JPH09203595A - Radiator device - Google Patents

Radiator device

Info

Publication number
JPH09203595A
JPH09203595A JP3280996A JP3280996A JPH09203595A JP H09203595 A JPH09203595 A JP H09203595A JP 3280996 A JP3280996 A JP 3280996A JP 3280996 A JP3280996 A JP 3280996A JP H09203595 A JPH09203595 A JP H09203595A
Authority
JP
Japan
Prior art keywords
heat
fin
section
heat dissipation
base section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3280996A
Other languages
Japanese (ja)
Inventor
Masao Katooka
正男 加藤岡
Toshihide Tokuda
俊秀 徳田
Toshiichi Fujiyoshi
敏一 藤吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sansha Electric Manufacturing Co Ltd
Original Assignee
Sansha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sansha Electric Manufacturing Co Ltd filed Critical Sansha Electric Manufacturing Co Ltd
Priority to JP3280996A priority Critical patent/JPH09203595A/en
Publication of JPH09203595A publication Critical patent/JPH09203595A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To cause a weight of a radiator to be light and improve thermal radiation efficiency by a method wherein a base section for transmitting heat from a heat generating section and dispersing heat in a wide range and a fin section for use in transmitting heat top air are made of different metals having different material qualities. SOLUTION: In case that a heat generating member 5 of a thermal radiator device is placed at the center of a bottom surface of a base section, heat generated from the heat generating member 5 is transmitted in directions 6, 7, 8, and 9 in the entire region of the base section 1, transmitted to an opposite side of the base section 1 and further transmitted to a fin section 2. During this process of heat transfer, a heat exchanging operation with air is mainly carried out at the surface of the fin section 2, resulting in that the radiator device can be cooled and the heat generating member can be cooled. In this case, the base section 1 and the fin section 2 of the radiator device are made of different kind of metals. That is an aluminum plate or a copper plate is selected and applied to the base section 1 and the fin section 2 in accordance with a shape of the radiator device. Then, the base section 1 and the fin section 2 are connected and fixed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は電源機器の半導体等
の発熱する熱を放熱するための放熱装置に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat dissipation device for dissipating heat generated by a semiconductor or the like of a power supply device.

【0002】[0002]

【従来の技術】図5に従来の技術の実施例を示す。図5
の放熱装置はベース部51とフィン部52は同一材質の
金属で構成している。アルミニウム又は銅のような熱伝
導率の高い金属を使用して、一般的に押し出し整形で作
られている。図5(c)の斜線部に示す放熱装置のベー
ス部51の底面の中心に取り付けた、例えば発熱体55
で発熱した熱は前記ベース部51の全域へと伝達され、
ベース部51の反対側に伝達されて、フィン部52に伝
達される。フィン部52では矢印53の方向へと熱は伝
達される。この熱の伝達の課程で主にフィン部52の表
面で空気との熱交換が行われて、放熱装置の冷却そして
発熱体55の冷却が行われる。
2. Description of the Related Art FIG. 5 shows an example of a conventional technique. FIG.
In the heat dissipation device, the base portion 51 and the fin portion 52 are made of the same metal material. It is generally made by extrusion using a high thermal conductivity metal such as aluminum or copper. For example, a heating element 55 attached to the center of the bottom surface of the base portion 51 of the heat dissipation device shown in the shaded portion of FIG. 5C.
The heat generated at is transmitted to the entire area of the base portion 51,
It is transmitted to the opposite side of the base portion 51 and is transmitted to the fin portion 52. In the fin portion 52, heat is transferred in the direction of arrow 53. In the course of this heat transfer, heat is exchanged with the air mainly on the surface of the fin portion 52 to cool the radiator and cool the heating element 55.

