピン輪郭線との2つの交点の距離をそのピンの「投影ピン径Dp」と定め、n本のピンのDpの平均値を「平均投影ピン径DpM」と定める。
(B)隣り合う2本のピンについて、双方の共通する高さ領域の中央高さを表す線と双方のピンの向かい合う輪郭線との交点同士の距離をそのピン間の「投影ピン間隙Ap」と定め、n−1箇所のApの平均値を「平均投影ピン間隙ApM」と定める。ただし、nはピンの数である。
ここで、「打抜き方向」は、板状素材を打抜くプレス工程でのパンチ進行方向であり、板状素材の板厚方向に対応する。「接合するベースプレート部材の板厚方向」は、当該くし歯形放熱ピン部材がベースプレート部材表面の所定接合位置にろう材層を介して配置されている状態を想定した場合の、当該ベースプレートの板厚方向を意味する。
In the comb-shaped heat radiation pin member, the average pin length Lp M defined in (A) below is, for example, 3.0 to 30.0 mm, and the average projected pin diameter Dp M is, for example, 0.8 to 5.0 mm. The average pin aspect ratio Lp M / Dp M expressed by the ratio of the average pin length Lp M and the average projected pin diameter Dp M can be set to 0.6 to 37.5. The average projection pin gap Ap M defined by (B) below is, for example, 1.0 to 5.0 mm.
(A) On the projection plane viewed in the punching direction, a reference line that is perpendicular to the thickness direction of the base plate members to be joined is set at an arbitrary position on the back surface side of the pin from the end face of the base, and from the reference line When the distance is called “height”, the number of pins is n, and the minimum height of the base between two adjacent pins is called “inter-pin height” between the pins, The difference between the height Hp of the pin Hp and the height between the adjacent pins (the higher pin height if the height between the pins on both sides is different) Hb is expressed as the value of the pin length Lp And the distance between two intersections of the line representing the 1/2 pin height (Hp−Hb) / 2 and the pin outline is defined as the “projection pin diameter Dp” of the pin, and the Dp of the n pins Is defined as “average projection pin diameter Dp M ”.
(B) For two adjacent pins, the distance between the intersections of the line representing the central height of the common height region between the two pins and the contour line facing both pins is the “projection pin gap Ap” between the pins. And the average value of Ap at n−1 locations is defined as “average projection pin gap Ap M ”. Here, n is the number of pins.
Here, the “punching direction” is a punching direction in a pressing process for punching a plate material, and corresponds to the plate thickness direction of the plate material. “Thickness direction of the base plate member to be joined” refers to the thickness direction of the base plate when it is assumed that the comb-shaped heat radiation pin member is disposed at a predetermined joining position on the surface of the base plate member via a brazing filler metal layer. Means.

ピン付き放熱板において、冷媒の流動性を良好に維持しながら放熱効果の高いピン配置を実現するためには、下記(C)で定義されるピン間隙率Rpが0.14〜0.75である放熱ピン部材を適用することが効果的である。
(C)前記のピン数n、平均ピン間隔ApM、平均ピン径DpMを用いて下記(1)式により「ピン間隙率Rp」を定める。
Rp=(n−1)ApM/[n・DpM+(n−1)ApM] …(1)
In order to achieve a pin arrangement with high heat dissipation effect while maintaining good fluidity of the refrigerant in the pin heat sink, the pin gap ratio Rp defined by (C) below is 0.14 to 0.75. It is effective to apply a certain heat radiation pin member.
(C) The “pin gap ratio Rp” is determined by the following equation (1) using the number n of pins, the average pin interval Ap M , and the average pin diameter Dp M.
Rp = (n−1) Ap M / [n · Dp M + (n−1) Ap M ] (1)

また、下記(D)で定義される最小投影ピン間隙ApMIN、最大投影ピン間隙ApMAXについて、最小投影ピン間隙ApMINは例えば0.8〜2.5mmであり、最大投影ピン間隙ApMAXと前記最小投影ピン間隙ApMINの比で表されるピン間隙比ApMAX/ApMINは例えば1.0〜5.0の範囲とすればよい。
(D)n−1箇所の前記投影ピン間隙Apのうち最も小さい値を「最小投影ピン間隙ApMIN」と定め、最も大きい値を「最大投影ピン間隙ApMAX」と定める。ただし、nはピンの数である。
The minimum projected pin clearance Ap MIN is defined by the following (D), the maximum projected pin gap Ap MAX, the minimum projection pin clearance Ap MIN is 0.8~2.5mm example, the maximum projected pin gap Ap MAX The pin gap ratio Ap MAX / Ap MIN represented by the ratio of the minimum projected pin gap Ap MIN may be in the range of 1.0 to 5.0, for example.
(D) The smallest value among the n−1 projection pin gaps Ap is defined as “minimum projection pin gap Ap MIN ”, and the largest value is defined as “maximum projection pin gap Ap MAX ”. Here, n is the number of pins.

また、本発明では、発熱体を表面に取り付ける銅または銅合金からなるベースプレート部材の前記発熱体取り付け面の裏面に、上記のくし歯形放熱ピン部材が複数個並設して接合され、前記フラットな端面とベースプレート部材表面とが融点300〜600℃のろう材を用いたろう付けにより密着した接合構造を有するピン付き放熱板が提供される。前記接合構造は、例えば、Al含有量が0〜10質量%のZnまたはZn−Al系合金からなるろう材を用いたろう付けにより形成されたものである。   Further, in the present invention, a plurality of the comb-shaped heat radiation pin members are juxtaposed and joined to the back surface of the heating element mounting surface of the base plate member made of copper or copper alloy for mounting the heating element on the surface, and the flat plate Provided is a heat sink with a pin having a joining structure in which an end surface and a surface of a base plate member are in close contact with each other by brazing using a brazing material having a melting point of 300 to 600 ° C. The joining structure is formed, for example, by brazing using a brazing material made of Zn or a Zn—Al based alloy having an Al content of 0 to 10% by mass.

上記のくし歯形放熱ピン部材の製造方法として、銅または銅合金の板状素材を打抜いて、くし歯状に並列する複数のピンと、それらのピンを根本部分で支持する基部を有する中間製品を得る工程、
前記中間製品に1回または複数回のプレス加工を施して、ピンの断面形状を変化させる工程、
を有する製造方法が提供される。
As a manufacturing method of the above-described comb-shaped heat radiation pin member, an intermediate product having a plurality of pins that are formed by punching a copper or copper alloy plate-like material and arranged in a comb-tooth shape and a base portion that supports these pins at the root portion Obtaining step,
A step of changing the cross-sectional shape of the pin by subjecting the intermediate product to one or more presses;
A manufacturing method is provided.

銅または銅合金の板状素材をプレス成形することにより形成される本発明に従うくし歯形放熱ピン部材は、以下のようなメリットを有する。
(a)生産性が高い。
(b)ピンの断面形状を円形、楕円形、多角形など任意に設定することができ、かつピン長さ、ピン径、ピン間隔についても任意に設定することができるので、放熱性と冷媒の流動性を考慮した効率的なピン形状、ピン配置を有する放熱板の設計が容易となる。
(c)寸法精度が高く、バリ取りが不要な程度に表面性状が良好である。
(d)ピン背面側にフラットな端面を持つので、そのフラットな端面部分の全体を放熱板のベースプレート部材の表面にろう付け接合することにより、ベースプレート部材とピンの間に良好な熱伝導性を確保することができ、かつ高い接合強度が得られる。
(e)複数のピンが一体化されているため、1本ずつ独立したピンをベースプレート部材に取り付ける場合と比較して、ピン付き放熱板の組立が顕著に容易化される。
また、このくし歯形放熱ピン部材を用いたピン付き放熱板は、以下のようなメリットを有する。
(f)所定のピン配列を有するくし歯型放熱ピン部材をベースプレート部材表面に複数個並設することにより、従来の方法では生産性やコストの面で実施化が困難であった、より理想的なピン形状、ピン配置が低コストで容易に実現できる。
(g)放熱ピン部材の接合に比較的低融点のZnまたはZn−Al系合金からなるろう材を適用することにより、製造時の昇温による材料軟化を抑止して放熱板の強度を高く維持できる。
The comb-shaped heat radiation pin member according to the present invention formed by press-molding a copper or copper alloy plate material has the following merits.
(A) Productivity is high.
(B) The cross-sectional shape of the pin can be arbitrarily set such as a circle, an ellipse, or a polygon, and the pin length, pin diameter, and pin interval can also be arbitrarily set. Design of a heat sink having an efficient pin shape and pin arrangement in consideration of fluidity is facilitated.
(C) High dimensional accuracy and good surface properties to the extent that deburring is unnecessary.
(D) Since the pin has a flat end surface on the back side, good thermal conductivity can be obtained between the base plate member and the pin by brazing and joining the entire flat end surface portion to the surface of the base plate member of the heat sink. Can be ensured, and high bonding strength can be obtained.
(E) Since a plurality of pins are integrated, the assembly of the heat sink with pins is significantly facilitated as compared with the case where independent pins are attached to the base plate member one by one.
Moreover, the heat sink with a pin using this comb-tooth-shaped heat radiation pin member has the following merits.
(F) By arranging a plurality of comb-shaped heat radiation pin members having a predetermined pin arrangement on the surface of the base plate member, it is difficult to implement the conventional method in terms of productivity and cost. Pin shape and pin arrangement can be easily realized at low cost.
(G) By applying a brazing material made of Zn or a Zn-Al alloy having a relatively low melting point to the joining of the radiating pin members, the softening of the material due to the temperature rise at the time of manufacture is suppressed and the strength of the radiating plate is kept high. it can.

くし歯形放熱ピン部材の形状を三角法により例示した図。The figure which illustrated the shape of the comb-tooth-shaped radiation pin member by the trigonometric method. くし歯形放熱ピン部材の寸法パラメータを説明するための正面図。The front view for demonstrating the dimension parameter of a comb-tooth-shaped heat radiation pin member. 本発明に従うピン付き放熱板のピン設置面側をベースプレート部材の板厚方向に見た図。The figure which looked at the pin installation surface side of the heat sink with a pin according to this invention in the plate | board thickness direction of the baseplate member. 冷媒流路を設けたピン付き放熱板の冷却構造を模式的に例示した断面図。Sectional drawing which illustrated typically the cooling structure of the heat sink with a pin which provided the refrigerant | coolant flow path. 冷媒流路を設けたピン付き放熱板の冷却構造を模式的に例示した断面図。Sectional drawing which illustrated typically the cooling structure of the heat sink with a pin which provided the refrigerant | coolant flow path. 本発明に従うピン付き放熱板を用いた冷却構造を有するパワー半導体ユニットの断面構造を模式的に例示した断面図。Sectional drawing which illustrated typically the cross-section of the power semiconductor unit which has a cooling structure using the heat sink with a pin according to this invention. くし歯型放熱ピン部材の外観を示す図面代用写真。The drawing substitute photograph which shows the external appearance of a comb-tooth type heat radiation pin member. ベースプレート部材の外観を示す図面代用写真。The drawing substitute photograph which shows the external appearance of a baseplate member. ピン付き放熱板の外観を示す図面代用写真。Drawing substitute photograph showing appearance of heat sink with pin. くし歯形放熱ピン部材の基部長手方向に見た種々の形状を例示した側面図。The side view which illustrated the various shape seen in the base longitudinal direction of the comb-tooth-shaped heat radiation pin member. 冷媒流路を設けたピン付き放熱板の冷却構造を模式的に例示した断面図。Sectional drawing which illustrated typically the cooling structure of the heat sink with a pin which provided the refrigerant | coolant flow path. 湾曲を付与したくし歯形放熱ピン部材について、接合するベースプレート部材の板厚方向および基準線を例示した正面図。The front view which illustrated the plate | board thickness direction of the baseplate member to join, and a reference line about the comb-tooth-shaped thermal radiation pin member which provided the curve.

