JP2002184922A - Composite heat dissipating member - Google Patents

Composite heat dissipating member

Info

Publication number
JP2002184922A
JP2002184922A JP2000378194A JP2000378194A JP2002184922A JP 2002184922 A JP2002184922 A JP 2002184922A JP 2000378194 A JP2000378194 A JP 2000378194A JP 2000378194 A JP2000378194 A JP 2000378194A JP 2002184922 A JP2002184922 A JP 2002184922A
Authority
JP
Japan
Prior art keywords
heat
heat dissipating
composite
heat transfer
composite heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000378194A
Other languages
Japanese (ja)
Inventor
Yoshiichi Ishii
芳一 石井
Akira Iwazawa
晃 岩沢
Yuichiro Asano
祐一郎 浅野
Tomiyoshi Kanai
富義 金井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
A & A Kenkyusho Kk
NTT Advanced Technology Corp
A&A Kenkyusho KK
Original Assignee
A & A Kenkyusho Kk
NTT Advanced Technology Corp
A&A Kenkyusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by A & A Kenkyusho Kk, NTT Advanced Technology Corp, A&A Kenkyusho KK filed Critical A & A Kenkyusho Kk
Priority to JP2000378194A priority Critical patent/JP2002184922A/en
Publication of JP2002184922A publication Critical patent/JP2002184922A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a light heat dissipating member which is suitable for a heat sink for semiconductor element, has high heat dissipating efficiency and high strength and whose work cost is inexpensive. SOLUTION: The composite heat dissipating member has a heat dissipating part and a heat transmission part constituted of aluminum, and a copper member is connected to a side which is brought into contact with a heat generating source in the heat transmission part.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体素子等の発
熱体の温度上昇を抑えるヒートシンク等に使用する放熱
部材に関し、特に放熱効率を向上した複合型放熱部材に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat radiating member used for a heat sink for suppressing a temperature rise of a heating element such as a semiconductor element, and more particularly to a composite heat radiating member having improved heat radiating efficiency.

【0002】[0002]

【従来の技術】メインフレームコンピュータ、UNIX
(登録商標)、パソコン等の各種コンピュータに使用さ
れるCPUや、パワートランジスタ、サイリスタ等は発熱
するので、ヒートシンク等の放熱部材を用いることによ
り熱を放散させて温度上昇を防いでいる。特にUNIXやパ
ソコンに使用されているCPUは、作動周波数の向上にと
もなって発熱が著しくなってきており、CPUにヒートシ
ンクを取り付けるとともにファンにより強制的な冷却を
行っている。
2. Description of the Related Art Mainframe computers, UNIX
(Registered trademark), CPUs used in various computers such as personal computers, power transistors, thyristors, and the like generate heat. Therefore, heat is radiated by using a heat radiating member such as a heat sink to prevent a temperature rise. In particular, CPUs used in UNIX and personal computers have become extremely hot with the increase in operating frequency, and heat sinks have been attached to the CPUs and forced cooling has been performed by fans.

【0003】このようなヒートシンクには、安価で優れ
た熱伝導性、耐食性及び加工性のために、一般にアルミ
ニウム材が広く使用されている。アルミニウムヒートシ
ンクとしては、アルミニウム材の押出し成形品、鍛造
品、又はスカイブ加工品等が実用化されている。
For such a heat sink, an aluminum material is generally widely used because of its low cost and excellent thermal conductivity, corrosion resistance and workability. As the aluminum heat sink, an extruded product, a forged product, a skived product or the like of an aluminum material has been put to practical use.

【0004】これらのヒートシンクは、CPU等の発熱源
に接触して発熱源の熱を伝達するための伝熱部と、伝熱
部に一体的に接合したフィン等の表面積の大きな放熱部
とからなり、フィンを薄くして数を増やすことにより高
い放熱効率を得ている。
[0004] These heat sinks are composed of a heat transfer portion for contacting a heat source such as a CPU and transmitting the heat of the heat source, and a heat radiating portion having a large surface area such as a fin integrally joined to the heat transfer portion. Therefore, high heat dissipation efficiency is obtained by increasing the number of thinned fins.

【0005】[0005]

【発明が解決しようとする課題】しかしながらCPUは益
々高速化し、1cm2のCPU表面から数十W以上の熱が発生
するものが提案されるようになってきたため、現行のア
ルミニウム製ヒートシンクでは放熱性が不十分になる恐
れがでてきた。そのため、次世代のCPU用のヒートシン
クに使用可能なように、さらに放熱効率が向上した放熱
部材が望まれている。
However, the speed of CPUs has been increasing, and it has been proposed to generate heat of several tens of watts or more from a 1 cm 2 CPU surface. May become insufficient. Therefore, a heat dissipating member with further improved heat dissipating efficiency has been desired so that it can be used as a heat sink for next-generation CPUs.

【0006】そのため、アルミニウムより熱伝導率が高
い銅によりヒートシンクを作製することも考えられる
が、銅は加工性に劣るため、薄いフィンの成形や伝熱部
の溝加工等が困難であり、実用的な放熱部材が得られな
い。
For this reason, it is conceivable that a heat sink is made of copper having a higher thermal conductivity than aluminum. However, since copper is inferior in workability, it is difficult to form thin fins or form grooves in a heat transfer portion. A suitable heat radiation member cannot be obtained.