【0003】アルミニウムの熱伝導率は温度100℃で
約240W/mKであり、銅の熱伝導率は温度100℃
で約395W/mKであるので銅の熱伝導率はアルミニ
ウムのに比べて約1.65倍であるので熱が発熱体55
からベース部51へ、そしてフィン部52への伝達率は
銅を放熱材として使用する方が高いので、前記発熱体5
5の冷却効果も高い。すなわち、大きい発熱量の発熱体
に対しては銅材の放熱装置を形成する方が高い冷却硬化
が得られる。
Aluminum has a thermal conductivity of about 240 W / mK at a temperature of 100 ° C., and copper has a thermal conductivity of 100 ° C.
Since the heat conductivity of copper is about 395 W / mK, the heat conductivity of copper is about 1.65 times that of aluminum.
Since the transmissivity from the base part 51 to the fin part 52 is higher when copper is used as the heat dissipation material,
The cooling effect of 5 is also high. That is, for a heating element having a large heating value, a higher cooling and hardening can be obtained by forming a copper radiator.

【0004】[0004]

【発明が解決しようとする課題】アルミニウム材を使用
した放熱装置は軽量で比較的放熱効率が高いので広く使
用されている。一方、発熱量が多い発熱体に対しては熱
伝導率の高い銅材が使われている。しかし、銅は熱伝導
率が高い反面、密度が高いのでアルミニウムのような軽
量化が計れないという問題がある。
A heat dissipation device using an aluminum material is widely used because of its light weight and relatively high heat dissipation efficiency. On the other hand, a copper material having a high thermal conductivity is used for a heating element that generates a large amount of heat. However, while copper has a high thermal conductivity, it has a problem that it cannot be made as lightweight as aluminum because it has a high density.

【0005】[0005]

【課題を解決するための手段】第1の発明の放熱装置で
は、発熱部から熱を伝達し、広範囲に前記熱を分散する
ベース部と前記熱を空気に伝達するフィン部とで構成す
る放熱装置において、前記ベース部とフィン部と異なる
材質の金属を使用したことを特徴とするものである。す
なわち、高熱伝導率の金属と軽量金属を組み合わせて、
軽量で放熱効率の高い放熱装置である。
According to the first aspect of the invention, there is provided a heat dissipation device comprising a base part for transferring heat from a heat generating part to disperse the heat in a wide range and a fin part for transferring the heat to air. In the device, a metal of a different material is used for the base portion and the fin portion. In other words, by combining a high thermal conductivity metal and a lightweight metal,
It is a light weight and high heat dissipation device.

【0006】第2の発明は第1の発明の放熱装置におい
て、ベース部とフィン部をかしめによって接合した放熱
装置。
A second aspect of the present invention is the heat radiating device according to the first aspect, wherein the base part and the fin part are joined by caulking.

【0007】第3の発明は第1の発明の放熱装置におい
て、ベース部とフィン部を接着材で接合した放熱装置で
ある。
A third aspect of the present invention is the heat radiating device according to the first aspect, wherein the base portion and the fin portion are joined by an adhesive material.

【0008】第四の発明は第1の発明の放熱装置におい
て、ベース部とフィン部をろう付で接合した放熱装置で
ある。
A fourth aspect of the present invention is the heat radiating device according to the first aspect, wherein the base part and the fin part are joined by brazing.

【0009】[0009]

【発明の実施の形態】第1から第4の発明に係わる放熱
装置の実施の形態について、各1例を図1から図4を参
照して説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of a heat dissipation device according to the first to fourth inventions will be described with reference to FIGS. 1 to 4, respectively.

【0010】図1(a)、(b)、(c)に放熱装置の
ベース部1とフィン部2を三角法による正面、側面、底
面を示す。図1には放熱装置のベース部1とフィン部2
は異種金属で構成している。アルミニウム又は銅のよう
な熱伝導率の高い金属を使用して放熱装置を構成する。
前記ベース部1とフィン部2を接合して固定する。
1 (a), 1 (b) and 1 (c) show the base portion 1 and the fin portion 2 of the heat dissipation device in the front, side and bottom surfaces by trigonometry. FIG. 1 shows the base portion 1 and the fin portion 2 of the heat dissipation device.
Is composed of dissimilar metals. The heat dissipation device is configured using a metal having a high thermal conductivity such as aluminum or copper.
The base portion 1 and the fin portion 2 are joined and fixed.

