JPH0419920A - Manufacture of nb3sn superconductor wire - Google Patents

Manufacture of nb3sn superconductor wire

Info

Publication number
JPH0419920A
JPH0419920A JP2123677A JP12367790A JPH0419920A JP H0419920 A JPH0419920 A JP H0419920A JP 2123677 A JP2123677 A JP 2123677A JP 12367790 A JP12367790 A JP 12367790A JP H0419920 A JPH0419920 A JP H0419920A
Authority
JP
Japan
Prior art keywords
situ
fibers
wire
superconducting
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2123677A
Other languages
Japanese (ja)
Other versions
JP2874955B2 (en
Inventor
Hiroyuki Hayakawa
弘之 早川
Tsukasa Kono
河野 宰
Masayoshi Tange
雅善 丹下
Masaru Sugimoto
優 杉本
Kenji Goto
謙次 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Original Assignee
Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai filed Critical Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Priority to JP2123677A priority Critical patent/JP2874955B2/en
Publication of JPH0419920A publication Critical patent/JPH0419920A/en
Application granted granted Critical
Publication of JP2874955B2 publication Critical patent/JP2874955B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To produce a sufficient amount of Nb3Sn superconductor fibers within a short time heat treatment by gathering a plurality of coated composite wires having an Sn coating layer formed on the outer circumferences of in-situ rods and carrying out heat treatment for diffusion after drawing. CONSTITUTION:A plurality of coated composite wires 14 prepared by putting in-situ rods 10 in the inside and coating the outer circumference of them with an Sn coating layer 13 are gathered and drawn to form a secondary composite wire 17 and then heat-diffusion treatment is carried out so as to diffuse Sn while the Sn coating layer 13 and the Nb fibers in the in-situ rods 10 are made close each other. Diffusion distance between Sn of the coating layer 13 and Nb superfine fibers is thus shortened. As a result, Nb superfine fibers and Sn are sufficiently reacted by the heat-diffusion treatment and Nb3Sn superconductor fibers are produced at sufficiently high production efficiency.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、核融合炉用トロイダルマグネット、粒子加速
機用マグネット、超電導発電機用マグネット等に利用さ
れるN b3S n超電導線の製造方法に関する。
Detailed Description of the Invention "Field of Industrial Application" The present invention relates to a method for manufacturing N b3S n superconducting wires used in toroidal magnets for nuclear fusion reactors, magnets for particle accelerators, magnets for superconducting generators, etc. .

「従来の技術」 超電導線においては量子磁束線の連動などに起因して発
熱を生じる場合があり、このような場合に超電導線に部
分的に常電導の芽が発生し、超電導線の全体が常電導状
態に転位するおそれがある。
``Prior art'' In superconducting wires, heat may be generated due to interlocking of quantum magnetic flux lines, etc. In such cases, buds of normal conductivity occur partially in the superconducting wire, and the entire superconducting wire becomes There is a risk of transition to a normally conducting state.

そこで従来、このような磁気的不安定性および常電導転
位などを防止して超電導線を安定化するために、以下に
記載する技術が採用されている。
Therefore, in order to stabilize superconducting wires by preventing such magnetic instability and normal conductive dislocations, the techniques described below have been employed.

■超電導体をCuなどの良導電性の安定化母材の内部に
埋設する。特に、安定化母材を高純度のCuから形成す
る。
■ Embed the superconductor inside a stable base material with good conductivity such as Cu. In particular, the stabilizing matrix is formed from high purity Cu.

■超電導体を数μm〜数十μmの径のフィラメント状に
極細化する。
(2) Ultra-fine superconductor into a filament with a diameter of several μm to several tens of μm.

■多心線をツイスト加工する。■Twisting multi-core wires.

■編組や成形撚線の構造を採用する。■Use braided or formed stranded wire structures.