【0007】以上の事情に鑑み、伝熱部に銅を使用し、
それにアルミニウム製のフィンからなる放熱部をろう付
けした複合型放熱部材を先に提案した(特願平11-32746
6号)。しかしながら、銅とアルミニウムとのろう付け
では、得られる複合型放熱部材の表面性状が必ずしも満
足ではない。そのうえ、銅は重く、加工コストが高いと
いう欠点もあった。
In view of the above circumstances, copper is used for the heat transfer section,
A composite heat dissipating member with a heat dissipating part consisting of aluminum fins was brazed first (Japanese Patent Application No. 11-32746).
No. 6). However, by brazing copper and aluminum, the surface properties of the obtained composite heat dissipation member are not always satisfactory. In addition, copper is heavy and has the disadvantage of high processing cost.

【0008】従って本発明の目的は、優れた放熱効率を
有するとともに軽量、高強度で加工コストが低い複合型
放熱部材を提供することである。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a composite heat radiation member having excellent heat radiation efficiency, light weight, high strength and low processing cost.

【0009】[0009]

【課題を解決するための手段】上記課題に鑑み鋭意研究
の結果、本発明者は、伝熱部及び放熱部にアルミニウム
を用い、伝熱部のうち少なくとも発熱源に接する側に銅
部材を一体的に接合すると、軽量、低コストで放熱効率
が向上した放熱部材が得られることを発見し、本発明に
想到した。
In view of the above problems, as a result of intensive research, the present inventor has used aluminum for the heat transfer section and the heat radiating section, and integrated a copper member at least on the side of the heat transfer section in contact with the heat source. It has been found that a heat dissipating member with improved heat dissipating efficiency can be obtained at a low cost at a low cost by joining them together, and reached the present invention.

【0010】すなわち、本発明の複合型放熱部材は、と
もにアルミニウムからなる放熱部及び伝熱部を有し、前
記伝熱部のうち発熱源と接触する側に銅部材が接合され
ていることを特徴とする。
That is, the composite type heat radiating member of the present invention has a heat radiating portion and a heat transfer portion both made of aluminum, and a copper member is joined to a side of the heat transfer portion which is in contact with a heat source. Features.

【0011】本発明の一実施例では、放熱部は押し出し
成形された複数のフィンからなる。
In one embodiment of the present invention, the heat dissipating portion comprises a plurality of extruded fins.

【0012】本発明の別の実施例では、放熱部はスカイ
ブ加工された複数のフィンからなる。
In another embodiment of the invention, the radiator comprises a plurality of skived fins.

【0013】本発明のさらに別の実施例では、放熱部は
鍛造された複数のピンからなる。
In still another embodiment of the present invention, the radiator comprises a plurality of forged pins.

【0014】本発明のさらに別の実施例では、放熱部は
一体的に積層したコルゲートフィンからなり、伝熱部材
に接合されている。
In still another embodiment of the present invention, the heat radiating portion is formed of integrally laminated corrugated fins, and is joined to the heat transfer member.

【0015】本発明のさらに別の実施例では、放熱部は
複数の独立したフィンからなり、これらのフィンはそれ
ぞれ伝熱部に接合されている。これらのフィンはスリッ
トが形成されているのが好ましい。
In still another embodiment of the present invention, the heat dissipating portion comprises a plurality of independent fins, each of which is joined to the heat transfer portion. These fins are preferably provided with slits.

【0016】本発明の複合型放熱部材において、伝熱部
と銅部材との接合には、質量%で、Zn:55〜95%、Al:45
〜5%及び残部実質的に不可避不純物からなる合金を使
用したろう付けにより行うのが好ましい。
In the composite heat dissipation member of the present invention, the joining between the heat transfer portion and the copper member is performed by 55% to 95% by mass of Zn and 45% by mass of Al.
It is preferable to perform brazing using an alloy consisting of な る 5% and the balance substantially consisting of unavoidable impurities.

【0017】本発明の好ましい実施例では、伝熱部と銅
部材とは、質量%でZn:55〜95%、Al:45〜5%及び残部
実質的に不可避不純物からなる合金からなるろう材と、
CsF及びAlF3を含有するフラックスを使用して、ろう付
けするのが好ましい。またろう付けの代わりに、Sn:80
〜91%、Zn:9〜20%及び残部実質的に不可避不純物か
らなる合金、又はSn:85〜91%、Zn:7〜10%、Bi:2〜
5%及び残部実質的に不可避不純物からなる合金からな
る半田を使用して、半田付けしても良い。
In a preferred embodiment of the present invention, the heat transfer portion and the copper member are each a brazing material composed of an alloy consisting of 55 to 95% by mass of Zn, 45 to 5% of Al by mass% and the balance substantially consisting of unavoidable impurities. When,
Using a flux containing CsF and AlF 3, preferably brazed. Also, instead of brazing, Sn: 80
~ 91%, Zn: 9 ~ 20% and the balance consists essentially of unavoidable impurities, or Sn: 85 ~ 91%, Zn: 7 ~ 10%, Bi: 2 ~
The soldering may be performed using a solder made of an alloy containing 5% and the balance substantially consisting of unavoidable impurities.