〔くし歯型放熱ピン部材〕
図1に、本発明に従うくし歯形放熱ピン部材の一例についての形状を三角法によって示す。このくし歯形放熱ピン部材10は銅または銅合金の板状素材を打抜いてプレス成形することにより形成されている。図1(a)は打抜き方向に見た正面図、(b)はピンの長手方向に見た平面図、(c)は基部の長手方向に見た側面図である。この例ではピン1の数が7本であり、断面形状が円形のピン1(いわゆる「丸型ピン」)が等間隔でくし歯状に並列している。各ピン1の一端部が一つの基部2によって繋がっている。(d)は、図(a)中に符号Aで示した部分の拡大図である。(d)に示すように、ピン1の基部2への付け根部分にはプレス成形によりRを付けてもよい。各ピン1と基部2が接合部のない一体構造を成し、くし歯形放熱ピン部材10を形成している。基部2のピン1に対して背面側にベースプレート部材とろう付け接合される端面3が形成されている。この図に例示した端面3は「フラットな端面」である。図中、ピンの長手方向を符号4、基部の長手方向を符号5、打抜き方向を符号6で示してある。打抜き方向6は板状素材の板厚方向に相当する方向である。ピンに特段の曲げ加工を施していない限り、通常、打抜き方向6はピンの長手方向4と基部の長手方向5に垂直の方向となる。以下、特に断らない限り、くし歯形放熱ピン部材に関する「正面図」は、くし歯形放熱ピン部材を図1(a)と同様の打抜き方向に無限遠の視点から見た投影図を意味する。また、「側面図」は図1(c)と同様の基部の長手方向に無限遠の視点から見た投影図を意味する。
[Comb teeth type heat radiation pin member]
In FIG. 1, the shape about an example of the comb-tooth-shaped heat radiation pin member according to this invention is shown by the trigonometric method. The comb-shaped heat radiation pin member 10 is formed by punching a copper or copper alloy plate material and press-molding it. FIG. 1A is a front view seen in the punching direction, FIG. 1B is a plan view seen in the longitudinal direction of the pin, and FIG. 1C is a side view seen in the longitudinal direction of the base. In this example, the number of pins 1 is 7, and pins 1 having a circular cross-sectional shape (so-called “round pins”) are arranged in a comb-like shape at equal intervals. One end of each pin 1 is connected by one base 2. (D) is the enlarged view of the part shown with the code | symbol A in FIG. As shown to (d), you may attach R to the base part to the base 2 of the pin 1 by press molding. Each pin 1 and the base portion 2 form an integral structure without a joint portion, and a comb-shaped heat radiation pin member 10 is formed. An end surface 3 is formed on the back side of the pin 2 of the base portion 2 to be brazed to the base plate member. The end face 3 illustrated in this figure is a “flat end face”. In the drawing, the longitudinal direction of the pin is indicated by reference numeral 4, the longitudinal direction of the base is indicated by reference numeral 5, and the punching direction is indicated by reference numeral 6. The punching direction 6 is a direction corresponding to the thickness direction of the plate material. Unless the pin is specially bent, the punching direction 6 is usually perpendicular to the longitudinal direction 4 of the pin and the longitudinal direction 5 of the base. Hereinafter, unless otherwise specified, the “front view” regarding the comb-shaped heat radiation pin member means a projection view of the comb-tooth heat radiation pin member viewed from an infinite viewpoint in the same punching direction as FIG. Further, the “side view” means a projection view viewed from a viewpoint at infinity in the longitudinal direction of the base similar to FIG.

図10に、本発明に従うくし歯形放熱ピン部材の形状について、いくつかの側面図を例示する。(1)、(5)、(6)は打抜き方向6の投影幅が基部2よりピン1の方が小さいもの、(2)は基部2とピン1の打抜き方向6の投影幅が等しいもの、(3)、(4)、(7)は打抜き方向6の投影幅が基部2よりピン1の方が大きいものである。   FIG. 10 illustrates several side views of the shape of the comb-shaped heat radiation pin member according to the present invention. (1), (5), (6) are those in which the projected width in the punching direction 6 is smaller in the pin 1 than in the base 2, and (2) is that in which the projected width in the punching direction 6 between the base 2 and the pin 1 is equal. In (3), (4), and (7), the projected width in the punching direction 6 is larger for the pin 1 than for the base 2.

図2に、本明細書で使用している寸法パラメータを説明するためのくし歯形放熱ピン部材の正面図(打抜き方向に無限遠の視点から見た投影図)を例示する。この投影面において、基部2におけるピン1の背面側にベースプレート部材とろう付け接合される端面3がある。この端面3よりピン1の背面側の任意位置に、接合するベースプレートの板厚方向に対して直角方向となる基準線aを設定する。この図の場合、前記端面3はフラットであり、基準線aは端面3に平行な直線である。反り付け加工が予め施されたベースプレート部材にくし歯形放熱ピン部材をろう付け接合する場合は、そのベースプレート部材の反り形状に合致する湾曲を付与したくし歯形放熱ピン部材が適用される。そのような湾曲を付与したくし歯形放熱ピン部材においては、基準線aは当該湾曲を反映した曲線となる(後述の図12参照)。ピン1の背面側には凹部7あるいは凸部8が設けられることがある。基準線aからの距離を「高さ」と呼ぶ。図2では基準となる高さをH0と表示している。ピン1の数nは、この図の場合8本である。左からピンに(1)〜(8)の番号を、またピン間に[1]〜[7]の番号をそれぞれ付した。隣り合う2本のピンの間の基部投影表面の最小高さをそのピン間の「ピン間高さ」と呼ぶ。 FIG. 2 exemplifies a front view of a comb-shaped heat radiation pin member (projected view seen from a point of view at infinity in the punching direction) for explaining the dimensional parameters used in the present specification. In this projection plane, there is an end face 3 that is brazed to the base plate member on the back side of the pin 1 in the base portion 2. A reference line a that is perpendicular to the thickness direction of the base plate to be joined is set at an arbitrary position on the back side of the pin 1 from the end face 3. In this figure, the end surface 3 is flat, and the reference line a is a straight line parallel to the end surface 3. When the comb-shaped heat radiation pin member is brazed and joined to a base plate member that has been previously warped, a comb tooth heat radiation pin member having a curvature that matches the warp shape of the base plate member is applied. In the comb-shaped heat radiation pin member to which such a curve is given, the reference line a is a curve reflecting the curve (see FIG. 12 described later). A concave portion 7 or a convex portion 8 may be provided on the back side of the pin 1. The distance from the reference line a is called “height”. In FIG. 2, the reference height is indicated as H 0 . The number n of pins 1 is eight in this figure. The numbers (1) to (8) are assigned to the pins from the left, and the numbers [1] to [7] are assigned between the pins. The minimum height of the base projection surface between two adjacent pins is called the “inter-pin height” between the pins.

あるピンについて、ピン先端の基準面高さHpと、隣り合うピンとの間のピン間高さ(両側のピン間高さが異なる場合は高い方のピン間高さ)Hbとの差Hp−Hbの値を「ピン長さLp」と定める。例えば、ピン(1)のピン長さLp(1)はHp(1)−Hb[1]である。ピン(2)のピン長さLp(2)はHp(2)−Hb[1]である。Hb[1]=Hb[2]であるから、Lp(2)はHp(2)−Hb[2]とも等しい。ピン(3)のピン長さLp(3)については両側のピン間高さがHb[2]<Hb[3]と異なるので、高い方のHb[3]を採用し、Lp(3)はHp(3)−Hb[3]となる。 For a certain pin, the difference Hp−Hb between the reference surface height Hp at the tip of the pin and the inter-pin height between adjacent pins (the higher inter-pin height if the height between the pins on both sides is different) Hb Is defined as “pin length Lp”. For example, the pin length Lp (1) of the pin (1) is Hp (1) −Hb [1] . The pin length Lp (2) of the pin (2) is Hp (2) −Hb [1] . Since Hb [1] = Hb [2] , Lp (2) is equal to Hp (2) -Hb [2] . As for the pin length Lp (3) of the pin (3), the height between the pins on both sides is different from Hb [2] <Hb [3] , so the higher Hb [3] is adopted, and Lp (3) is Hp (3) -Hb [3]

あるピンについて、1/2ピン高さ(Hp−Hb)/2を表す線とピン輪郭線との2つの交点の距離をそのピンの「投影ピン径Dp」と定める。例えば、ピン(1)の場合、1/2ピン高さ(Hp(2)−Hb[1])/2を表す線bとピン(1)の輪郭線cとの交点がx11、x12の2点存在し、そのx11とx12の距離をピン(1)の投影ピン径Dp(1)とする。同様にピン(4)の場合、1/2ピン高さ(Hp(4)−Hb[4])/2を表す線dとピン(4)の輪郭線eとの交点がx41、x42の2点存在し、そのx41とx42の距離をピン(4)の投影ピン径Dp(4)とする。このようにして定めた各ピンの投影ピン径Dpの平均値を当該くし歯型放熱ピン部材の「平均投影ピン径DpM」と定める。図2の例では、各投影ピン径Dp(1)〜Dp(8)の総和をピン数n=8で除した値が平均投影ピン径DpMとなる。 For a pin, the distance between the two intersections of the line representing the 1/2 pin height (Hp−Hb) / 2 and the pin contour is defined as the “projection pin diameter Dp” of the pin. For example, in the case of the pin (1), the intersections of the line b representing the 1/2 pin height (Hp (2) -Hb [1] ) / 2 and the contour line c of the pin (1) are x 11 and x 12. the present two points, and their x 11 and x 12 projecting pin diameter Dp of the pin (1) the distance (1). Similarly, in the case of the pin (4), the intersections of the line d representing the 1/2 pin height (Hp (4) −Hb [4] ) / 2 and the contour line e of the pin (4) are x 41 and x 42. the present two points, and the projection pin diameter Dp of the pin a distance x 41 and x 42 (4) (4) . The average value of the projected pin diameters Dp of the pins thus determined is determined as the “average projected pin diameter Dp M ” of the comb-shaped heat radiation pin member. In the example of FIG. 2, a value obtained by dividing the sum of the projection pin diameters Dp (1) to Dp ( 8) by the number of pins n = 8 is the average projection pin diameter Dp M.

ある隣り合う2本のピンに挟まれるピン間について、双方の共通する高さ領域の中央高さを表す線と双方のピンの向かい合う輪郭線との交点同士の距離をそのピン間の「投影ピン間隙Ap」と定める。例えば、ピン(4)とピン(5)に挟まれるピン間[4]では、双方のピンはそれぞれピンの全長Hb[4]〜Hp(4)とHb[4]〜Hp(5)にわたってピンの存在する高さ領域が共通する。従って、その高さ領域の中央高さは(Hp(4)−Hb[4])/2=(Hp(5)−Hb[4])/2となり、当該中央高さを表す線dと双方のピンの向かい合う輪郭線eおよびfとの交点はそれぞれx42およびx51であり、x42とx51の距離をピン間[4]の投影ピン間隙Ap[4]とする。これに対し、ピン(6)とピン(7)に挟まれるピン間[6]では、ピン(6)の高さ領域はHb[5]〜Hp(6)、ピン(7)の高さ領域はHb[6]〜Hp(7)であり、双方のピンが存在する共通の高さ領域(すなわち双方のピンの水平方向距離を想定可能な高さ領域)はHb[5]〜Hp(7)の範囲に限られる。従って、その高さ領域の中央高さは(Hp(7)−Hb[5])/2となり、当該中央高さを表す線gと双方のピンの向かい合う輪郭線hおよびiとの交点はそれぞれx62およびx71であり、x62とx71の距離をピン間[6]の投影ピン間隙Ap[6]とする。このようにして定めた各ピン間の投影ピン間隔Apの平均値を当該くし歯型放熱ピン部材の「平均投影ピン間隙ApM」と定める。図2の例では、各投影ピン間隙Ap[1]〜Ap[7]の総和をピン間の数n−1=7で除した値が平均投影ピン間隙ApMとなる。また、本明細書では、n−1箇所の前記投影ピン間隙Apのうち最も小さい値を「最小投影ピン間隙ApMIN」、最も大きい値を「最大投影ピン間隙ApMAX」と定める。 For the pin between two adjacent pins, the distance between the intersections of the line representing the center height of the common height region of both pins and the contour line facing both pins is expressed as “projection pin between the pins. It is defined as “Gap Ap”. For example, in the inter-pin [4] sandwiched between the pin (4) and the pin (5), both pins are respectively pinned over the entire length Hb [4] to Hp (4) and Hb [4] to Hp (5). The same height region exists. Therefore, the center height of the height region is (Hp (4) -Hb [4] ) / 2 = (Hp (5) -Hb [4] ) / 2, and the line d representing the center height and both the intersections of the contour e and f of opposed pins is x 42 and x 51 respectively, between the pins the distance between the x 42 and x 51 to [4] projecting pin gap Ap [4] of. On the other hand, in the inter-pin [6] sandwiched between the pin (6) and the pin (7), the height region of the pin (6) is Hb [5] to Hp (6) and the height region of the pin (7). Hb [6] to Hp (7) , and a common height region where both pins exist (that is, a height region in which the horizontal distance between both pins can be assumed) is Hb [5] to Hp (7 ) Is limited. Therefore, the center height of the height region is (Hp (7) -Hb [5] ) / 2, and the intersection of the line g representing the center height and the contour lines h and i facing both pins is respectively a x 62 and x 71, and the projection pin gap Ap [6] of the distance x 62 and x 71 between pins [6]. The average value of the projection pin interval Ap between the pins thus determined is determined as “average projection pin gap Ap M ” of the comb-shaped heat radiation pin member. In the example of FIG. 2, a value obtained by dividing becomes average projected pin gap Ap M by the number n-1 = 7 between pin sum of the projected pin gap Ap [1] ~Ap [7] . In the present specification, the smallest value among the n−1 projection pin gaps Ap is defined as “minimum projection pin gap Ap MIN ”, and the largest value is defined as “maximum projection pin gap Ap MAX ”.