■金属間化合物系の超電導体は極めて硬く、脆いので、
機械歪が加わると超電導特性が劣化する傾向があり、こ
のため超電導線に補強材を添設して機械歪が加わること
を阻止する。
■Intermetallic compound superconductors are extremely hard and brittle, so
When mechanical strain is applied, superconducting properties tend to deteriorate, so reinforcing materials are attached to superconducting wires to prevent mechanical strain from being applied.

以上のような背景のもとに、研究開発が進められている
が、従来、金属基地の内部に無数の極細の超電導繊維を
配列した構造の超電導線を製造する方法としてインサイ
チュ法が知られている。
Against this background, research and development is progressing, but the in-situ method has been known as a method for manufacturing superconducting wires with a structure in which countless ultra-fine superconducting fibers are arranged inside a metal base. There is.

このインサイチュ法によりNb3Sn系の超電導線を製
造するには、所定成分のCu−N b−3n合金あるい
はCu−N b合金を溶製し、CuあるいはCu5n合
金基地の内部にNbの樹枝状晶が分散した組織を有し、
しかも加工性が高い第1O図に示すインサイチュ合金l
を作成する。
To manufacture Nb3Sn-based superconducting wire using this in-situ method, a Cu-Nb-3n alloy or a Cu-Nb alloy with a predetermined composition is melted, and Nb dendrites are formed inside the Cu or Cu5n alloy matrix. Has a dispersed organization,
Moreover, the in-situ alloy l shown in Figure 1O has high workability.
Create.

次にこのインサイチュ合金1に線引加工を施し、第11
図に示すようにNbの繊維が多数密接して金属基地内に
分散配列されたインサイチュロッド2を作成する。続い
て前記インサイチユロ、ト2の外周面にSnのメツキ、
l!i 2 gを形成して第12図に示す素線3を作成
する。
Next, this in-situ alloy 1 is subjected to wire drawing, and the 11th
As shown in the figure, an in-situ rod 2 is prepared in which a large number of Nb fibers are closely distributed and arranged in a metal base. Subsequently, Sn plating is applied to the outer peripheral surface of the in-situ tube 2.
l! i 2 g is formed to create the strand 3 shown in FIG.

次に素線3をSnの溶融温度より若干低い温度で長時間
熱処理する。この熱処理によってメツキ層2aをインサ
イチュロッド2の内部側に拡散させて消失させる。そし
て更に、500℃以上に加熱する拡散熱処理を施してS
nを索線3の内部のNbの繊維と反応させることにより
、Nb3Sn超電導繊維を生成させることができ、これ
によって第13図に示す構造のNb3Sn超電導線5を
得ることができる。
Next, the wire 3 is heat treated for a long time at a temperature slightly lower than the melting temperature of Sn. This heat treatment causes the plating layer 2a to diffuse into the interior of the in-situ rod 2 and disappear. Then, the S
By reacting n with the Nb fibers inside the cable wire 3, Nb3Sn superconducting fibers can be generated, and thereby the Nb3Sn superconducting wire 5 having the structure shown in FIG. 13 can be obtained.

「発明が解決しようとする課題」 前記超電導線5の製造方法にあっては、メツキ層2aの
Snを素線3の外周部側から内部側に拡散させるので、
拡散熱処理を長時間にわたり十分に施した場合であって
もSnが素線3の中心部側まで十分に拡散されない問題
があった。この結果、超電導線5の中心部側に!’i 
b3S nの生成していない未反応領域が生しるために
、臨界電流密度の低下が生じる問題があった。
"Problems to be Solved by the Invention" In the method for manufacturing the superconducting wire 5, Sn in the plating layer 2a is diffused from the outer peripheral side of the wire 3 to the inside.
Even when the diffusion heat treatment is sufficiently performed over a long period of time, there is a problem in that Sn is not sufficiently diffused to the center of the wire 3. As a result, the center side of the superconducting wire 5! 'i
There is a problem in that the critical current density decreases due to the formation of an unreacted region where b3S n is not produced.