【0018】[0018]

【発明の実施の形態】[1] 複合型放熱部材の構造 (A) 第一の例 図1に示す複合型放熱部材1は、アルミニウムの押出し
成形により一体的に形成された伝熱部2及び放熱部3か
らなり、放熱部3は複数のフィン3aからなる。伝熱部
2のうちフィン3aが取り付けられていない側(底面)
2aには、長手方向に延在する凹部2bが押出し成形時
に形成されている。その凹部2bに板状の銅部材4をろ
う付け又は半田付けにより接合することにより、本実施
例の複合型放熱部材1が得られる。CPU等の発熱源(図
示せず)は銅部材4に高伝熱性接着剤により固着する。
なお伝熱部2の両側壁に長手方向の溝2cが形成れてい
るが、これらはフィン3aの上にファンを取り付けるた
めの係合部である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS [1] Structure of Composite Heat Dissipating Member (A) First Example The composite heat dissipating member 1 shown in FIG. 1 has a heat transfer portion 2 integrally formed by extrusion molding of aluminum. The heat radiating section 3 is composed of a plurality of fins 3a. Side of heat transfer unit 2 on which fin 3a is not attached (bottom surface)
2a, a recess 2b extending in the longitudinal direction is formed at the time of extrusion molding. By joining the plate-shaped copper member 4 to the recess 2b by brazing or soldering, the composite heat dissipation member 1 of the present embodiment is obtained. A heat source (not shown) such as a CPU is fixed to the copper member 4 with a highly heat-conductive adhesive.
Although grooves 2c in the longitudinal direction are formed on both side walls of the heat transfer section 2, these are engagement sections for mounting a fan on the fins 3a.

【0019】銅部材4の表面に接着したCPU等の発熱源
から発生する熱は、高熱伝導性の銅部材4を介してアル
ミニウム製伝熱部2に効率良く伝達し、アルミニウム製
フィン3aに伝達した熱はそれらの表面から放散され
る。
The heat generated from a heat source such as a CPU adhered to the surface of the copper member 4 is efficiently transmitted to the aluminum heat transfer section 2 via the high thermal conductivity copper member 4 and transmitted to the aluminum fins 3a. The dissipated heat is dissipated from those surfaces.

【0020】この複合型放熱部材1は、アルミニウム押
出し成形品に銅部材4を接着するだけで得られるので、
低コストで製造できるという利点がある。
Since the composite heat radiation member 1 can be obtained only by bonding the copper member 4 to the extruded aluminum product,
There is an advantage that it can be manufactured at low cost.

【0021】(B) 第二の例 図2に示す複合型放熱部材21は、放熱部22がスカイブ加
工された複数のフィン23aからなる。スカイブ加工と
は、中実の板状アルミニウム基材の表面を僅かな間隔で
切削工具により切り出すことにより、複数の薄板状フィ
ン23aを成形する加工法である。この複合型放熱部材21
は、スカイブ加工したアルミニウム基材の伝熱部22の発
熱源側(底面側)に板状の銅部材24をろう付け又は半田
付けすることにより得られる。この例の複合型放熱部材
21は、放熱部22のフィン23aを薄くできるので、フィン
23a全体の表面積を大きくすることができ、高い放熱効
率を示す。
(B) Second Example The composite type heat radiation member 21 shown in FIG. 2 is composed of a plurality of fins 23a in which the heat radiation part 22 is skived. Skiving is a processing method in which a plurality of thin fins 23a are formed by cutting out the surface of a solid plate-shaped aluminum base material at small intervals with a cutting tool. This composite heat dissipation member 21
Can be obtained by brazing or soldering a plate-like copper member 24 to the heat source side (bottom side) of the heat transfer portion 22 of the skived aluminum base material. Composite heat dissipation member of this example
Since the fin 23a of the radiator 22 can be made thinner,
23a can have a large surface area and exhibit high heat dissipation efficiency.

【0022】(C) 第三の例 図3に示す複合型放熱部材31は、鍛造により形成された
複数のピン33aからなる放熱部32を有する。この例のア
ルミニウム伝熱部32の発熱源側(底面側)に板状の銅部
材34をろう付け又は半田付けすることにより、本実施例
の複合型放熱部材31が得られる。この例の複合型放熱部
材31も、放熱部33のピン33aの表面積が大きいので、高
い放熱効率を示す。
(C) Third Example The composite type heat dissipating member 31 shown in FIG. 3 has a heat dissipating part 32 composed of a plurality of pins 33a formed by forging. By brazing or soldering a plate-shaped copper member 34 to the heat source side (bottom side) of the aluminum heat transfer section 32 of this example, the composite heat dissipation member 31 of this embodiment is obtained. The composite heat dissipation member 31 of this example also exhibits high heat dissipation efficiency because the surface area of the pin 33a of the heat dissipation portion 33 is large.

【0023】(D) 第四の例 図4に示す複合型放熱部材41は、コルゲートフィン43a
からなる放熱部43がアルミニウム基板からなる伝熱部42
に接合され、伝熱部42の発熱源側(底面側)に設けた溝
に板状銅部材44が接合された構造を有する。コルゲート
フィン43aは1枚のアルミニウム薄板を狭い間隔で蛇行
するように折り曲げたものである。コルゲートフィン43
aの頂部(図中上端の折り曲げ部)は両端部を残してカ
ットされており、上部に取り付けたファンからの送風を
通すことにより、さらに高い放熱効率を得ることができ
るようになっている。
(D) Fourth Example The composite type heat radiating member 41 shown in FIG.
A heat radiating part 43 made of an aluminum substrate
And a plate-like copper member 44 is joined to a groove provided on the heat source side (bottom side) of the heat transfer section 42. The corrugated fin 43a is obtained by bending a single aluminum sheet so as to meander at a narrow interval. Corrugated fin 43
The top portion (a bent portion at the upper end in the figure) of a is cut so as to leave both end portions, so that a higher heat radiation efficiency can be obtained by passing air from a fan mounted on the upper portion.