図12に、湾曲を付与したくし歯形放熱ピン部材の基準線を記載した正面図を例示する。図中には、このくし歯形放熱ピン部材をベースプレート部材20の所定接合位置にろう材層11を介して配置したときの、基部2の打抜き方向中心位置における、当該ベースプレート部材20の断面形状を破線で示してある。ベースプレート部材20には予め反り付け加工が施されており、くし歯形放熱ピン部材にも予め前記反り形状に合致する湾曲が付されている。接合するベースプレート部材20の板厚方向9は、反り形状に応じて、場所により変化する。この場合、基準線aとして、板厚方向9に対して常に直角方向となる曲線が採用される。この基準線aの板厚方向9における位置を「基準となる高さH0」とし、基準線aからの距離を「高さ」として、前述の各寸法パラメータが規定される。なお、図12において、反りの大きさ(湾曲の程度)は誇張して描いてある。 In FIG. 12, the front view which described the reference line of the comb-tooth-shaped heat radiation pin member which provided the curve is illustrated. In the drawing, the cross-sectional shape of the base plate member 20 at the center position in the punching direction of the base portion 2 when the comb-shaped heat radiation pin member is disposed via the brazing filler metal layer 11 at a predetermined joining position of the base plate member 20 is indicated by a broken line. It is shown by. The base plate member 20 is warped in advance, and the comb-shaped heat radiation pin member is also curved in advance to match the warp shape. The plate thickness direction 9 of the base plate member 20 to be joined varies depending on the location depending on the warp shape. In this case, a curve that is always perpendicular to the plate thickness direction 9 is adopted as the reference line a. The position parameters of the reference line a in the plate thickness direction 9 are defined as “reference height H 0 ”, and the distance from the reference line a is defined as “height”. In FIG. 12, the magnitude of the warpage (degree of curvature) is exaggerated.

後述のように、本発明に従うくし歯形放熱ピン部材は、複数個を一組としてベースプレート部材表面にろう付け接合され、ピン付き放熱板を構成する。ピンの部分は水などの液体冷媒の流動にさらされて、放熱板から冷媒への熱移動を担う。電子部品の放熱用途においては、通常、上記平均ピン長さLpMは3.0〜30.0mm、平均投影ピン径DpMは0.8〜5.0mmの範囲で設定することが望ましい。多くの場合、LpMは5.0〜15.0mm、DpMは1.0〜3.0mmの範囲とすればよい。平均ピン長さLpMが過小である場合や平均投影ピン径DpMが過大である場合は、十分な放熱効果が得られない。逆に、平均ピン長さLpMが過大である場合や平均投影ピン径DpMが過小である場合は、ピンの強度不足や、ピン先へ向けての熱伝導性不足を招きやすい。ピンの平均アスペクト比LpM/DpMは0.8〜37.5の範囲で設定すればよいが、1.5〜20.0とすることがより効果的である。また、平均投影ピン間隙ApMは1.0〜5.0mmであることが望ましい。ApMが小さくなるに従って液体冷媒の流動抵抗が増大し、逆にApMが大きくなるに従って放熱性が低下する。 As will be described later, a plurality of comb-shaped heat radiation pin members according to the present invention are brazed to the surface of the base plate member as a set to constitute a heat radiation plate with pins. The pin portion is exposed to the flow of a liquid refrigerant such as water, and is responsible for heat transfer from the heat sink to the refrigerant. In heat dissipation applications for electronic parts, it is usually desirable to set the average pin length Lp M in the range of 3.0 to 30.0 mm and the average projected pin diameter Dp M in the range of 0.8 to 5.0 mm. In many cases, Lp M may be in the range of 5.0 to 15.0 mm, and Dp M may be in the range of 1.0 to 3.0 mm. If the average case pin length Lp M is too small or average projected pin diameter Dp M is too large, no sufficient heat dissipation effect. On the contrary, when the average pin length Lp M is excessive or when the average projected pin diameter Dp M is excessively small, the pin strength is insufficient or the thermal conductivity toward the pin tip tends to be insufficient. The average aspect ratio Lp M / Dp M of the pins may be set in the range of 0.8 to 37.5, but it is more effective to set it to 1.5 to 20.0. The average projection pin gap Ap M is preferably 1.0 to 5.0 mm. As Ap M decreases, the flow resistance of the liquid refrigerant increases, and conversely, heat dissipation decreases as Ap M increases.

ベースプレート部材に複数のくし歯形放熱ピン部材をどのようなレイアウトで並設するかは、放熱装置の設計に応じて種々の態様が考えられる。ただし、冷媒流動抵抗の低減と放熱性の確保の両面から検討すると、冷媒の平均的な流動方向(具体的には例えば後述の図4、図5の例では、ベースプレート部材20のピン側に冷媒流路を形成するために設けた冷却ジャケット31の冷媒入口32から冷媒出口33へ向かう方向)に見たピンの配列が重要となる。冷媒が通り抜ける隣り合うピン間の平均間隔が狭すぎると流動抵抗が過大となり、逆に広すぎると放熱性の低下を招く。そこで、各くし歯形放熱ピン部材として、基部長手方向(図1、図2の符号5)のピン間隔(ピンの存在密度)が適正化されたピン配列のものを用意し、それらの基部長手方向が冷媒の流動方向に対して直角方向に近い方向となるように(具体的には例えば、冷媒の平均流動方向と基部長手方向とのなす角度が90°±45°となるように)、ベースプレート部材表面に並設する手法を採用すれば、冷媒流動抵抗と放熱性を考慮した所望のピン配置が容易に実現できる。   The layout of the plurality of comb-shaped heat radiation pin members arranged in parallel on the base plate member can be considered in various modes depending on the design of the heat dissipation device. However, considering both the reduction of the refrigerant flow resistance and the securing of heat dissipation, the average flow direction of the refrigerant (specifically, for example, in the examples of FIGS. 4 and 5 described later, the refrigerant is placed on the pin side of the base plate member 20). The arrangement of the pins as viewed in the direction from the refrigerant inlet 32 to the refrigerant outlet 33 of the cooling jacket 31 provided for forming the flow path is important. If the average interval between adjacent pins through which the refrigerant passes is too narrow, the flow resistance becomes excessive, and conversely, if it is too wide, the heat dissipation is reduced. Therefore, each comb-shaped heat radiation pin member is prepared with a pin arrangement in which the pin interval (pin density) in the base longitudinal direction (reference numeral 5 in FIGS. 1 and 2) is optimized, and the base lengths thereof. The direction of the hand is close to the direction perpendicular to the flow direction of the refrigerant (specifically, for example, the angle between the average flow direction of the refrigerant and the longitudinal direction of the base is 90 ° ± 45 °) ) If a method of juxtaposing on the surface of the base plate member is adopted, a desired pin arrangement considering the refrigerant flow resistance and heat dissipation can be easily realized.

発明者らは、そのようなピン配置の実現に好適な、くし歯形放熱ピン部材のピン配列について、種々検討した。その結果、下記(C)で定義されるピン間隙率Rpが0.14〜0.75である放熱ピン部材を適用することが効果的であることを見出した。Rpが0.25〜0.50であるものがより好適な対象となる。
(C)前記のピン数n、平均ピン間隔ApM、平均ピン径DpMを用いて下記(1)式により「ピン間隙率Rp」を定める。
Rp=(n−1)ApM/[n・DpM+(n−1)ApM] …(1)
ピン間隙率Rpが小さすぎると、例えば、冷媒の平均流動方向と基部長手方向とのなす角度が90°±45°となるように各くし歯形放熱ピン部材を配置したときの流動抵抗が過大となりやすい。逆にピン間隙率Rpが大きすぎると、十分な放熱性を得ることが難しい。
The inventors have studied various pin arrangements of comb-shaped heat radiation pin members suitable for realizing such pin arrangement. As a result, it has been found that it is effective to apply a radiating pin member having a pin gap ratio Rp defined by (C) below of 0.14 to 0.75. Those having Rp of 0.25 to 0.50 are more suitable targets.
(C) The “pin gap ratio Rp” is determined by the following equation (1) using the number n of pins, the average pin interval Ap M , and the average pin diameter Dp M.
Rp = (n−1) Ap M / [n · Dp M + (n−1) Ap M ] (1)
If the pin gap ratio Rp is too small, for example, the flow resistance when the comb-shaped heat radiation pin members are arranged so that the angle between the average flow direction of the refrigerant and the longitudinal direction of the base is 90 ° ± 45 ° is excessive. It is easy to become. On the other hand, if the pin gap ratio Rp is too large, it is difficult to obtain sufficient heat dissipation.

また、冷媒流動抵抗の低減と放熱性の確保をより効率的に両立させるためには、ベースプレート部材中央部の電子部品搭載位置の背後に相当する部位のピン密度を高くし、その周辺部のピン密度を低くするようなピン配置が有効である。そのような場合、各くし歯形放熱ピン部材として、基部長手方向(図1、図2の符号5)において、ピン間隔が中央部付近で小さく、両端部付近で大きいピン配列のものを用意し、それらの基部長手方向が冷媒の流動方向に対して直角方向に近い方向となるように(具体的には例えば、冷媒の平均流動方向と基部長手方向とのなす角度が90°±45°となるように)、ベースプレート部材表面に並設することにより、上記所望のピン配置が容易に実現できる。この場合、ピン間隙率Rpを上記のように設定することが有効であるとともに、さらに、下記(D)で定義される最小投影ピン間隙ApMIN、最大投影ピン間隙ApMAXについて、最小投影ピン間隙ApMINを0.8〜2.5mmとし、ピン間隙比ApMAX/ApMINを1.0〜5.0の範囲とすることが効果的である。特に、最小投影ピン間隙ApMINを1.0〜2.0mm、ピン間隙比ApMAX/ApMINを1.5〜3.0に管理してもよい。
(D)n−1箇所の前記投影ピン間隙Apのうち最も小さい値を「最小投影ピン間隙ApMIN」と定め、最も大きい値を「最大投影ピン間隙ApMAX」と定める。ただし、nはピンの数である。
なお、基部の幅やピンの形状を調整することでも所望のピン配置をすることも可能であるので、冷媒の平均流動方向と基部長手方向とのなす角度90°±45°以外の角度(例えば0°)を排除するものではない。
In addition, in order to more efficiently achieve both reduction of the refrigerant flow resistance and securing of heat dissipation, the pin density in the portion corresponding to the back of the electronic component mounting position in the center of the base plate member is increased, and the pins in the peripheral portion thereof are increased. A pin arrangement that lowers the density is effective. In such a case, each comb-shaped heat radiation pin member is prepared with a pin arrangement in which the pin interval is small near the center and large near both ends in the longitudinal direction of the base (reference numeral 5 in FIGS. 1 and 2). The base longitudinal direction is close to the direction perpendicular to the refrigerant flow direction (specifically, for example, the angle formed between the average refrigerant flow direction and the base longitudinal direction is 90 ° ± 45). By arranging them side by side on the surface of the base plate member, the desired pin arrangement can be easily realized. In this case, it is effective to set the pin gap ratio Rp as described above. Further, with respect to the minimum projection pin gap Ap MIN and the maximum projection pin gap Ap MAX defined in the following (D), the minimum projection pin gap It is effective to set Ap MIN to 0.8 to 2.5 mm and pin gap ratio Ap MAX / Ap MIN to a range of 1.0 to 5.0. In particular, the minimum projection pin gap Ap MIN may be controlled to 1.0 to 2.0 mm, and the pin gap ratio Ap MAX / Ap MIN may be managed to 1.5 to 3.0.
(D) The smallest value among the n−1 projection pin gaps Ap is defined as “minimum projection pin gap Ap MIN ”, and the largest value is defined as “maximum projection pin gap Ap MAX ”. Here, n is the number of pins.
In addition, since it is possible to arrange a desired pin by adjusting the width of the base and the shape of the pin, an angle other than the angle 90 ° ± 45 ° formed by the average flow direction of the refrigerant and the longitudinal direction of the base ( For example, 0 °) is not excluded.