【0011】放熱装置の底面を示す図1(c)でには斜
線部で示す発熱体5を前記ベース部の底面の中心に置い
た場合、前記発熱体5から発生する熱は前記ベース部1
の全域に、同図に示す6、7、8、9の方向に伝達さ
れ、ベース部1の反対側に伝達されて、フィン部2に伝
達される。フィン部2では矢印11の方向へと熱は伝達
される。この熱の伝達の課程で主にフィン部2の表面で
空気との熱交換が行われ、放熱装置の冷却、そして発熱
体の冷却ができる。
In FIG. 1C showing the bottom surface of the heat dissipation device, when the heating element 5 shown by the hatched portion is placed at the center of the bottom surface of the base portion, the heat generated from the heating element 5 is generated by the base portion 1.
Is transmitted in the directions of 6, 7, 8 and 9 shown in the figure, is transmitted to the opposite side of the base portion 1 and is transmitted to the fin portion 2. In the fin portion 2, heat is transferred in the direction of arrow 11. In the course of this heat transfer, heat is exchanged with the air mainly on the surface of the fin portion 2, so that the heat dissipation device and the heating element can be cooled.

【0012】アルミニウムの熱伝導率は温度100℃で
約240W/mKであり、銅の熱伝導率は温度100℃
で約395W/mKである。アルミニウム又は銅を放熱
装置の材料に使用する場合、銅の熱伝導率はアルミニウ
ムのに比べて約1.65倍である。一方、アルミニウム
の密度は1立法センチメートルあたり2.69グラムで
あり、銅の密度は1立方センチメートルあたり8.96
グラムであるので銅の方が3.33倍アルミニウムより
重い。以上の金属の特徴を利用して軽量で熱伝導率の高
い放熱装置を構成するための本発明を以下に説明する。
Aluminum has a thermal conductivity of about 240 W / mK at a temperature of 100 ° C., and copper has a thermal conductivity of 100 ° C.
Is about 395 W / mK. When aluminum or copper is used as the material of the heat dissipation device, the thermal conductivity of copper is about 1.65 times that of aluminum. On the other hand, the density of aluminum is 2.69 grams per cubic centimeter and the density of copper is 8.96 per cubic centimeter.
Since it is in grams, copper is 3.33 times heavier than aluminum. The present invention for constructing a heat dissipation device that is lightweight and has high thermal conductivity by utilizing the above characteristics of metals will be described below.

【0013】第1の発明ではベース部1に使用する金属
とフィン部2に使用する金属を異種金属を使用すること
で放熱装置全体の熱伝導率を調整することができる。発
熱体5の面積に比べて図1(c)に示す底面の面積が広
い放熱装置に対しては、発熱体5で発生した熱が6、
7、8、9の方向に伝わる。前記6、7、8、9の方向
の金属の熱伝導率によって前記熱の伝わり具合が決ま
る。そこで底面の面積が広い場合には、熱が角から角ま
で伝わるように、熱伝導率が高いものを使用する方が望
まれるのでベース部1にアルミニウムより銅を使用す
る。一方、ベース部1の底面の面積が発熱体の面積に比
べて同等であり、フィン部2が比較的長いものについて
は、熱が先端まで伝わるように、フィン部2に熱伝導率
が高い材質の金属を使用する。すなわち、アルミニウム
より銅を使用する。つまり、放熱装置の形状に応じて、
ベース部1及びフィン部2にアルミニウムまたは銅の材
質の板を選択して使用する。
In the first aspect of the invention, the heat conductivity of the entire heat dissipation device can be adjusted by using different metals for the base portion 1 and the fin portion 2. For a heat dissipation device whose bottom surface area shown in FIG. 1C is larger than that of the heating element 5, the heat generated by the heating element 5 is 6,
It is transmitted in the directions of 7, 8 and 9. The degree of heat transfer is determined by the thermal conductivity of the metal in the directions of 6, 7, 8 and 9. Therefore, when the area of the bottom surface is large, it is desirable to use a material having a high thermal conductivity so that heat is transferred from corner to corner. Therefore, copper is used for the base portion 1 rather than aluminum. On the other hand, in the case where the area of the bottom surface of the base portion 1 is equal to that of the heating element and the fin portion 2 is relatively long, a material having a high thermal conductivity is used for the fin portion 2 so that heat can be transmitted to the tip. Use metal. That is, copper is used rather than aluminum. That is, depending on the shape of the heat dissipation device,
A plate made of aluminum or copper is selected and used for the base portion 1 and the fin portion 2.