【0024】アルミニウム基材へのコルゲートフィン43
aの接合はろう付け又は半田付けにより行うことができ
る。また伝熱部42の発熱源側(底面側)の溝に板状銅部
材44を接合するのも、ろう付け又は半田付けにより行う
ことができる。この例の複合型放熱部材41は、放熱部の
コルゲートフィン43aの表面積が大きいので放熱効率が
高い。
Corrugated fins 43 on aluminum substrate
The bonding of a can be performed by brazing or soldering. The plate-like copper member 44 can be joined to the groove on the heat source side (bottom side) of the heat transfer section 42 by brazing or soldering. In the composite heat dissipating member 41 of this example, since the corrugated fin 43a of the heat dissipating portion has a large surface area, the heat dissipating efficiency is high.

【0025】(E) 第五の例 図5及び図6に示す複合型放熱部材51は、伝熱部52に複
数の独立したスリットフィン53aからなる放熱部53が接
合しており、伝熱部52の発熱源側(底面側)に銅部材54
が接合した構造を有する。図5に示すように、個々のス
リットフィン53aには伝熱部52に垂直な方向に延びる複
数のスリット53bが形成されている。
(E) Fifth Example In the composite type heat radiating member 51 shown in FIGS. 5 and 6, a heat radiating portion 53 composed of a plurality of independent slit fins 53a is joined to a heat transmitting portion 52. Copper member 54 on the heat source side (bottom side) of 52
Have a joined structure. As shown in FIG. 5, a plurality of slits 53b extending in a direction perpendicular to the heat transfer section 52 are formed in each slit fin 53a.

【0026】図6に示すように、各フィン53aの下端部
53cはほぼ直角に折り曲げられていてアルミニウム基材
に直立して接合できるようになっているのが好ましい。
さらに各フィン53aの両端部付近に貫通孔53dが設けら
れており、かつ各フィン53aの上部が両端を残してカッ
トされており、また残された上端部53eがほぼ直角に折
り曲げられているのが好ましい。上端部53e及び下端部5
3cの折り曲げ部はほぼ同じ高さを有し、この高さがフ
ィン間隔を規制するようになっている。その結果、直立
したフィン53aの両貫通孔53d, 53dに棒状のボルト5
5,55を貫通させ、ボルト55,55の一端のネジ部にナッ
トを螺合することにより、フィン53aを直立状態で固定
することができる。
As shown in FIG. 6, the lower end of each fin 53a
53c is preferably bent substantially at a right angle so that it can be joined upright to an aluminum substrate.
Further, through holes 53d are provided near both ends of each fin 53a, and the upper portion of each fin 53a is cut leaving both ends, and the remaining upper end 53e is bent at substantially a right angle. Is preferred. Upper end 53e and lower end 5
The bent portion 3c has almost the same height, and this height controls the fin interval. As a result, the rod-shaped bolt 5 is inserted into both the through holes 53d of the upright fin 53a.
The fins 53a can be fixed in an upright state by allowing the nuts 5 and 55 to penetrate and screwing nuts to the threaded portions at one ends of the bolts 55 and 55.

【0027】アルミニウム基材の発熱源側(底面側)52
aに設けられた溝52bに板状の銅部材54をろう付け又は
半田付けする。アルミニウム基材からなる伝熱部52の両
側壁には溝52cが形成されており、両溝52c,52cにフ
ァンの取付け部材が係合する。この複合型放熱部材51の
上部にファンを取り付けると、空気は各フィン53aの上
端部を通って下方に流れ込み、各フィン53aの間をフィ
ンの長手方向に流れるのみならず、スリット53bの隙間
を通って放熱部材の長手方向にも流れるので、放熱効率
が高い。
Heat source side (bottom side) 52 of aluminum substrate
A plate-shaped copper member 54 is brazed or soldered into the groove 52b provided in the position a. Grooves 52c are formed on both side walls of the heat transfer section 52 made of an aluminum base material, and the mounting members of the fan are engaged with the grooves 52c. When a fan is attached to the upper part of the composite heat dissipating member 51, the air flows downward through the upper end of each fin 53a, and flows not only between the fins 53a in the longitudinal direction of the fins but also in the gap between the slits 53b. Since it also flows in the longitudinal direction of the heat radiating member, the heat radiating efficiency is high.

【0028】図7に示すように、1枚のアルミニウム薄
板をU字型にしたスリットフィンを用いることもでき
る。また本例のようにフィンの上端部を折り曲げるので
はなく、各フィンの側壁に設けた突起(ディンプル)に
よりフィン間隔を規制するようにすると、フィンの組み
付けが容易になる。また放熱部には、スリットフィンの
代わりに切り起こしルーバーフィンを用いることもでき
る。
As shown in FIG. 7, a slit fin in which one aluminum thin plate is U-shaped can be used. Also, if the fin spacing is regulated by protrusions (dimples) provided on the side walls of the fins instead of bending the upper end of the fins as in this example, the fins can be easily assembled. In addition, cut-and-raised louver fins can be used in place of the slit fins.