くし歯形放熱ピン部材の材質は、導電率が70%IACS以上、より好ましくは85%IACS以上である銅または銅合金とすることが望ましい。熱伝導率で規定するならば、常温付近(5〜35℃)の熱伝導率が300W/(m・K)以上、より好ましくは350W/(m・K)以上のものが好適である。熱伝導の観点からは無酸素銅(JIS H3100の合金番号C1020)が有利であるが、強度を考慮すると、Fe、Ni、Sn、Zn、Pなどの合金元素を少量配合する純度99.9%レベルの銅材を使用することが望ましい。   The material of the comb-shaped heat radiation pin member is preferably copper or a copper alloy having a conductivity of 70% IACS or more, more preferably 85% IACS or more. If the thermal conductivity is defined, it is preferable that the thermal conductivity near room temperature (5-35 ° C.) is 300 W / (m · K) or more, more preferably 350 W / (m · K) or more. From the viewpoint of heat conduction, oxygen-free copper (alloy number C1020 of JIS H3100) is advantageous, but considering the strength, the purity of a small amount of alloy elements such as Fe, Ni, Sn, Zn, and P is 99.9%. It is desirable to use level copper material.

本発明に従うくし歯形放熱ピン部材は、銅または銅合金の板状素材に打抜きおよびプレス加工を施すことによって得ることができる。具体的には、まず、銅または銅合金の板状素材を打抜いてくし歯状に並列する複数のピンと、それらのピンを根本部分で支持する基部を有する中間製品を得る。この中間製品において、打抜き方向は板状素材の板厚方向に相当し、ピンの長手方向と基部の長手方向は共に、板状素材の板面に平行な方向、すなわち打抜き方向(素材の板厚方向)に対して垂直な方向となる。ピン背面側の端面は、ベースプレート部材の表面にろう付け接合するための面である。ピン背面側には必要に応じて図2に示した凹部7や凸部8を形成させてもよい。ただし、ベースプレート部材とくし歯形放熱ピン部材の間の熱伝導性を十分に確保するために、ろう付け接合面となるフラットな端面は、基部の長手方向長さの80%以上、さらには90%以上を占めるようにすることが望ましい。   The comb-shaped heat radiation pin member according to the present invention can be obtained by punching and pressing a copper or copper alloy plate material. Specifically, first, an intermediate product having a plurality of pins that are punched from a copper or copper alloy plate-like material and arranged in a comb-like shape and a base portion that supports these pins at the root portion is obtained. In this intermediate product, the punching direction corresponds to the plate thickness direction of the plate material, and the longitudinal direction of the pin and the longitudinal direction of the base are both parallel to the plate surface of the plate material, that is, the punching direction (the plate thickness of the material). Direction). The end surface on the back surface side of the pin is a surface for brazing and joining to the surface of the base plate member. If necessary, the concave portion 7 and the convex portion 8 shown in FIG. 2 may be formed on the back surface side of the pin. However, in order to ensure sufficient thermal conductivity between the base plate member and the comb-shaped heat radiation pin member, the flat end surface serving as the brazed joint surface is 80% or more of the length in the longitudinal direction of the base, and further 90% or more. It is desirable to occupy.

上記打抜き後の中間製品について、くし歯に相当するピンの部分にプレス加工を施し、ピンの断面形状を整える。プレス加工によれば、円形断面を有する丸型ピンを精度良く作製することができる。また、所定の金型を使用すれば、楕円形断面や多角形断面を有するピンの形成も可能である。反り付け加工を施していない段階のフラットな形状のベースプレート部材にろう付け接合する場合は、一般的にピンの長手方向と基部の長手方向が直角であり、かつピンの長手方向と基部の長手方向がいずれも打抜き方向(素材の板厚方向)に対して垂直である形状に仕上げられる。反り付け加工を施していない段階のフラットな形状のベースプレート部材にろう付け接合する場合は、通常、基部には曲げ加工を施さずに、基部のろう付け接合面はフラットな端面とされる。この場合、基部長手方向(図1、図2の符号5)は基部のどの部分においても一様である。一方、予め反り付け加工を施してあるベースプレートにろう付け接合する場合は、そのベースプレートの反り形状に合わせて、基部にも湾曲が付与される。湾曲の付与方法は、湾曲形状に打抜く方法、あるいは打抜き後に曲げ加工する方法などが適用できる。通常、ピンの長手方向をベースプレートの板厚方向と一致させるので、湾曲を付与したくし歯形放熱ピン部材では、ピン長手方向および基部長手方向はいずれも基部の位置によって変化する。基部のある位置における「基部長手方向」は、その位置から見たベースプレートの板厚方向に対して直角の方向となる。ろう付け接合面となる前記端面は、全面をろう付けにてベースプレート部材に接合することが可能な平滑性を有する。平面状に打抜いたままの端面であっても、通常、バリ取りを行わずに無手入れのまま全面ろう付けに供することが可能である。   About the intermediate product after the punching, the pin portion corresponding to the comb teeth is pressed to adjust the cross-sectional shape of the pin. According to the press working, a round pin having a circular cross section can be produced with high accuracy. If a predetermined mold is used, a pin having an elliptical cross section or a polygonal cross section can be formed. When brazing and joining to a flat base plate member that has not been warped, the longitudinal direction of the pin and the longitudinal direction of the base are generally perpendicular, and the longitudinal direction of the pin and the longitudinal direction of the base Are finished in a shape perpendicular to the punching direction (the thickness direction of the material). When brazing and joining to a flat base plate member that has not been warped, the base is usually not bent and the brazed joint surface of the base is a flat end face. In this case, the base longitudinal direction (reference numeral 5 in FIGS. 1 and 2) is uniform in any part of the base. On the other hand, when brazing and joining to a base plate that has been warped in advance, the base is also curved in accordance with the warped shape of the base plate. As a method for imparting curvature, a method of punching into a curved shape or a method of bending after punching can be applied. Usually, since the longitudinal direction of the pin is made to coincide with the thickness direction of the base plate, in the comb-shaped heat radiation pin member to which the curve is given, both the longitudinal direction of the pin and the longitudinal direction of the base portion change depending on the position of the base portion. The “base longitudinal direction” at a position where the base is located is a direction perpendicular to the thickness direction of the base plate viewed from that position. The said end surface used as a brazing joining surface has smoothness which can join the whole surface to a baseplate member by brazing. Even an end face that has been punched into a flat shape can usually be subjected to brazing without maintenance without deburring.

〔ピン付き放熱板〕
図3に、本発明に従うピン付き放熱板のピン設置面側をベースプレート部材の板厚方向に見た図を例示する。この例では、ベースプレート部材20の表面中央部にピン配列の異なる2種類のくし歯形放熱ピン部材10を交互に並設することにより二元的なピン配置のピン群を形成している。各ピン1の長手方向はベースプレート部材20の板面に垂直(すなわち板厚方向に平行)である。各くし歯形放熱ピン部材10は基部2のピン1背面側にフラットな端面(図1、図2の符号3)を有しており、その端面とベースプレート部材20の表面が融点300〜600℃のろう材を用いてろう付け接合され、ベースプレート部材20と各くし歯形放熱ピン部材10とが一体化したピン付き放熱板30が形成されている。すなわち、本発明に従うピン付き放熱板30は、各くし歯形放熱ピン部材10と、ベースプレート部材20と、ろう付け接合部のろう材層で構成さている。ピン付き放熱板30のピン群の背面にはパワー半導体などの発熱部品を搭載する基板が取り付けられる。
[Heat sink with pin]
FIG. 3 illustrates a view in which the pin installation surface side of the heat sink with pins according to the present invention is viewed in the thickness direction of the base plate member. In this example, two types of comb-shaped heat radiation pin members 10 having different pin arrangements are alternately arranged in the center of the surface of the base plate member 20 to form a pin group having a dual pin arrangement. The longitudinal direction of each pin 1 is perpendicular to the plate surface of the base plate member 20 (that is, parallel to the plate thickness direction). Each comb-shaped heat radiation pin member 10 has a flat end surface (reference numeral 3 in FIGS. 1 and 2) on the back side of the pin 1 of the base portion 2, and the end surface and the surface of the base plate member 20 have a melting point of 300 to 600 ° C. A heat sink 30 with a pin is formed by brazing using a brazing material, and the base plate member 20 and each comb-shaped heat radiation pin member 10 are integrated. That is, the pin-equipped heat sink 30 according to the present invention is constituted by the comb-shaped heat dissipating pin members 10, the base plate member 20, and the brazing material layer of the brazed joint portion. A substrate on which a heat generating component such as a power semiconductor is mounted is attached to the back surface of the pin group of the pin-equipped heat sink 30.

ベースプレート部材20の材質は、くし歯形放熱ピン部材10と同様、常温の導電率が70%IACS以上、より好ましくは85%IACS以上である銅または銅合金とすることが望ましい。熱伝導率で規定するならば、常温付近(5〜35℃)の熱伝導率が300W/(m・K)以上、より好ましくは350W/(m・K)以上のものが好適である。熱伝導の観点からは無酸素銅(JIS H3100の合金番号C1020)が有利であるが、強度を考慮すると、Fe、Ni、Sn、Zn、Pなどの合金元素を少量配合する純度99.9%レベルの銅材を使用することが望ましい。なお、ベースプレート部材20とくし歯形放熱ピン部材10は必ずしも同種の銅または銅合金で構成する必要はない。   The material of the base plate member 20 is preferably copper or a copper alloy having a normal-temperature conductivity of 70% IACS or more, more preferably 85% IACS or more, like the comb-shaped heat radiation pin member 10. If the thermal conductivity is defined, it is preferable that the thermal conductivity near room temperature (5-35 ° C.) is 300 W / (m · K) or more, more preferably 350 W / (m · K) or more. From the viewpoint of heat conduction, oxygen-free copper (alloy number C1020 of JIS H3100) is advantageous, but considering the strength, the purity of a small amount of alloy elements such as Fe, Ni, Sn, Zn, and P is 99.9%. It is desirable to use level copper material. The base plate member 20 and the comb-shaped heat radiation pin member 10 do not necessarily need to be made of the same kind of copper or copper alloy.

ろう付け時の位置決めを正確かつ容易に行うために、ベースプレート部材20の表面には、並設する複数のくし歯形放熱ピン部材10の基部2が収まる寸法の座ぐり(周囲と段差のあるフラットな底面を持つ窪み)を予め形成しておくことが有効である。また、くし歯形放熱ピン部材10の基部2に図2の符号7、8で示すような凹部や凸部を形成しておくとともに、ベースプレート部材20の表面にもそれら凹部や凸部に嵌合する突起、溝、孔などを形成しておくことも有効である。   For accurate and easy positioning during brazing, the base plate member 20 has a counterbore of a size that fits the bases 2 of the plurality of comb-shaped heat radiation pin members 10 arranged side by side (a flat surface having a step difference from the surroundings). It is effective to form a depression having a bottom surface in advance. In addition, concave portions and convex portions as indicated by reference numerals 7 and 8 in FIG. 2 are formed in the base portion 2 of the comb-shaped heat radiation pin member 10, and the surface of the base plate member 20 is also fitted into the concave portions and convex portions. It is also effective to form protrusions, grooves, holes and the like.