【0014】第2の発明の実施の形態を図2に示す。図
2は図1(b)の放熱装置コーナの点線内部10を第2
の発明に変更した拡大図である。図2はベース部11と
フィン部12の接合方法について説明するものであり、
ベース部11とフィン部12の接合部分の断面図を示
す。ベース部11には溝4を設けて、この溝4にフィン
部12を差し込んで、鋭い先端を持つかしめ用工具で溝
4の両側をかしめて、かしめのくぼみ3を形成する。く
ぼみ3を形成することによって溝4の入り口が狭められ
てフィン部12を締め付ける事になる。このようにフィ
ン部12を締め付ける事によってベース部11とフィン
部12とが強固に固定される。
An embodiment of the second invention is shown in FIG. FIG. 2 shows the inside of the dotted line 10 of the radiator corner of FIG.
It is an enlarged view which changed into invention of this. FIG. 2 illustrates a method of joining the base portion 11 and the fin portion 12,
A cross-sectional view of a joint portion between the base portion 11 and the fin portion 12 is shown. The base portion 11 is provided with a groove 4, the fin portion 12 is inserted into the groove 4, and both sides of the groove 4 are caulked by a caulking tool having a sharp tip to form a caulking recess 3. By forming the depression 3, the entrance of the groove 4 is narrowed and the fin portion 12 is tightened. By tightening the fin portion 12 in this manner, the base portion 11 and the fin portion 12 are firmly fixed.

【0015】第3の発明の実施例を図3に示す。図3は
図1(b)の放熱装置コーナの点線内部10を第3の発
明に変更した拡大図である。図3の発明ではベース部3
1にフィン部32用の溝34を形成し、この溝34に金
属用の熱伝導率が高い接着剤33を塗布し、フィン部3
2を差し込むと、接着剤33が凝固後ベース部31とフ
ィン部32が強固に固定される。
An embodiment of the third invention is shown in FIG. FIG. 3 is an enlarged view in which the dotted line inside 10 of the heat dissipation device corner of FIG. 1B is changed to the third invention. In the invention of FIG. 3, the base portion 3
1 is provided with a groove 34 for the fin portion 32, and an adhesive 33 having a high thermal conductivity for metal is applied to the groove 34 to form the fin portion 3
When 2 is inserted, the base 33 and the fins 32 are firmly fixed after the adhesive 33 is solidified.

【0016】第4の発明の実施例を図4に示す。図4は
図1(b)の放熱装置コーナの点線内部10を第4の発
明に変更した拡大図である。図4の発明ではベース部4
1にフィン部42用の溝44を形成し、ベース部41と
フィン部42の間にろう材43を入れて高温によってろ
う付を行う。ろう付を行ったベース部41とフィン部4
2は強固に固定される。
An embodiment of the fourth invention is shown in FIG. FIG. 4 is an enlarged view in which the dotted line inside 10 of the heat dissipation device corner of FIG. 1B is changed to the fourth invention. In the invention of FIG. 4, the base portion 4
A groove 44 for the fin portion 42 is formed in the groove 1, and a brazing material 43 is inserted between the base portion 41 and the fin portion 42 to perform brazing at high temperature. Brazed base portion 41 and fin portion 4
2 is firmly fixed.