【0029】[2] 銅部材の接合方法 本発明では、アルミニウム製伝熱部と銅部材との接合を
ろう付け又は半田付けにより行うのが好ましい。 (A) ろう付け (a) ろう材 ろう材として、質量%でZn:55〜95%、Al:45〜5%及び
残部実質的に不可避不純物からなるZn-Al系合金を用い
るのが好ましい。この組成を有する合金の融点は380〜5
60℃である。Znの含有量が55%未満であると合金の融点
が高くなりすぎ、またZnの含有量が95%を越えると凝固
時に引けすが生じるおそれがあるため、ろう材として用
いるには好ましくない。従ってZnの含有量は55〜95%で
あるのが好ましい。特にZnの含有量が65〜85%で、Alの
含有量が35〜15%であるのが好ましい。この組成範囲で
の合金の融点は460〜530℃である。ろう材は、厚さ0.05
〜0.15mm程度の薄板状で使用するのが好ましい。
[2] Method of Joining Copper Member In the present invention, it is preferable to join the aluminum heat transfer section and the copper member by brazing or soldering. (A) Brazing (a) Brazing material As a brazing material, it is preferable to use a Zn-Al-based alloy composed of 55 to 95% by mass of Zn, 45 to 5% of Al and substantially the remainder of inevitable impurities. The melting point of the alloy having this composition is 380-5
60 ° C. If the Zn content is less than 55%, the melting point of the alloy becomes too high, and if the Zn content exceeds 95%, shrinkage may occur at the time of solidification, which is not preferable for use as a brazing filler metal. Therefore, the content of Zn is preferably 55 to 95%. In particular, it is preferable that the content of Zn is 65 to 85% and the content of Al is 35 to 15%. The melting point of the alloy in this composition range is 460-530 ° C. The brazing material has a thickness of 0.05
It is preferably used in the form of a thin plate of about 0.15 mm.

【0030】(b) フラックス ろう付けに、CsF及びAlF3を含有する非腐食性フラック
スを用いるのが好ましい。CsF及びAlF3の重量比はCsF:A
lF3=30:70〜75:25程度であるのが好ましく、この範囲
でのフラックスの融点はおよそ450〜490℃である。なお
フラックスをろう材と一体的に混合した複合ろう材を使
用してもよい。複合ろう材は、ろう材合金粉末とフラッ
クス粉末とを混合した後圧縮成形し、必要に応じて加熱
加圧条件下で板状に押出し成形することにより製造する
ことができる。
(B) Flux It is preferable to use a non-corrosive flux containing CsF and AlF 3 for brazing. The weight ratio of CsF and AlF 3 is CsF: A
lF 3 = 30: 70~75: is preferably about 25, the melting point of the flux in this range is about four hundred and fifty to four hundred ninety ° C.. Note that a composite brazing material obtained by integrally mixing a flux with the brazing material may be used. The composite brazing material can be manufactured by mixing the brazing alloy powder and the flux powder, compression-molding the mixture, and, if necessary, extruding it into a plate under heating and pressing conditions.

【0031】(c) ろう付け方法 図1の複合型放熱部材1を例にとって、ろう付け法を説
明する。まず薄板状のろう材の両面、又は伝熱部2及び
銅部材4の接合面にフラックスを薄く塗布した後、伝熱
部2の溝内2bにろう材を載置し、次いで銅部材4を載
置する。伝熱部2と銅部材4の接合面が密着するように
ジグで固定しながら、接合部を加熱する。放熱部材1の
酸化を防止するために、加熱を窒素ガス等の不活性ガス
中で行うのが好ましい。ろう付け温度は、上記ろう材及
びフラックスの組合せの場合、400〜550℃の範囲が好ま
しいが、特に460〜500℃の範囲が好ましい。
(C) Brazing method The brazing method will be described with reference to the composite heat radiation member 1 shown in FIG. First, the flux is thinly applied to both surfaces of the thin plate brazing material or to the joint surface between the heat transfer portion 2 and the copper member 4, and then the brazing material is placed in the groove 2 b of the heat transfer portion 2. Place. The joint is heated while fixing with a jig so that the joint surface between the heat transfer section 2 and the copper member 4 is in close contact. In order to prevent the heat radiating member 1 from being oxidized, the heating is preferably performed in an inert gas such as a nitrogen gas. The brazing temperature is preferably in the range of 400 to 550 ° C, particularly preferably 460 to 500 ° C, in the case of the combination of the brazing material and the flux.

【0032】(B) 半田付け (a) 半田合金 半田合金として、質量%でSn:80〜91%、Zn:9〜20%及
び残部実質的に不可避不純物からなるSn-Zn系合金、又
はSn:85〜91%、Zn:7〜10%、Bi:2〜5%及び残部実
質的に不可避不純物からなるSn-Zn-Bi系合金を用いるの
が好ましい。上記Sn-Zn系合金の融点は200〜290℃であ
り、また上記Sn-Zn-Bi系合金の融点は190〜250℃であ
る。
(B) Soldering (a) Solder alloy As a solder alloy, a Sn-Zn alloy or Sn consisting of 80 to 91% by mass of Sn, 9 to 20% of Zn and the balance substantially consisting of unavoidable impurities. : 85 to 91%, Zn: 7 to 10%, Bi: 2 to 5%, and the balance is preferably an Sn-Zn-Bi-based alloy substantially consisting of unavoidable impurities. The melting point of the Sn-Zn-based alloy is 200-290 ° C, and the melting point of the Sn-Zn-Bi-based alloy is 190-250 ° C.