ろう材としては、融点600℃以下のろう材を用いることが好ましい。融点500℃以下のろう材がより好ましく、融点450℃以下のろう材が一層好ましい。Al含有量が0〜10質量%のZnまたはZn−Al系合金のシートを適用することが極めて効果的である。一般的な銀ろうは融点が780℃前後であるためろう付け温度がそれより高くなり、ベースプレート部材20やくし歯形放熱ピン部材10の銅または銅合金材料が軟化しやすく、冷媒の圧力による変形が問題となる場合がある。一方、錫はんだで接合したのでは、後工程で半導体部品をはんだ付けにて取り付ける際に、くし歯形放熱ピン部材10のはんだ接合部が軟化または溶融してしまう。これに対し、Al含有量が0〜10質量%であるZnまたはZn−Al系合金は、融点が400℃前後であるため、銅または銅合金材料の顕著な軟化は生じない。特に、Al含有量が2〜8質量%、残部Znおよび不可避的不純物からなるZn−Al系合金は、融点が低く好適である。この場合でも、ろう材層が後工程のはんだ付け時に軟化あるいは溶融して問題になることはない。ろう材のシート厚さは0.1〜0.8mmとすればよい。なお、ろう材の融点は後工程でのはんだ付け温度より高ければよいが、例えば融点300℃以上のろう材を選択することが好ましく、融点330℃以上のものがより好ましい。   As the brazing material, it is preferable to use a brazing material having a melting point of 600 ° C. or lower. A brazing material having a melting point of 500 ° C. or lower is more preferable, and a brazing material having a melting point of 450 ° C. or lower is more preferable. It is extremely effective to apply a sheet of Zn or Zn-Al alloy having an Al content of 0 to 10% by mass. Since the melting point of general silver brazing is around 780 ° C., the brazing temperature becomes higher, the copper or copper alloy material of the base plate member 20 and the comb-shaped heat radiation pin member 10 is easily softened, and deformation due to refrigerant pressure is a problem. It may become. On the other hand, joining with tin solder softens or melts the solder joint portion of the comb-shaped heat radiation pin member 10 when a semiconductor component is attached by soldering in a later step. On the other hand, since Zn or Zn—Al alloy having an Al content of 0 to 10% by mass has a melting point of around 400 ° C., significant softening of the copper or copper alloy material does not occur. In particular, a Zn—Al-based alloy having an Al content of 2 to 8 mass%, the balance Zn and inevitable impurities is preferable because of its low melting point. Even in this case, there is no problem because the brazing material layer is softened or melted at the time of soldering in the subsequent process. The sheet thickness of the brazing material may be 0.1 to 0.8 mm. The melting point of the brazing material may be higher than the soldering temperature in the subsequent step, but for example, a brazing material having a melting point of 300 ° C. or higher is preferably selected, and a melting point of 330 ° C. or higher is more preferable.

図4に、本発明に従うピン付き放熱板に冷媒流路を設けた冷却構造を模式的に例示する。これは、ベースプレート部材20に平行な平面でピンを横切るように切断した断面図に相当する。冷媒入口32および冷媒出口33を有する冷却ジャケット31がピン群を覆うようにベースプレート部材20に接合され、冷却ジャケット31の内部空間に冷媒流路が形成されている。冷媒入口32から矢印方向に導入された冷媒は、各ピン1と接触して熱を受け取りながら冷却ジャケット31内を流れ、冷媒出口33から矢印方向に排出される。冷媒としては通常、水を使用すればよい。冷却ジャケット31とベースプレート部材20は気密性を維持するようにパッキンなどを介して取り付けるか、ろう付け接合とする。図4中には各くし歯形放熱ピン部材10の基部長手方向5および冷媒の平均流動方向34を矢印で付記してある。冷媒の流動抵抗は、冷媒の平均流動方向34から見たピン配列によって大きな影響を受ける。この図の例では、くし歯形放熱ピン部材10の基部長手方向5と冷媒の平均流動方向34とが概ね直角であるため、各くし歯形放熱ピン部材10のピン配列を調整することによって、流動抵抗を容易にコントロールすることができる。   FIG. 4 schematically illustrates a cooling structure in which a refrigerant flow path is provided in a heat sink with pins according to the present invention. This corresponds to a cross-sectional view cut across the pin in a plane parallel to the base plate member 20. A cooling jacket 31 having a refrigerant inlet 32 and a refrigerant outlet 33 is joined to the base plate member 20 so as to cover the pin group, and a refrigerant flow path is formed in the internal space of the cooling jacket 31. The refrigerant introduced from the refrigerant inlet 32 in the direction of the arrow flows through the cooling jacket 31 while receiving heat by contacting each pin 1 and is discharged from the refrigerant outlet 33 in the direction of the arrow. Usually, water may be used as the refrigerant. The cooling jacket 31 and the base plate member 20 are attached through packing or the like so as to maintain airtightness, or are joined by brazing. In FIG. 4, the base longitudinal direction 5 of each comb-shaped heat radiation pin member 10 and the average flow direction 34 of the refrigerant are indicated by arrows. The flow resistance of the refrigerant is greatly affected by the pin arrangement viewed from the average flow direction 34 of the refrigerant. In the example of this figure, since the base longitudinal direction 5 of the comb-shaped heat radiation pin member 10 and the average flow direction 34 of the refrigerant are substantially perpendicular to each other, the flow of the comb-tooth heat radiation pin member 10 is adjusted by adjusting the pin arrangement of each comb-tooth heat radiation pin member 10. Resistance can be easily controlled.

図5に、図4と同様に、本発明に従うピン付き放熱板に冷媒流路を設けた冷却構造を模式的に例示する。この例は、冷媒の平均流動方向34から見たピン1の存在密度をベースプレート部材20の中央部で増大させたものである。この場合、半導体チップなどの発熱体搭載位置の背後に位置する部位での熱伝導効率を高め、かつ冷媒の流動抵抗を低減することが可能となる。このような特異なピン配列パターンも、個々のくし歯形放熱ピン部材10におけるピン配列の調整によって容易に実現できる。   FIG. 5 schematically illustrates a cooling structure in which a refrigerant flow path is provided in a heat sink with pins according to the present invention, as in FIG. In this example, the density of the pins 1 as viewed from the average flow direction 34 of the refrigerant is increased at the center of the base plate member 20. In this case, it is possible to increase the heat conduction efficiency in a portion located behind the heating element mounting position such as a semiconductor chip and to reduce the flow resistance of the refrigerant. Such a unique pin arrangement pattern can also be easily realized by adjusting the pin arrangement in each comb-shaped heat radiation pin member 10.

図11に、図4と同様に、本発明に従うピン付き放熱板に冷媒流路を設けた冷却構造を模式的に例示する。この例は、基部長手方向5が冷媒の平均流動方向34と平行になるように、2種類のくし歯形放熱ピン部材10を並設して図4と同じピン配置を実現したものである。この場合、くし歯形放熱ピン部材10は、側面図に現れる形状が図10(1)のタイプと図10(4)のタイプの2種類を組み合わせている。図4と比べ、必要となるくし歯形放熱ピン部材10の数が少なくて済む。ただし、例えば図5のように、冷媒の平均流動方向34から見たピン1の存在密度をベースプレート部材20の中央部で増大させるようなピン配置を実現する場合には多種類のくし歯形放熱ピン部材10を用意する必要が生じる。   FIG. 11 schematically illustrates a cooling structure in which a refrigerant flow path is provided in a heat sink with pins according to the present invention, as in FIG. In this example, two types of comb-shaped heat radiation pin members 10 are arranged in parallel so that the base longitudinal direction 5 is parallel to the average flow direction 34 of the refrigerant, and the same pin arrangement as that in FIG. 4 is realized. In this case, the comb-shaped heat radiation pin member 10 combines two types of shapes appearing in the side view, the type shown in FIG. 10 (1) and the type shown in FIG. 10 (4). Compared with FIG. 4, the number of the comb-tooth-shaped heat radiation pin members 10 required is small. However, for example, as shown in FIG. 5, when realizing a pin arrangement in which the density of the pins 1 as viewed from the average flow direction 34 of the refrigerant is increased at the center portion of the base plate member 20, there are many types of comb-shaped heat radiation pins. The member 10 needs to be prepared.

図6に、本発明に従うピン付き放熱板を用いた冷却構造を有するパワー半導体ユニットの断面構造を模式的に例示する。これは、図4に示した冷却構造を有するパワー半導体ユニットを図4中のA−A断面で切断した断面図に相当する。ベースプレート部材20のピン1側の表面には座ぐりを設けてあり、各くし歯形放熱ピン部材10の基部2がベースプレート部材20の前記座ぐり内に並設収容され、ろう材層11を介するろう付け接合部が形成されている。ピン付き放熱板30は、ベースプレート部材20、ろう材層11、および各くし歯形放熱ピン部材10により構成される。冷却ジャケット31はベースプレート部材20に対して気密性を保つように取り付けられている。その気密性を保つための機構(パッキン、ろう材層など)の記載は省略した。ベースプレート部材20のピン1に対して背面側の表面には、放熱用銅板45、窒化アルミニウム絶縁基板42、回路銅板46、半導体チップ41が搭載されている。放熱用銅板45と回路銅板46は活性金属含有Ag−Cuろう材層47を介して窒化アルミニウム絶縁基板42と一体化されており、この一体構造体(銅張り窒化アルミニウム絶縁基板)は、放熱用銅板45側の表面がはんだ層43を介してベースプレート部材20の表面に接合取り付けられる。また、回路銅板45の表面には半導体チップ41がはんだ層43を介して取り付けられる。ベースプレート部材20から各ピン1の表面まで、金属材料からなる一体構造によって良好な熱伝導が実現される。また、ピン1の断面形状やピン配置の設計自由度が高く、特に、高密度なピン配置を実現することも容易であるため、従来の冷却フィンや冷却ピンを用いた放熱構造と比べ、より効率的な冷却を実施化しやすい。   FIG. 6 schematically illustrates a cross-sectional structure of a power semiconductor unit having a cooling structure using a heat sink with pins according to the present invention. This corresponds to a cross-sectional view of the power semiconductor unit having the cooling structure shown in FIG. 4 taken along the line AA in FIG. A counterbore is provided on the surface of the base plate member 20 on the pin 1 side, and the base portions 2 of the comb-shaped heat radiation pin members 10 are accommodated side by side in the counterbore of the base plate member 20 and the brazing material layer 11 is interposed therebetween. A spliced joint is formed. The pin-mounted heat sink 30 includes the base plate member 20, the brazing material layer 11, and each comb-shaped heat sink pin member 10. The cooling jacket 31 is attached to the base plate member 20 so as to maintain airtightness. The description of the mechanism (packing, brazing material layer, etc.) for maintaining the airtightness was omitted. A heat radiating copper plate 45, an aluminum nitride insulating substrate 42, a circuit copper plate 46, and a semiconductor chip 41 are mounted on the surface on the back side with respect to the pins 1 of the base plate member 20. The heat-dissipating copper plate 45 and the circuit copper plate 46 are integrated with the aluminum nitride insulating substrate 42 via the active metal-containing Ag—Cu brazing material layer 47, and this integrated structure (copper-clad aluminum nitride insulating substrate) is used for heat dissipation. The surface on the copper plate 45 side is joined and attached to the surface of the base plate member 20 via the solder layer 43. A semiconductor chip 41 is attached to the surface of the circuit copper plate 45 via a solder layer 43. Good heat conduction is realized from the base plate member 20 to the surface of each pin 1 by an integral structure made of a metal material. In addition, the cross-sectional shape of the pin 1 and the design freedom of pin arrangement are high, and in particular, it is easy to realize a high-density pin arrangement. Therefore, compared to conventional heat dissipation structures using cooling fins and cooling pins, Easy to implement efficient cooling.

〔実施例1〕
板状素材として、DSC−3N、1/2H材(DOWAメタル株式会社製、質量%でFe、Ni、Sn、Pの総和が0.1%、残部Cu、導電率88%IACS、熱伝導率361W/(m・K))からなる板厚2.0mmの銅板を用意した。この銅板にプレス打抜およびプレス加工を施して、図1に示したような形状のくし歯型放熱ピン部材のプレス成形品を作製した。
プレス加工は、まず第1のプレス加工として、ピンの断面は長方形とし、ピン長さ、ピン間隔は均等であり、ピン長さは10.0mm、長方形のプレス方向の一辺の長さは2.0mm(板厚)、もう一辺の長さは1.6mm、ピンの間隔は2.9mm、ピンの本数は9本とし、ピンの基部は、高さが1mm、幅が37.6mmの形状になるようにプレスした。なお、基部のピン背面側はフラットとした。
次に、ピンの断面形状を円形とする第2のプレス加工を行った。金型の上型、下型のそれぞれを、前記ピンが収まるようなほぼ半円形の断面を有する形状とし、その上下の金型でプレスすることによりピンの断面形状を円形化した。なお、上記プレス加工は常温で、順送方式で実施し、ピンの数が9本のくし歯型放熱ピンを作製した。同様のプレス工程でピンの数が8本のくし歯型放熱ピンを作製した。
このようにして、ピンの数nが9本および8本の、2種類のくし歯型放熱ピン部材を用意した。2種類とも、ピンの断面は円形、ピン径、ピン長さ、ピン間隔は均等であり、平均ピン長さLpM:10.0mm、平均投影ピン径DpM:1.6mm、平均投影ピン間隙ApM:2.9mm(いずれも共通)である。前記(1)式により定まるピン間隙率Rpは、一方が0.62、他方が0.61である。基部のピン背面側の端面は打抜きのままのフラット仕上(バリ取り等の手入れは無し)である。ピンの部分はプレス成形により丸型ピンとした。図7に、ここで使用したくし歯型放熱ピン部材の外観写真を示す。
[Example 1]
As a plate-like material, DSC-3N, 1 / 2H material (manufactured by DOWA Metal Co., Ltd., in mass%, Fe, Ni, Sn, P total is 0.1%, remaining Cu, conductivity 88% IACS, thermal conductivity A copper plate having a plate thickness of 2.0 mm made of 361 W / (m · K) was prepared. The copper plate was subjected to press punching and press working to produce a press-formed product of a comb-shaped heat radiation pin member having a shape as shown in FIG.
The press process is a first press process in which the cross section of the pin is rectangular, the pin length and the pin interval are uniform, the pin length is 10.0 mm, and the length of one side of the rectangular press direction is 2. The length of the other side is 1.6 mm, the distance between the pins is 2.9 mm, the number of pins is 9, and the base of the pin is 1 mm in height and 37.6 mm in width. It was pressed to become. The back side of the base pin was flat.
Next, the 2nd press work which makes the cross-sectional shape of a pin circular is performed. Each of the upper mold and the lower mold of the mold has a shape having a substantially semicircular cross section so that the pin can be accommodated, and the cross section of the pin is rounded by pressing with the upper and lower molds. The press working was performed at room temperature by a progressive feeding method, and comb-shaped heat radiation pins with nine pins were produced. A comb-shaped heat radiation pin having eight pins was produced by the same pressing process.
In this way, two types of comb-shaped heat radiation pin members having 9 and 8 pins were prepared. In both types, the cross-section of the pins is circular, the pin diameter, the pin length, and the pin interval are uniform, the average pin length Lp M : 10.0 mm, the average projection pin diameter Dp M : 1.6 mm, and the average projection pin gap Ap M : 2.9 mm (all are common). One of the pin gap ratios Rp determined by the equation (1) is 0.62 and the other is 0.61. The end face of the base on the back side of the pin has a flat finish (no care such as deburring) as it is punched. The pin portion was formed into a round pin by press molding. In FIG. 7, the external appearance photograph of the comb-tooth-type heat radiation pin member used here is shown.