また、メツキ層2aをインサイチュロッド2の外周面に
形成しているので、メツキm 2 aが溶は落ちないよ
うにSnの融点より若干低い温度に長時間加熱する熱処
理を施す必要があって、熱処理時間が長くなる問題があ
った。
In addition, since the plating layer 2a is formed on the outer circumferential surface of the in-situ rod 2, it is necessary to perform heat treatment for a long time at a temperature slightly lower than the melting point of Sn so that the plating layer 2a does not melt. There was a problem that the heat treatment time was long.

また、前記の方法で製造された超電導線5は超電揮発*
miなどの交流用として用いた場合、電磁気的に不安定
な問題があった。
In addition, the superconducting wire 5 manufactured by the above method undergoes superelectric volatilization*
When used for alternating current applications such as mi, there was a problem of electromagnetic instability.

本発明は前記課題を解決するためになされたもので、従
来より短い熱処理時間でもって十分な量のNb3Sn超
電導繊維を生成させることができるとともにその超電導
繊維の径が小さく電磁気的に安定性が高く、臨界電流密
度の高いNb、Sn超電導線を提供することを目的とす
る。
The present invention was made to solve the above problems, and it is possible to generate a sufficient amount of Nb3Sn superconducting fibers with a shorter heat treatment time than before, and the superconducting fibers have a small diameter and are highly electromagnetically stable. , an object of the present invention is to provide a Nb, Sn superconducting wire with a high critical current density.

「課題を解決するための手段」 本発明は前記課題を解決するために、Nbの樹枝状晶を
CuあるはCu合金からなる基地の内部に分散してなる
インサイチュ合金を用い、このインサイチュ合金を線引
加工してCuあるいはCu合金払二f、−X纂抽小力館
ビNhめ厳錐本公計六什六−/ンサイチュロツドを形成
し、このインサイチュロッドを1本以上CuあるいはC
u合金からなる管体に挿入し更に縮径加工を施して1次
複合線を形成するとともに、この1次複合線にSnの被
覆層を形成して被覆複合線を形成し、次いでこの被覆複
合線を複数本集合してTaあるい(よNbの管体に挿入
し、更に、CuあるいはCu合金からなる管体に挿入し
て縮径加工する処理を1回以上行って2次複合線を得る
とともに、この2次複合線に拡散熱処理を施して被覆層
のSnを基地の内部側に拡散させ、Nb+Sn超電導繊
維を生成させるものである。
"Means for Solving the Problems" In order to solve the problems described above, the present invention uses an in-situ alloy in which Nb dendrites are dispersed inside a base made of Cu or a Cu alloy. The in-situ rod is formed by drawing a Cu or Cu alloy, and one or more of the in-situ rods are made of Cu or Cu.
A primary composite wire is formed by inserting it into a tube made of U alloy and further reducing the diameter.A coating layer of Sn is formed on this primary composite wire to form a coated composite wire, and then this coated composite wire is formed. A secondary composite wire is made by collecting multiple wires and inserting them into a tube made of Ta or Nb, and then inserting them into a tube made of Cu or Cu alloy and reducing the diameter at least once. At the same time, this secondary composite wire is subjected to diffusion heat treatment to diffuse the Sn of the coating layer into the interior of the base, thereby producing Nb+Sn superconducting fibers.

「作用 」 Snの被覆層をインサイチュロッドの外面に形成した被
覆複合線を複数本集合して縮径した後に拡散熱処理を施
すので、被覆層のSnとNbの繊維との距離が近くなり
、Snの拡散距離が短くなる。
"Function" A plurality of coated composite wires with a Sn coating layer formed on the outer surface of the in-situ rod are assembled and subjected to diffusion heat treatment after being reduced in diameter, so the distance between the Sn and Nb fibers of the coating layer becomes short, and the Sn diffusion distance becomes shorter.