【0033】(b) 半田付け方法 伝熱部2と銅部材4の接合面にフラックスを塗布した
後、半田を介して両者を接合し、両者の接合面が密着す
るようにジグで固定しながら加熱する。放熱部材1の酸
化を防止するために、加熱を窒素ガス等の不活性ガスを
用いて行うのが好ましい。
(B) Soldering method After a flux is applied to the joint surface between the heat transfer section 2 and the copper member 4, the two are joined via solder and fixed with a jig so that the joint surfaces of both are in close contact. Heat. In order to prevent the heat radiating member 1 from being oxidized, it is preferable to perform heating using an inert gas such as nitrogen gas.

【0034】(C) 独立フィンの接合 第四の例及び第五の例の複合型放熱部材の場合、アルミ
ニウム性フィンからなる放熱部をアルミニウム基材から
なる伝熱部に接合し、また銅部材をアルミニウム基材か
らなる伝熱部に接合する必要がある。これらの接合部全
箇所をZu-Al系合金により一括してろう付けするのが好
ましいが、汎用のろう材及びフラックスを用いて放熱部
を伝熱部にろう付けした後、銅部材を伝熱部に半田付け
することもできる。
(C) Bonding of independent fins In the case of the composite heat radiating members of the fourth and fifth examples, a heat radiating portion made of aluminum fins is bonded to a heat transfer portion made of an aluminum base, and a copper member is formed. Must be joined to a heat transfer section made of an aluminum base material. It is preferable to braze all these joints together with a Zu-Al alloy, but after brazing the heat radiating part to the heat transfer part using a general-purpose brazing material and flux, heat the copper member It can also be soldered to the part.

【0035】[0035]

【発明の効果】本発明の複合型放熱部材は、アルミニウ
ムにより伝熱部と放熱部を一体的に形成するとともに、
伝熱部に熱伝導率の高い銅部材を接合してなるので、高
い放熱効率を有するとともに、軽量かつ高強度で加工コ
ストも低い。
According to the composite heat dissipation member of the present invention, the heat transfer portion and the heat dissipation portion are integrally formed of aluminum.
Since a copper member having a high thermal conductivity is joined to the heat transfer section, it has high heat dissipation efficiency, is lightweight and high in strength, and has a low processing cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の複合型放熱部材の第一の例を示す斜
視図である。
FIG. 1 is a perspective view showing a first example of a composite heat dissipation member of the present invention.

【図2】 本発明の複合型放熱部材の第二の例を示す斜
視図である。
FIG. 2 is a perspective view showing a second example of the composite heat dissipation member of the present invention.

【図3】 本発明の複合型放熱部材の第三の例を示す斜
視図である。
FIG. 3 is a perspective view showing a third example of the composite heat dissipation member of the present invention.

【図4】 本発明の複合型放熱部材の第四の例を示す斜
視図である。
FIG. 4 is a perspective view showing a fourth example of the composite heat dissipation member of the present invention.

【図5】 本発明の複合型放熱部材の第五の例を示す斜
視図である。
FIG. 5 is a perspective view showing a fifth example of the composite heat dissipation member of the present invention.

【図6】 図5の複合型放熱部材のフィンの形状を示す
拡大斜視図である。
FIG. 6 is an enlarged perspective view showing a shape of a fin of the composite heat dissipation member of FIG. 5;

【図7】 本発明の複合型放熱部材の第五の例に用いる
ことができる他のフィンを示す斜視図である。
FIG. 7 is a perspective view showing another fin that can be used in the fifth example of the composite heat dissipation member of the present invention.

【符号の説明】[Explanation of symbols]

1,21,31,41,51・・・複合型放熱部材 2,22,32,42,52・・・伝熱部 2a,22a,32a,42a,52a・・・伝熱部の発熱体側 2b,42b,52b・・・伝熱部の銅部材接合用溝 2c, 42c,52c・・・伝熱部側壁の溝 3,23,33,43,53・・・放熱部 3a,23a, 43a,53a・・・フィン 33a・・・ピン 4,24,34,44,54・・・銅部材 53b・・・フィンのスリット 53c・・・フィンの下端部 53d・・・フィンの貫通孔 53e・・・フィンの突起 55・・・フィンのボルト 1, 21, 31, 41, 51 ... composite heat dissipating member 2, 22, 32, 42, 52 ... heat transfer part 2a, 22a, 32a, 42a, 52a ... heat generator side of heat transfer part 2b , 42b, 52b ... grooves for joining copper members in the heat transfer section 2c, 42c, 52c ... grooves in the side wall of the heat transfer section 3, 23, 33, 43, 53 ... heat radiating sections 3a, 23a, 43a, 53a ... fins 33a ... pins 4, 24, 34, 44, 54 ... copper members 53b ... fin slits 53c ... fin lower ends 53d ... fin through holes 53e ...・ Fin projections 55 ・ ・ ・ Fin bolts

───────────────────────────────────────────────────── フロントページの続き (72)発明者 浅野 祐一郎 東京都目黒区南3−13−21 (72)発明者 金井 富義 栃木県小山市神鳥谷1845−10 Fターム(参考) 5F036 AA01 BB05 BC06 BD01 BD03 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yuichiro Asano 3-13-21 Minami, Meguro-ku, Tokyo (72) Inventor Tomiyoshi Kanai 1845-10 Kamitani, Koyama-shi, Tochigi F-term (reference) 5F036 AA01 BB05 BC06 BD01 BD03