一方、DSC−3N、1/2H材の板厚3.0mmの銅板から137.6mm×106.6mmのベースプレート部材を作製した。その片側表面中央部にフライス加工にて深さ1.0mmのフラットな底面を持つ座ぐり部70mm×37.6mmを形成した。図8に、ここで使用したベースプレート部材の外観写真を示す。   On the other hand, a 137.6 mm × 106.6 mm base plate member was produced from a DSC-3N, 1 / 2H copper plate having a thickness of 3.0 mm. A counterbore portion 70 mm × 37.6 mm having a flat bottom surface with a depth of 1.0 mm was formed by milling at the center of the surface on one side. FIG. 8 shows a photograph of the appearance of the base plate member used here.

ろう材として、融点が約400℃であるZn:95質量%、Al:5質量%のZn−Al系合金からなる厚さ0.4mmのろう材シートを用意した。ろう材シートを前記ベースプレート部材の座ぐり底面の全面に敷き、その上の座ぐり部分に前記2種類のくし歯型放熱ピン部材を交互に並べて設置した。ステンレス鋼製の治具により各くし歯型放熱ピン部材をベースプレート部材の表面に正確な位置関係を保つように押し付けた状態として、真空炉で最高到達温度480℃にてろう付けを行い、ピン付き放熱板を得た。図9に、ここで得られたピン付き放熱板の外観写真を示す。これは、ピン数が8本のくし歯型放熱ピン部材を18個、ピン数が9本のくし歯型放熱ピン部材を17個、合計35個のくし歯型放熱ピン部材をベースプレート部材にろう接したものである。   As the brazing material, a brazing material sheet having a melting point of about 400 ° C. and having a thickness of 0.4 mm made of a Zn—Al-based alloy with 95% by mass of Zn and 5% by mass of Al was prepared. The brazing material sheet was laid on the entire surface of the counterbore bottom surface of the base plate member, and the two types of comb-shaped heat radiation pin members were alternately arranged on the counterbore portion thereon. With a comb made of stainless steel, each comb-shaped radiating pin member is pressed against the surface of the base plate member so as to maintain an accurate positional relationship, and brazed at a maximum temperature of 480 ° C. in a vacuum furnace. A heat sink was obtained. In FIG. 9, the external appearance photograph of the heat sink with a pin obtained here is shown. This means that 18 comb-type heat radiation pin members with 8 pins and 17 comb-type heat radiation pin members with 9 pins will be used as the base plate member. It is in contact.

得られたピン付き放熱板に、はんだ付け時に生じる「反り」を相殺するために反対方向の反り付けを行い、その後、無電解ニッケルめっきを施した。図6に示すように、放熱用銅板45、窒化アルミニウム絶縁基板42、回路銅板46が活性金属含有Ag−Cuろう材層47を介して一体化された構造体を、前記ピン付き放熱板30のピンに対して背面側の表面に、通常の手法でAg:3質量%、Cu:0.7質量%、残部Snの錫はんだにてはんだ付けした。回路銅板46の表面には熱源である半導体チップ41がはんだ層43を介して搭載されている。その後、冷却ジャケット31と、カバー44を取り付けた。冷却ジャケット31はパッキンを用いて気密構造で取り付け、冷媒の流路を形成した。   The obtained heat sink with pins was subjected to warping in the opposite direction in order to cancel out the “warping” generated during soldering, and then subjected to electroless nickel plating. As shown in FIG. 6, a structure in which a heat radiating copper plate 45, an aluminum nitride insulating substrate 42, and a circuit copper plate 46 are integrated through an active metal-containing Ag—Cu brazing material layer 47 is used. The surface on the back side with respect to the pins was soldered with tin solder of Ag: 3 mass%, Cu: 0.7 mass%, and remaining Sn. A semiconductor chip 41 as a heat source is mounted on the surface of the circuit copper plate 46 via a solder layer 43. Thereafter, the cooling jacket 31 and the cover 44 were attached. The cooling jacket 31 was attached in an airtight structure using a packing, and a refrigerant flow path was formed.

(放熱性試験)
冷媒として水を使用し、上記冷却ジャケット31内に通水した。冷却ジャケット31内に導入する水の温度は温調機により一定に制御し、また、送水圧力も一定とした。試験用の電子回路を用いて半導体チップに一定の電流負荷をかけ、半導体チップ表面の温度変化を熱電対により測定し(図6、符号51参照)、以下の基準で放熱性能を評価した。冷却ジャケット31に導入する水の温度、送水圧力、半導体チップに付与する電流負荷は、特に断らない限り以下の各例において共通である。
◎:半導体チップの表面温度が100℃以下の範囲で定常状態となる。
○:半導体チップの表面温度が100℃超え120℃以下の範囲で定常状態となる。
△:半導体チップの表面温度が120℃超え140℃以下の範囲で定常状態となる。
×:半導体チップの表面温度が140℃超える。
この試験条件において、△評価であれば実用的な放熱性を有すると判断できる。○評価はそれを上回る良好な放熱性を有し、◎評価は非常に優れた放熱性を有することを意味する。
(Heat dissipation test)
Water was used as a coolant and passed through the cooling jacket 31. The temperature of the water introduced into the cooling jacket 31 was controlled to be constant by a temperature controller, and the water supply pressure was also constant. A constant current load was applied to the semiconductor chip using a test electronic circuit, the temperature change on the surface of the semiconductor chip was measured with a thermocouple (see FIG. 6, reference numeral 51), and the heat dissipation performance was evaluated according to the following criteria. The temperature of water introduced into the cooling jacket 31, the water supply pressure, and the current load applied to the semiconductor chip are common in the following examples unless otherwise specified.
(Double-circle): It will be in a steady state in the range whose surface temperature of a semiconductor chip is 100 degrees C or less.
◯: A steady state is obtained when the surface temperature of the semiconductor chip is in the range of 100 ° C. to 120 ° C.
(Triangle | delta): It will be in a steady state in the range whose surface temperature of a semiconductor chip exceeds 120 degreeC and 140 degrees C or less.
X: The surface temperature of the semiconductor chip exceeds 140 ° C.
Under this test condition, if it is Δ, it can be determined that it has practical heat dissipation. ○ Evaluation has better heat dissipation than that, and ◎ Evaluation means extremely excellent heat dissipation.

(気密性試験)
上記と同仕様のピン付き放熱板(反り付けおよびニッケルめっきを終えたもの)に、冷却ジャケットを模擬したケース(冷媒入口および冷媒出口はなく、空気導入パイプを設けたもの)を、上記冷却ジャケットと同様の方法で取り付けた。このピン付き放熱板を空気導入パイプからゲージ圧200kPaの空気圧付与状態で深さ300mmの水中に沈め、最大10分まで保持し、その間に空気の漏れが生じるかどうかを、気泡発生の有無にて調べた。この試験条件にて空気漏れが観測されなかった場合には良好な気密性を呈すると判断されるので、この場合を○評価、それ以外を×評価とする。
(Airtightness test)
A case that simulates a cooling jacket (with no refrigerant inlet and refrigerant outlet and an air introduction pipe) on a heat sink with pins of the same specifications as above (finished with warping and nickel plating), and the cooling jacket It was attached in the same way. This pin-mounted heat sink is submerged in 300 mm deep water from an air inlet pipe with a gauge pressure of 200 kPa, and held for a maximum of 10 minutes. Examined. If no air leakage is observed under these test conditions, it is determined that the product exhibits good airtightness.

本例では、放熱性:○評価、気密性:○評価であった。   In this example, the heat dissipation was: ○ evaluation, and the air tightness: ○ evaluation.

〔実施例2〕
ベースプレート部材の素材をDK−3、1/2H材(質量%でFe:0.20%、Sn:0.07%、Ni:0.15%、P:0.06%、残部Cu、導電率75%IACS、熱伝導率313W/(m・K))の銅合金板としたことを除き、実施例1と同様の条件で試験を行った。その結果、放熱性:○評価、気密性:○評価であった。
[Example 2]
DK-3, 1 / 2H material (mass% Fe: 0.20%, Sn: 0.07%, Ni: 0.15%, P: 0.06%, balance Cu, conductivity) The test was performed under the same conditions as in Example 1 except that a copper alloy plate having 75% IACS and thermal conductivity of 313 W / (m · K) was used. As a result, the heat dissipation was: ○ evaluation, and the airtightness: ○ evaluation.

〔実施例3〕
ベースプレート部材の素材をC1020、1/2H材(99.96質量%Cu、導電率101%IACS、熱伝導率391W/(m・K))の銅板としたことを除き、実施例1と同様の条件で試験を行った。その結果、放熱性:○評価、気密性:○評価であった。
Example 3
The same as in Example 1 except that the material of the base plate member is a copper plate of C1020, 1 / 2H material (99.96 mass% Cu, conductivity 101% IACS, thermal conductivity 391 W / (m · K)) The test was conducted under conditions. As a result, the heat dissipation was: ○ evaluation, and the airtightness: ○ evaluation.

〔実施例4〕
くし歯型放熱ピン部材の素材をC1020、1/2H材の銅板としたことを除き、実施例1と同様の条件で試験を行った。その結果、放熱性:○評価、気密性:○評価であった。
Example 4
The test was performed under the same conditions as in Example 1 except that the material of the comb-shaped heat radiation pin member was a C1020, 1 / 2H copper plate. As a result, the heat dissipation was: ○ evaluation, and the airtightness: ○ evaluation.

〔実施例5〕
くし歯型放熱ピン部材の素材およびベースプレート部材(ベースプレート)の素材をともにC1020、1/2H材の銅板としたことを除き、実施例1と同様の条件で試験を行った。その結果、放熱性:○評価、気密性:○評価であった。
Example 5
The test was performed under the same conditions as in Example 1 except that both the material of the comb-shaped heat radiation pin member and the material of the base plate member (base plate) were C1020 and 1 / 2H copper plates. As a result, the heat dissipation was: ○ evaluation, and the airtightness: ○ evaluation.

〔実施例6〕
ろう材を融点が約419℃であるZn:100質量%の亜鉛ろうのシートとしたことを除き、実施例1と同様の条件で試験を行った。その結果、放熱性:○評価、気密性:○評価であった。
Example 6
The test was performed under the same conditions as in Example 1 except that the brazing material was a Zn: 100% by mass zinc brazing sheet having a melting point of about 419 ° C. As a result, the heat dissipation was: ○ evaluation, and the airtightness: ○ evaluation.

〔実施例7〕
ろう材を融点が約380℃であるZn:90質量%、Al:10質量%のZn−Al系合金のシートとしたことを除き、実施例1と同様の条件で試験を行った。その結果、放熱性:○評価、気密性:○評価であった。
Example 7
The test was performed under the same conditions as in Example 1 except that the brazing material was a Zn—Al alloy sheet having a melting point of about 380 ° C. of Zn: 90 mass% and Al: 10 mass%. As a result, the heat dissipation was: ○ evaluation, and the airtightness: ○ evaluation.