【0017】[0017]

【発明の効果】アルミニウムの熱伝導率は温度100℃
で約240W/mKであり、銅の熱伝導率は温度100
℃で約395W/mKである。アルミニウム又は銅を放
熱装置の材料に使用する場合、銅の熱伝導率はアルミニ
ウムのに比べて約1.65倍である。一方、アルミニウ
ムの密度は1立法センチメートルあたり2.69グラム
であり、銅の密度は1立方センチメートルあたり8.9
6グラムであるので銅の方が3.33倍アルミニウムよ
り重い。以上を熱伝導率の違う特性と密度の違う特性を
有する異種金属を利用して、図1に示す放熱装置のベー
ス部1とフィン部2にはそれぞれ、アルミニウム又は銅
のような金属を使用し、組み合わせて放熱装置を構成す
ることで、全部銅の放熱装置より軽量で全部アルミニウ
ムの放熱装置より熱伝導率の高い放熱装置を提供でき
る。
The thermal conductivity of aluminum has a temperature of 100 ° C.
Is about 240 W / mK, and the thermal conductivity of copper is 100
It is about 395 W / mK at ° C. When aluminum or copper is used as the material of the heat dissipation device, the thermal conductivity of copper is about 1.65 times that of aluminum. On the other hand, the density of aluminum is 2.69 grams per cubic centimeter and the density of copper is 8.9 per cubic centimeter.
At 6 grams, copper is 3.33 times heavier than aluminum. The above uses different metals having different properties of thermal conductivity and different density, and the base part 1 and the fin part 2 of the heat dissipation device shown in FIG. 1 are made of metal such as aluminum or copper. By composing the heat dissipation device in combination, it is possible to provide a heat dissipation device that is lighter in weight than the heat dissipation device made of all copper and has a higher thermal conductivity than the heat dissipation device made of all aluminum.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の発明の実施例の図面である。FIG. 1 is a drawing of an embodiment of the first invention.

【図2】第2の発明の実施例の図面である。FIG. 2 is a drawing of an embodiment of the second invention.

【図3】第3の発明の実施例の図面である。FIG. 3 is a drawing of an embodiment of the third invention.

【図4】第4の発明の実施例の図面である。FIG. 4 is a drawing of an embodiment of the fourth invention.

【図5】従来技術の実施例の接続図である。FIG. 5 is a connection diagram of an embodiment of the prior art.

【符号の説明】[Explanation of symbols]

1、31、41 ベース部 2、32、42 フィン部 3 くぼみ 4、34、44 溝 5 発熱体 6、7、8、9、56、57、58、59 熱伝導の方
向 10 放熱装置コーナ 11、53 熱伝導の方向 33 接着剤 43 ろう材 51 ベース部 52 フィン部
1, 31, 41 Base portion 2, 32, 42 Fin portion 3 Recessed portion 4, 34, 44 Groove 5 Heating element 6, 7, 8, 9, 56, 57, 58, 59 Heat conduction direction 10 Radiator corner 11, 53 direction of heat conduction 33 adhesive 43 brazing material 51 base portion 52 fin portion

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 発熱部から熱を伝達し、広範囲に前記熱
を分散するベース部と前記熱を空気に伝達するフィン部
とで構成する放熱機において、前記ベース部とフィン部
に異なる材質の金属を使用したことを特徴とする放熱装
置。
1. A radiator comprising a base portion for transmitting heat from a heat generating portion to disperse the heat in a wide range and a fin portion for transmitting the heat to air, wherein the base portion and the fin portion are made of different materials. A heat dissipation device characterized by using metal.
【請求項2】 請求項1の放熱装置において、ベース部
とフィン部をかしめによって接合した放熱装置。
2. The heat dissipation device according to claim 1, wherein the base part and the fin part are joined by caulking.
【請求項3】 請求項1の放熱装置において、ベース部
とフィン部を接着材で接合した放熱装置。
3. The heat dissipation device according to claim 1, wherein the base part and the fin part are joined by an adhesive material.
【請求項4】 請求項1の放熱装置において、ベース部
とフィン部をろう付で接合した放熱装置。
4. The heat dissipation device according to claim 1, wherein the base part and the fin part are joined by brazing.
JP3280996A 1996-01-26 1996-01-26 Radiator device Pending JPH09203595A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3280996A JPH09203595A (en) 1996-01-26 1996-01-26 Radiator device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3280996A JPH09203595A (en) 1996-01-26 1996-01-26 Radiator device