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 ともにアルミニウムからなる放熱部及び
伝熱部を有し、前記伝熱部のうち発熱源と接触する側に
銅部材が接合されていることを特徴とする複合型放熱部
材。
1. A composite heat dissipating member comprising a heat dissipating portion and a heat transfer portion both made of aluminum, wherein a copper member is joined to a side of the heat transfer portion that contacts a heat source.
【請求項2】 請求項1に記載の複合型放熱部材におい
て、前記放熱部が押し出し成形された複数のフィンから
なることを特徴とする複合型放熱部材。
2. The composite heat dissipating member according to claim 1, wherein said heat dissipating portion comprises a plurality of extruded fins.
【請求項3】 請求項1に記載の複合型放熱部材におい
て、前記放熱部がスカイブ加工された複数のフィンから
なることを特徴とする複合型放熱部材。
3. The composite heat dissipating member according to claim 1, wherein said heat dissipating portion comprises a plurality of skived fins.
【請求項4】 請求項1に記載の複合型放熱部材におい
て、前記放熱部が鍛造された複数のピンからなることを
特徴とする複合型放熱部材。
4. The composite heat dissipating member according to claim 1, wherein said heat dissipating portion comprises a plurality of forged pins.
【請求項5】 請求項1に記載の複合型放熱部材におい
て、前記放熱部が前記伝熱部に一体的に積層されたコル
ゲートフィンからなることを特徴とする複合型放熱部
材。
5. The composite heat dissipating member according to claim 1, wherein said heat dissipating portion is formed of corrugated fins integrally laminated on said heat transfer portion.
【請求項6】 請求項1に記載の複合型放熱部材におい
て、前記放熱部が前記伝熱部に接合された複数の独立し
たフィンからなることを特徴とする複合型放熱部材。
6. The composite heat dissipating member according to claim 1, wherein said heat dissipating portion comprises a plurality of independent fins joined to said heat transfer portion.
【請求項7】 請求項5又は6に記載の複合型放熱部材
において、前記フィンがスリットを有することを特徴と
する複合型放熱部材。
7. The composite heat dissipating member according to claim 5, wherein said fin has a slit.
【請求項8】 請求項1〜7のいずれかに記載の複合型
放熱部材において、前記伝熱部と前記銅部材とが、質量
%で、Zn:55〜95%、Al:45〜5%及び残部実質的に不可
避不純物からなる合金からなるろう材により接合されて
いることを特徴とする複合型放熱部材。
8. The composite heat radiating member according to claim 1, wherein the heat transfer portion and the copper member are, by mass%, Zn: 55 to 95% and Al: 45 to 5%. A composite heat radiation member, which is joined by a brazing material made of an alloy substantially consisting of unavoidable impurities.
【請求項9】 請求項8に記載の複合型放熱部材におい
て、CsF及びAlF3を含有するフラックスを使用して前記
伝熱部と前記銅部材とがろう付けされたことを特徴とす
る複合型放熱部材。
9. The composite heat dissipation member according to claim 8, wherein the heat transfer portion and the copper member are brazed using a flux containing CsF and AlF 3. Heat dissipation member.
【請求項10】 請求項1〜7のいずれかに記載の複合型
放熱部材において、前記伝熱部と前記銅部材とが、質量
%で、Sn:80〜91%、Zn:9〜20%及び残部実質的に不可
避不純物からなる合金からなる半田により接合されてい
ることを特徴とする複合型放熱部材。
10. The composite heat dissipation member according to claim 1, wherein the heat transfer portion and the copper member are 80% to 91% Sn and 9% to 20% Zn by mass%. And a composite type heat dissipating member which is joined by a solder made of an alloy substantially consisting of unavoidable impurities.
【請求項11】 請求項1〜7のいずれかに記載の複合型
放熱部材において、前記伝熱部と前記銅部材とが、質量
%で、Sn:85〜91%、Zn:7〜10%、Bi:2〜5%及び残
部実質的に不可避不純物からなる合金からなる半田によ
り接合されていることを特徴とする複合型放熱部材。
11. The composite heat dissipation member according to claim 1, wherein the heat transfer portion and the copper member are, by mass%, 85 to 91% of Sn and 7 to 10% of Zn. , Bi: 2 to 5% and the balance being joined by a solder made of an alloy substantially consisting of unavoidable impurities.
JP2000378194A 2000-12-12 2000-12-12 Composite heat dissipating member Pending JP2002184922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000378194A JP2002184922A (en) 2000-12-12 2000-12-12 Composite heat dissipating member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000378194A JP2002184922A (en) 2000-12-12 2000-12-12 Composite heat dissipating member

Publications (1)

Publication Number Publication Date
JP2002184922A true JP2002184922A (en) 2002-06-28

Family

ID=18846807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000378194A Pending JP2002184922A (en) 2000-12-12 2000-12-12 Composite heat dissipating member

Country Status (1)