〔比較例1〕
ベースプレート部材(ベースプレート)の素材をC1020、1/2H材とし、ろう材を融点が約770℃であるAg:72質量%、Cu:28質量%の銀ろうとしたことを除き、実施例1と同様の条件で試験を行った。その結果、放熱性:○評価、気密性:×評価であった。
ベースプレート部材の素材がC1020であるため強度レベルが比較的低く、かつ銀ろう付けの温度が800℃と高かったため、ベースプレート部材に軟化が生じた。そのため、得られたピン付き放熱板の強度低下し、気密性試験での空気圧によるベースプレート部材の変形で空気漏れが生じた。
[Comparative Example 1]
Example 1 except that the material of the base plate member (base plate) is C1020, 1 / 2H material, and the brazing material is silver solder with a melting point of about 770 ° C. Ag: 72 mass% and Cu: 28 mass% The test was conducted under the following conditions. As a result, the heat dissipation was: o evaluation, and the airtightness: x evaluation.
Since the material of the base plate member is C1020, the strength level is relatively low and the temperature of the silver brazing is as high as 800 ° C., so that the base plate member is softened. Therefore, the strength of the obtained heat radiating plate with the pin was lowered, and air leakage occurred due to the deformation of the base plate member due to the air pressure in the airtightness test.

〔比較例2〕
ろう材を融点が約220℃であるAg:3質量%、Cu:0.7質量%、残部Snの錫はんだとしたことを除き、実施例1と同様の条件で試験を行った。その結果、パワー半導体チップを搭載した絶縁基板をはんだ付けにて接合する際の昇温で、くし歯型放熱ピン部材の一部が脱落し、放熱性試験に供することができなかった。
[Comparative Example 2]
The test was performed under the same conditions as in Example 1 except that the brazing material was tin solder of Ag: 3% by mass, Cu: 0.7% by mass, and the remaining Sn having a melting point of about 220 ° C. As a result, a part of the comb-shaped heat radiation pin member dropped off due to the temperature rise when the insulating substrates on which the power semiconductor chips were mounted were joined by soldering, and could not be used for the heat dissipation test.

〔実施例8〕
使用する2種類のくし歯型放熱ピン部材について、ともにピンの数を増やしたことを除き、実施例1と同様の条件で試験を行った。この場合、一方のくし歯型放熱ピン部材は、ピン数n:17本、平均ピン長さLpM:10.0mm、平均投影ピン径DpM:3.0mm、平均投影ピン間隙ApM:1.0mm、ピン間隙率Rp:0.24である。他方のくし歯型放熱ピン部材は、ピン数n:16本、平均ピン長さLpM:10.0mm、平均投影ピン径DpM:3.0mm、平均投影ピン間隙ApM:1.0mm、ピン間隙率Rp:0.23である。ベースプレート部材にピン数n:17本のくし歯型放熱ピン部材を10個、ピン数n:16本のくし歯型放熱ピン部材を9個ろう接し、ベースプレート部材の座ぐり部は、くし歯放熱ピン部材がちょうど収まる大きさとした。試験の結果、放熱性:△評価、気密性:○評価であった。
冷媒(水)の流動抵抗が増大したことにより実施例1と同じ送水圧力では冷媒流量が減少し、結果的に放熱性が低下した。送水圧力を高めて冷媒流量を増大させることにより、実施例1と同等以上の放熱性を得ることが可能であると考察される。
Example 8
The two types of comb-shaped heat radiating pin members used were tested under the same conditions as in Example 1 except that the number of pins was both increased. In this case, one of the comb-shaped heat radiation pin members has n pins: 17 pins, an average pin length Lp M : 10.0 mm, an average projection pin diameter Dp M : 3.0 mm, and an average projection pin gap Ap M : 1 0.0 mm, pin gap ratio Rp: 0.24. The other comb-shaped radiating pin member has 16 pins, average pin length Lp M : 10.0 mm, average projection pin diameter Dp M : 3.0 mm, average projection pin gap Ap M : 1.0 mm, The pin gap ratio Rp is 0.23. The base plate member is brazed with 10 comb-shaped radiating pin members with n pins: 17 and 9 comb-shaped heat radiating pin members with n pins: 16 pins. The pin member was just large enough to fit. As a result of the test, heat dissipation: Δ evaluation, air tightness: ○ evaluation.
As the flow resistance of the refrigerant (water) increased, the refrigerant flow rate decreased at the same water supply pressure as in Example 1, and as a result, the heat dissipation decreased. It is considered that it is possible to obtain heat dissipation equal to or higher than that of Example 1 by increasing the water supply pressure and increasing the refrigerant flow rate.

〔実施例9〕
使用する2種類のくし歯型放熱ピン部材について、ともにピンの数を減らしたことを除き、実施例1と同様の条件で試験を行った。この場合、一方のくし歯型放熱ピン部材は、ピン数n:17本、平均ピン長さLpM:10.0mm、平均投影ピン径DpM:1.0mm、平均投影ピン間隙ApM:3.0mm、ピン間隙率Rp:0.74である。他方のくし歯型放熱ピン部材は、ピン数n:16本、平均ピン長さLpM:10.0mm、平均投影ピン径DpM:1.0mm、平均投影ピン間隙ApM:3.0mm、ピン間隙率Rp:0.73である。ベースプレート部材にピン数n:17本のくし歯型放熱ピン部材を10個、ピン数n:16本のくし歯型放熱ピン部材を9個ろう接し、ベースプレート部材の座ぐり部は、くし歯放熱ピン部材がちょうど収まる大きさとした。試験の結果、放熱性:△評価、気密性:○評価であった。
実施例1と対比すると、ピン密度が低く、かつピン間隔が広いため、放熱性も低い結果となった。
Example 9
The two types of comb-shaped heat radiation pin members used were tested under the same conditions as in Example 1 except that the number of pins was reduced. In this case, one of the comb-shaped heat dissipation pin members has n pins: 17 pins, an average pin length Lp M : 10.0 mm, an average projection pin diameter Dp M : 1.0 mm, and an average projection pin gap Ap M : 3 0.0 mm, pin gap ratio Rp: 0.74. The other comb-shaped radiating pin member has 16 pins, average pin length Lp M : 10.0 mm, average projection pin diameter Dp M : 1.0 mm, average projection pin gap Ap M : 3.0 mm, The pin gap ratio Rp is 0.73. The base plate member is brazed with 10 comb-shaped radiating pin members with n pins: 17 and 9 comb-shaped heat radiating pin members with n pins: 16 pins. The pin member was just large enough to fit. As a result of the test, heat dissipation: Δ evaluation, air tightness: ○ evaluation.
In contrast to Example 1, the pin density was low and the pin spacing was wide, resulting in low heat dissipation.

〔実施例10〕
冷媒の平均流動方向に対して直角方向中央部(以下「幅方向中央部」という)のピン密度を高めたピン配置(図5と類似のピン配置)としたことを除き、実施例1と同様の条件で試験を行った。使用した2種類のくし歯型放熱ピン部材のうち、一方は、ピン数n:21本、平均ピン長さLpM:10.0mm、平均投影ピン径DpM:2.0mm、平均投影ピン間隙ApM:1.1mm、ピン間隙率Rp:0.39、最小投影ピン間隙ApMIN:1.0mm、最大投影ピン間隙ApMAX:2.0mmである。他方は、ピン数n:20本、平均ピン長さLpM:10.0mm、平均投影ピン径DpM:2.0mm、平均投影ピン間隙ApM:1.05mm、ピン間隙率Rp:0.38、最小投影ピン間隙ApMIN:1.0mm、最大投影ピン間隙ApMAX:2.0mmである。ベースプレート部材にピン数n:21本のくし歯型放熱ピン部材を10個、ピン数n:20本のくし歯型放熱ピン部材を9個ろう接し、ベースプレート部材の座ぐり部は、くし歯放熱ピン部材がちょうど収まる大きさとした。試験の結果、放熱性:◎評価、気密性:○評価であった。
半導体チップの搭載位置のちょうど背後の部位のみでピン密度を増大させたことにより、冷媒の流動抵抗の増大を抑制しながら効率的な放熱が実現できた。
Example 10
Same as Example 1 except that the pin arrangement (pin arrangement similar to FIG. 5) with a higher pin density at the central part in the direction perpendicular to the average flow direction of the refrigerant (hereinafter referred to as “the central part in the width direction”) is adopted. The test was conducted under the following conditions. Of the two types of comb-shaped heat radiation pin members used, one has n pins: 21 pins, average pin length Lp M : 10.0 mm, average projection pin diameter Dp M : 2.0 mm, average projection pin gap Ap M : 1.1 mm, pin gap ratio Rp: 0.39, minimum projection pin gap Ap MIN : 1.0 mm, maximum projection pin gap Ap MAX : 2.0 mm. On the other hand, the number of pins n is 20, the average pin length Lp M is 10.0 mm, the average projected pin diameter Dp M is 2.0 mm, the average projected pin gap Ap M is 1.05 mm, and the pin gap ratio Rp is 0.00. 38, the minimum projection pin gap Ap MIN : 1.0 mm, and the maximum projection pin gap Ap MAX : 2.0 mm. The base plate member is brazed with 10 comb-shaped radiating pin members with n: 21 pins and 9 comb-shaped radiating pin members with n: 20 pins. The counterbore of the base plate member is radiated with comb teeth. The pin member was just large enough to fit. As a result of the test, the heat dissipation was evaluated as ◎, and the airtightness was evaluated as ○.
By increasing the pin density only at the site just behind the mounting position of the semiconductor chip, efficient heat dissipation was achieved while suppressing an increase in the flow resistance of the refrigerant.

〔比較例3〕
かしめ加工により、個々のピンをベースプレート部材に取り付けた。ピンはC1020の線材を加工して作製した。C1020、1/2H材からなるベースプレート部材にピンを挿入する孔を設け、かしめ加工治具にてピン部材を前記孔に差し込んで固定した。ピンの断面形状、ピン長さ、ピン径、ベースプレート部材のサイズ、ベースプレート部材表面のピンを配置する領域は実施例1と同じである。ただし、かしめ加工を行う必要から、ピンの間隔を実施例1よりは大きくした。ピン付き放熱板におけるピンの総数は実施例1に対して77%であった。これら以外は実施例1と同様の条件で試験を行った。その結果、放熱性:×評価、気密性:○評価であった。
放熱性に劣った原因として、ピンの総数が少なかったこと、かしめ加工部で若干の伝熱ロスが生じたことが考えられる。なお、ピン付き放熱板の作製には、実施例1と比較して多大な手間と時間を要した。また、ピンの高さや取り付け角度に変動が見られ、ピン付き放熱板としての寸法精度も劣っていた。
[Comparative Example 3]
Individual pins were attached to the base plate member by caulking. The pin was produced by processing a C1020 wire. A hole for inserting a pin was provided in a base plate member made of C1020, 1 / 2H material, and the pin member was inserted into the hole and fixed by a caulking jig. The cross-sectional shape of the pins, the pin length, the pin diameter, the size of the base plate member, and the region where the pins on the surface of the base plate member are arranged are the same as in the first embodiment. However, the distance between the pins was made larger than that in Example 1 because of the need for caulking. The total number of pins in the heat sink with pins was 77% with respect to Example 1. Except for these, the test was performed under the same conditions as in Example 1. As a result, heat dissipation: x evaluation, air tightness: o evaluation.
Possible causes of inferior heat dissipation are that the total number of pins was small and that some heat transfer loss occurred in the caulking portion. In addition, compared with Example 1, preparation of the heat sink with a pin required much effort and time. In addition, fluctuations were observed in the height and mounting angle of the pins, and the dimensional accuracy as a heat sink with pins was inferior.