Publications (1)

Publication Number Publication Date
JPH09203595A true JPH09203595A (en) 1997-08-05

Family

ID=12369170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3280996A Pending JPH09203595A (en) 1996-01-26 1996-01-26 Radiator device

Country Status (1)

Country Link
JP (1) JPH09203595A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002078417A1 (en) * 2001-03-26 2002-10-03 Jong-Mahn Lee Heat sink and method for manufacturing the same
CN100436028C (en) * 2002-08-29 2008-11-26 日本轻金属株式会社 Method of joining members, method of joining metallic members, radiation member, process for manufacturing the same, jig for the manufacturing and heat sink
JP2010283105A (en) * 2009-06-04 2010-12-16 Hitachi Metals Ltd Wiring board cooling mechanism and method of manufacturing the same, and bonding structure and method of manufacturing the same
CN103206887A (en) * 2013-03-27 2013-07-17 成都阳光铝制品有限公司 High density tooth heat radiator based on aluminum alloy
CN104423498A (en) * 2013-08-20 2015-03-18 英业达科技有限公司 Cooling module and server applying the cooling module
US20180297144A1 (en) * 2017-04-13 2018-10-18 Raytheon Company Integration of ultrasonic additive manufactured thermal structures in brazements

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002078417A1 (en) * 2001-03-26 2002-10-03 Jong-Mahn Lee Heat sink and method for manufacturing the same
CN100436028C (en) * 2002-08-29 2008-11-26 日本轻金属株式会社 Method of joining members, method of joining metallic members, radiation member, process for manufacturing the same, jig for the manufacturing and heat sink
JP2010283105A (en) * 2009-06-04 2010-12-16 Hitachi Metals Ltd Wiring board cooling mechanism and method of manufacturing the same, and bonding structure and method of manufacturing the same
CN103206887A (en) * 2013-03-27 2013-07-17 成都阳光铝制品有限公司 High density tooth heat radiator based on aluminum alloy
CN104423498A (en) * 2013-08-20 2015-03-18 英业达科技有限公司 Cooling module and server applying the cooling module
US20180297144A1 (en) * 2017-04-13 2018-10-18 Raytheon Company Integration of ultrasonic additive manufactured thermal structures in brazements
US10766097B2 (en) * 2017-04-13 2020-09-08 Raytheon Company Integration of ultrasonic additive manufactured thermal structures in brazements

Similar Documents

Publication Publication Date Title
KR100539044B1 (en) Apparatus and Method for Passive Phase Change Thermal Management
JP2009198173A (en) Heat sink with heat pipes and method for manufacturing the same
JP2008294283A (en) Semiconductor device
JP2008270297A (en) Power unit and heat dissipation container
JPH09329395A (en) Heat sink
JP2003324173A (en) Cooling device for semiconductor element
US6862183B2 (en) Composite fins for heat sinks
JP2002286380A (en) Heat pipe type cooling device
JPH09203595A (en) Radiator device
JP3449604B2 (en) Cooling fins
JP2002184922A (en) Composite heat dissipating member
JP4707840B2 (en) Radiator and manufacturing method thereof
JP6003109B2 (en) Power module
JP2005121345A (en) Plate type heat pipe and method for producing it
TWI305132B (en)
JPH10224068A (en) Heat-pipe-type heat sink
WO2022041961A1 (en) Heat dissipation device and manufacturing method therefor
JPH04225790A (en) Heat pipe type radiator and manufacture thereof
JP3093441B2 (en) Heat sink for high power electronic equipment
JP4324367B2 (en) Element heatsink
JPH0677347A (en) Substrate
JP2004319942A (en) Heat sink using metal foamed material
JP3960192B2 (en) Radiator
JP3732130B2 (en) Cooling fin structure
JPS6336691Y2 (en)