Country Link
JP (1) JP2002184922A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007059894A (en) * 2005-07-27 2007-03-08 Showa Denko Kk Light source mounted with light emitting diode element
JP2009065130A (en) * 2007-07-30 2009-03-26 Jiing Tung Tec Metal Co Ltd Magnesium-alloy composite-type heat dissipating metal
DE102008004961A1 (en) * 2008-01-18 2009-07-23 Marquardt Gmbh Cooling body for electrical switch of e.g. grinder, has area resting and/or assigned to heat source, and another area turned to cooling agent, where material for former area has heat conductivity higher than material for latter area
JP2010067842A (en) * 2008-09-11 2010-03-25 Am Technology:Kk Heat sink consisting of combination of graphite-metal complex and aluminum extrusion material
US7964958B2 (en) 2007-02-20 2011-06-21 Panasonic Corporation Heatsink structure for solid-state image sensor
JP2012004357A (en) * 2010-06-17 2012-01-05 Mitsubishi Materials Corp Substrate for power module and manufacturing method thereof
US9179578B2 (en) 2009-08-25 2015-11-03 Fuji Electric Co., Ltd. Semiconductor module and heat radiation member
JP2015226039A (en) * 2014-05-30 2015-12-14 Dowaメタルテック株式会社 Comb tooth-shaped heat radiation pin member, manufacturing method of the same, and heat radiation plate with pins
JP2018006582A (en) * 2016-07-01 2018-01-11 かがつう株式会社 Heat sink, manufacturing method of heat sink, and electronic component package using heat sink
JP2018107365A (en) * 2016-12-28 2018-07-05 昭和電工株式会社 Radiator for liquid-cooled cooler and manufacturing method thereof
WO2023085557A1 (en) * 2021-11-10 2023-05-19 동양피스톤 주식회사 Heat dissipation module of motor control unit for electric vehicle, and welding method therefor

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007059894A (en) * 2005-07-27 2007-03-08 Showa Denko Kk Light source mounted with light emitting diode element
US7964958B2 (en) 2007-02-20 2011-06-21 Panasonic Corporation Heatsink structure for solid-state image sensor
JP2009065130A (en) * 2007-07-30 2009-03-26 Jiing Tung Tec Metal Co Ltd Magnesium-alloy composite-type heat dissipating metal
DE102008004961A1 (en) * 2008-01-18 2009-07-23 Marquardt Gmbh Cooling body for electrical switch of e.g. grinder, has area resting and/or assigned to heat source, and another area turned to cooling agent, where material for former area has heat conductivity higher than material for latter area
JP2010067842A (en) * 2008-09-11 2010-03-25 Am Technology:Kk Heat sink consisting of combination of graphite-metal complex and aluminum extrusion material
US9179578B2 (en) 2009-08-25 2015-11-03 Fuji Electric Co., Ltd. Semiconductor module and heat radiation member
JP2012004357A (en) * 2010-06-17 2012-01-05 Mitsubishi Materials Corp Substrate for power module and manufacturing method thereof
JP2015226039A (en) * 2014-05-30 2015-12-14 Dowaメタルテック株式会社 Comb tooth-shaped heat radiation pin member, manufacturing method of the same, and heat radiation plate with pins
JP2018006582A (en) * 2016-07-01 2018-01-11 かがつう株式会社 Heat sink, manufacturing method of heat sink, and electronic component package using heat sink
JP2018107365A (en) * 2016-12-28 2018-07-05 昭和電工株式会社 Radiator for liquid-cooled cooler and manufacturing method thereof
WO2018123387A1 (en) * 2016-12-28 2018-07-05 昭和電工株式会社 Radiator for liquid cooling type cooling device and manufacturing method therefor
CN110036474A (en) * 2016-12-28 2019-07-19 昭和电工株式会社 Liquid-cooled-type cooling device Radiator and its preparation method
US10770373B2 (en) 2016-12-28 2020-09-08 Showa Denko K.K. Radiator for liquid cooling type cooling device and method of producing the same
CN110036474B (en) * 2016-12-28 2023-05-16 株式会社力森诺科 Radiator for liquid cooling type cooling device and manufacturing method thereof
WO2023085557A1 (en) * 2021-11-10 2023-05-19 동양피스톤 주식회사 Heat dissipation module of motor control unit for electric vehicle, and welding method therefor

Similar Documents

Publication Publication Date Title
JP3529358B2 (en) Finned heat sink
JP3936308B2 (en) Fin integrated heat sink and method of manufacturing the same
US6637109B2 (en) Method for manufacturing a heat sink
JP4888721B2 (en) Manufacturing method of radiator having plate-like fins
US6698500B2 (en) Heat sink with fins
EP1135978B1 (en) Heatsink for electronic component, and apparatus and method for manufacturing the same
JPH09329395A (en) Heat sink
JP2009021530A (en) Insulating resin film and power module
US6862183B2 (en) Composite fins for heat sinks
JP2001196511A (en) Heat sink and method of its manufacturing and cooler using it
JP2002184922A (en) Composite heat dissipating member
JP4600220B2 (en) Cooler and power module
JP2008270297A (en) Power unit and heat dissipation container
JP2008300379A (en) Power module
TW200524514A (en) Compound heat sink with multi-directional fins
JP2004088014A (en) Heat sink
JP2004336046A (en) Application specific heat sink element
JP4937951B2 (en) Power semiconductor device and manufacturing method thereof
JPH09203595A (en) Radiator device
JP2003234443A (en) Heat sink with fin
JP3449285B2 (en) Thermal strain absorber and power semiconductor device using the same
JP2001102506A (en) Heat sink and manufacturing method therefor
JP2001326307A (en) Heat sink for electronic component and its manufacturing method
JP5042702B2 (en) Manufacturing method of plate fin type radiator
JP2003100970A (en) Composite heat radiation member

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040602

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041006