1 ピン
2 基部
3 ベースプレート部材とろう付け接合される端面
4 ピン長手方向
5 基部長手方向
6 打抜き方向
7 凹部
8 凸部
9 接合するベースプレート部材の板厚方向
10 くし歯形放熱ピン部材
11 ろう材層
20 ベースプレート部材
30 ピン付き放熱板
31 冷却ジャケット
32 冷媒入口
33 冷媒出口
34 冷媒の平均流動方向
41 半導体チップ
42 窒化アルミニウム絶縁基板
43 はんだ層
44 カバー
45 放熱用銅板
46 回路銅板
47 活性金属含有Ag−Cuろう材層
51 熱電対
DESCRIPTION OF SYMBOLS 1 Pin 2 Base part 3 End surface brazed and joined with a baseplate member 4 Pin longitudinal direction 5 Base longitudinal direction 6 Punching direction 7 Concave part 8 Convex part 9 Thickness direction of the baseplate member to join 10 Comb-shaped heat radiation pin member 11 Brazing material layer 20 Base plate member 30 Pinned heat sink 31 Cooling jacket 32 Refrigerant inlet 33 Refrigerant outlet 34 Average flow direction of refrigerant 41 Semiconductor chip 42 Aluminum nitride insulating substrate 43 Solder layer 44 Cover 45 Heat dissipating copper plate 46 Circuit copper plate 47 Active metal containing Ag-Cu Brazing material layer 51 Thermocouple

Claims (8)

銅または銅合金の板状素材を打抜いたプレス成形品であって、くし歯状に並列する複数のピンと、それらのピンを根本部分で支持する基部とが、接合部のない一体構造を成し、前記基部のピン背面側に放熱板のベースプレート部材とろう付け接合される端面を持つ、ピン付き放熱板用くし歯形放熱ピン部材。   A press-molded product obtained by punching a copper or copper alloy plate-like material, and a plurality of pins arranged in a comb-like shape and a base portion supporting these pins at the root portion form an integrated structure without a joint portion. And the comb-shaped heat radiation pin member for a heat sink with a pin which has the end surface brazed to the base plate member of a heat sink on the pin back surface side of the said base. 下記(A)で定義される平均ピン長さLpMが3.0〜30.0mm、平均投影ピン径DpMが0.8〜5.0mmである請求項1に記載のくし歯形放熱ピン部材。
(A)打抜き方向に見た投影面において、接合するベースプレート部材の板厚方向に対して直角方向となる基準線を、基部の前記端面よりピン背面側の任意位置に設定し、基準線からの距離を「高さ」と呼び、ピンの数をnとし、隣り合う2本のピン間における基部の最小高さをそのピン間の「ピン間高さ」と呼ぶとき、あるピンについて、ピン先端の高さHpと、隣り合うピンとの間のピン間高さ(両側のピン間高さが異なる場合は高い方のピン間高さ)Hbとの差Hp−Hbの値を「ピン長さLp」と定め、1/2ピン高さ(Hp−Hb)/2を表す線とピン輪郭線との2つの交点の距離をそのピンの「投影ピン径Dp」と定め、n本のピンのDpの平均値を「平均投影ピン径DpM」と定める。
The comb-shaped heat radiation pin member according to claim 1, wherein an average pin length Lp M defined by (A) below is 3.0 to 30.0 mm, and an average projected pin diameter Dp M is 0.8 to 5.0 mm. .
(A) On the projection plane viewed in the punching direction, a reference line that is perpendicular to the thickness direction of the base plate members to be joined is set at an arbitrary position on the back surface side of the pin from the end face of the base, and from the reference line When the distance is called “height”, the number of pins is n, and the minimum height of the base between two adjacent pins is called “inter-pin height” between the pins, The difference between the height Hp of the pin Hp and the height between the adjacent pins (the higher pin height if the height between the pins on both sides is different) Hb is expressed as the value of the pin length Lp And the distance between two intersections of the line representing the 1/2 pin height (Hp−Hb) / 2 and the pin outline is defined as the “projection pin diameter Dp” of the pin, and the Dp of the n pins Is defined as “average projection pin diameter Dp M ”.
前記平均ピン長さLpMと平均投影ピン径DpMの比で表されるピンの平均アスペクト比LpM/DpMが0.6〜37.5である請求項2に記載のくし歯形放熱ピン部材。 Comb teeth radiation fins according to claim 2 mean aspect ratio Lp M / Dp M pins is expressed by the ratio of the average projected pin diameter Dp M and the average pin length Lp M is 0.6 to 37.5 Element. 下記(B)で定義される平均投影ピン間隙ApMが1.0〜5.0mmである請求項2または3に記載のくし歯形放熱ピン部材。
(B)隣り合う2本のピンについて、双方の共通する高さ領域の中央高さを表す線と双方のピンの向かい合う輪郭線との交点同士の距離をそのピン間の「投影ピン間隙Ap」と定め、n−1箇所のApの平均値を「平均投影ピン間隙ApM」と定める。ただし、nはピンの数である。
4. The comb-shaped heat radiation pin member according to claim 2, wherein an average projected pin gap Ap M defined by (B) below is 1.0 to 5.0 mm.
(B) For two adjacent pins, the distance between the intersections of the line representing the central height of the common height region between the two pins and the contour line facing both pins is the “projection pin gap Ap” between the pins. And the average value of Ap at n−1 locations is defined as “average projection pin gap Ap M ”. Here, n is the number of pins.
下記(C)で定義されるピン間隙率Rpが0.14〜0.75である請求項2〜4のいずれか1項に記載のくし歯形放熱ピン部材。
(C)前記のピン数n、平均投影ピン間隙ApM、平均投影ピン径DpMを用いて下記(1)式により「ピン間隙率Rp」を定める。
Rp=(n−1)ApM/[n・DpM+(n−1)ApM] …(1)
The comb-shaped heat radiation pin member according to any one of claims 2 to 4, wherein a pin gap ratio Rp defined by (C) below is 0.14 to 0.75.
(C) The “pin gap ratio Rp” is determined by the following equation (1) using the number n of pins, the average projected pin gap Ap M , and the average projected pin diameter Dp M.
Rp = (n−1) Ap M / [n · Dp M + (n−1) Ap M ] (1)
発熱体を表面に取り付ける銅または銅合金からなるベースプレート部材の前記発熱体取り付け面の裏面に、請求項1〜5のいずれか1項に記載のくし歯形放熱ピン部材が複数個並設して接合され、前記端面とベースプレート部材表面とが融点300〜600℃のろう材を用いたろう付けにより密着した接合構造を有するピン付き放熱板。   A plurality of comb-shaped radiating pin members according to any one of claims 1 to 5 are juxtaposed and joined to the back surface of the heating element mounting surface of a base plate member made of copper or a copper alloy for mounting the heating element on the surface. And a heat sink with a pin having a joint structure in which the end surface and the surface of the base plate member are in close contact with each other by brazing using a brazing material having a melting point of 300 to 600 ° C. 前記接合構造は、Al含有量が0〜10質量%のZnまたはZn−Al系合金からなるろう材を用いたろう付けにより形成されたものである請求項6に記載のピン付き放熱板。   The heat sink with a pin according to claim 6, wherein the joining structure is formed by brazing using a brazing material made of Zn or a Zn—Al-based alloy having an Al content of 0 to 10 mass%. 銅または銅合金の板状素材を打抜いて、くし歯状に並列する複数のピンと、それらのピンを根本部分で支持する基部を有する中間製品を得る工程、
前記中間製品に1回または複数回のプレス加工を施して、ピンの断面形状を変化させる工程、
を有する請求項1〜5のいずれか1項に記載のくし歯形放熱ピン部材の製造方法。
A step of punching a copper or copper alloy plate-like material to obtain an intermediate product having a plurality of pins arranged in a comb-like shape and a base part supporting these pins at the root part,
A step of changing the cross-sectional shape of the pin by subjecting the intermediate product to one or more presses;
The manufacturing method of the comb-tooth-shaped radiation | emission pin member of any one of Claims 1-5 which have these.
JP2014112054A 2014-05-30 2014-05-30 Power semiconductor water-cooling pin heat sink using comb-shaped heat radiation pin member Active JP6360722B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014112054A JP6360722B2 (en) 2014-05-30 2014-05-30 Power semiconductor water-cooling pin heat sink using comb-shaped heat radiation pin member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014112054A JP6360722B2 (en) 2014-05-30 2014-05-30 Power semiconductor water-cooling pin heat sink using comb-shaped heat radiation pin member

Publications (2)

Publication Number Publication Date
JP2015226039A true JP2015226039A (en) 2015-12-14
JP6360722B2 JP6360722B2 (en) 2018-07-18

Family

ID=54842576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014112054A Active JP6360722B2 (en) 2014-05-30 2014-05-30 Power semiconductor water-cooling pin heat sink using comb-shaped heat radiation pin member

Country Status (1)

Country Link
JP (1) JP6360722B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018168088A1 (en) * 2017-03-16 2018-09-20 三菱電機株式会社 Cooling system
EP4258345A1 (en) * 2022-04-05 2023-10-11 Interplex NAS Electronics GmbH Heat sink, cooling device for cooling electronic device using the heat sink, and method of manufacturing the cooling device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04199736A (en) * 1990-11-29 1992-07-20 Hitachi Ltd Manufacture of pin type radiation fin
JPH066060A (en) * 1992-06-16 1994-01-14 Showa Alum Corp Manufacture of radiator provided with pin-type fin
JPH06275747A (en) * 1993-03-18 1994-09-30 Sumitomo Metal Ind Ltd Pin type cooling fin
JP2001326307A (en) * 2000-05-18 2001-11-22 Matsushita Electric Ind Co Ltd Heat sink for electronic component and its manufacturing method
JP2002184922A (en) * 2000-12-12 2002-06-28 Ntt Advanced Technology Corp Composite heat dissipating member
JP2002252485A (en) * 2001-02-23 2002-09-06 Kanie:Kk Metal heat sink
JP2014078563A (en) * 2012-10-09 2014-05-01 Aps Japan Co Ltd Heat sink

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04199736A (en) * 1990-11-29 1992-07-20 Hitachi Ltd Manufacture of pin type radiation fin
JPH066060A (en) * 1992-06-16 1994-01-14 Showa Alum Corp Manufacture of radiator provided with pin-type fin
JPH06275747A (en) * 1993-03-18 1994-09-30 Sumitomo Metal Ind Ltd Pin type cooling fin
JP2001326307A (en) * 2000-05-18 2001-11-22 Matsushita Electric Ind Co Ltd Heat sink for electronic component and its manufacturing method
JP2002184922A (en) * 2000-12-12 2002-06-28 Ntt Advanced Technology Corp Composite heat dissipating member
JP2002252485A (en) * 2001-02-23 2002-09-06 Kanie:Kk Metal heat sink
JP2014078563A (en) * 2012-10-09 2014-05-01 Aps Japan Co Ltd Heat sink

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018168088A1 (en) * 2017-03-16 2018-09-20 三菱電機株式会社 Cooling system
JPWO2018168088A1 (en) * 2017-03-16 2019-03-22 三菱電機株式会社 Cooling system
US10847441B2 (en) 2017-03-16 2020-11-24 Mitsubishi Electric Corporation Cooling system
EP4258345A1 (en) * 2022-04-05 2023-10-11 Interplex NAS Electronics GmbH Heat sink, cooling device for cooling electronic device using the heat sink, and method of manufacturing the cooling device

Also Published As

Publication number Publication date
JP6360722B2 (en) 2018-07-18

Similar Documents

Publication Publication Date Title
US11306973B2 (en) Liquid cooling heat exchanger and method for making the same
US8927873B2 (en) Fin-integrated substrate and manufacturing method of fin-integrated substrate
US5358032A (en) LSI package cooling heat sink, method of manufacturing the same and LSI package to which the heat sink is mounted
KR101729254B1 (en) Heat sink
CN105408997A (en) Semiconductor module and inverter device
JP2007088045A (en) Heat dissipation plate for mounting plurality of semiconductor substrates, and semiconductor substrate junction using it
JP2012248576A (en) Pin-like fin integrated-type heat sink
JP6360722B2 (en) Power semiconductor water-cooling pin heat sink using comb-shaped heat radiation pin member
JP5914968B2 (en) Power module substrate with heat sink and manufacturing method thereof
JP2002026201A (en) Radiator
JP5631446B2 (en) Method for producing metal / ceramic bonding substrate
CN111670494B (en) Radiator
JPH09298259A (en) Heat sink and manufacture thereof
JP6517914B2 (en) Thermoelectric module
TWI676778B (en) Heat spreader plate with at least one cooling fin, method for producing a heat spreader plate with at least one cooling fin, electronic module
TW201824968A (en) Manufacturing method for combining metal with ceramic substrate
JP5469846B2 (en) Method of joining aluminum member and copper member
WO2010044125A1 (en) Heatsink and electric power amplifier with the same
JP5678323B2 (en) Heat sink for semiconductor substrate
JP2003179189A (en) Thin heat sink and its packaging structure
JP2007049085A (en) Semiconductor substrate heat slinger that improves solder sag and drag
JP2013125958A (en) Heating element cooling device
KR20100047083A (en) Heat sink using welding
JP2007019377A (en) Heat sink
JP5192448B2 (en) Manufacturing method of grooved base plate for heat exchanger and grooved base plate for heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180625

R150 Certificate of patent or registration of utility model

Ref document number: 6360722

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250