従ってSnとNbの反応効率が向上してNtgSnの生
成効率が向上する。また、Nbの繊維を有するインサイ
チュロッドを更に複数本集合して縮径しr−湯にfTI
″lTt乙ので−Nhの傷誰を十分に小さな径まで加工
することができ、十分に小さな径の超電導繊維が得られ
、磁気的安定性が向上する。
Therefore, the reaction efficiency of Sn and Nb is improved, and the production efficiency of NtgSn is improved. In addition, a plurality of in-situ rods having Nb fibers were assembled and reduced in diameter, and fTI was added to the r-water.
Since it is possible to process the -Nh wound to a sufficiently small diameter, superconducting fibers with a sufficiently small diameter can be obtained, and the magnetic stability is improved.

以下に本発明を更に詳細に説明する。The present invention will be explained in more detail below.

第1図ないし第9図は、本発明方法の一実施例を示すも
ので、本発明方法を実施して超電導線を製造するには、
まず、従来方法にも用いられている第1O図に示すイン
サイチュ合金lと同等の第1図に示すインサイチュ合金
9を作成し、これを鍛造、圧延あるいは引抜などにより
線引加工して第2図に示すインサイチュロッド10を作
成する。
FIGS. 1 to 9 show an embodiment of the method of the present invention, and in order to manufacture a superconducting wire by implementing the method of the present invention,
First, the in-situ alloy 9 shown in FIG. 1, which is equivalent to the in-situ alloy l shown in FIG. An in-situ rod 10 shown in FIG.

このインサイチュロッド10は、CuあるいはCu合金
からなる基地の内部にNbの繊維を分散させた構造のも
のであり、この状態でNbc′)、繊維は直径数μm〜
数十μm程度の大きさになっている。なお、前記Cu合
金に添加する合金元素としては、Sn Ti、A1.M
n、Ag、BeあるいはFe、Co、Niなどといった
磁性元素などを例示することができる。
This in-situ rod 10 has a structure in which Nb fibers are dispersed inside a base made of Cu or Cu alloy.
The size is about several tens of μm. The alloying elements added to the Cu alloy include Sn Ti, A1. M
Examples include magnetic elements such as n, Ag, Be, Fe, Co, and Ni.

次に前記インサイチュロッドlOに、第3図に示すよう
にCuあるいはCu合金からなる管体11を被せ、次い
で鍛造加工などの塑性加工を施し、縮径して第4図に示
す1次複合線12を得る。
Next, the in-situ rod IO is covered with a tube 11 made of Cu or a Cu alloy as shown in FIG. Get 12.

続いてこの1次複合線12の外周にSnメツキ層などの
被覆層13を形成して第5図に示す被覆複合線14を作
成する。なお、前記被覆層13はSnテープの巻き付け
やSn箔の巻き付けにより形成しても良い。
Subsequently, a coating layer 13 such as a Sn plating layer is formed on the outer periphery of this primary composite wire 12 to create a coated composite wire 14 shown in FIG. 5. Note that the coating layer 13 may be formed by winding Sn tape or Sn foil.

被覆複合線14を得たならば、これを第6図に示すよう
に複数本集合し、TaあるいはNbからなる管体15に
挿入するとともに、更に管体15を無酸素銅などの純銅
からなる管体16に挿入し、次いで縮径加工を施して第
7図に示す2次複合線17を得る。
Once the coated composite wire 14 is obtained, a plurality of coated composite wires 14 are assembled as shown in FIG. 6, and inserted into a tube body 15 made of Ta or Nb. It is inserted into the tubular body 16 and then subjected to diameter reduction processing to obtain the secondary composite wire 17 shown in FIG.

この2次複合線17は、被覆複合線14を圧密して得ら
れた中心部の圧密部18と、この圧密部18の外方に設
けられた拡散防止層19と、拡散防止fi19の外方に
設けられた安定化層20とから構成されている。そして
、前記圧密部18の内部構造は、第8図に示すようにな
っている。即ち、インサイチュロッド10を圧密して形
成された圧密インサイチュ部21と、この圧密インサイ
チュ部21を囲んで設けられた圧密@ 22と、隣接す
る圧密層22を仕切る境界層23とから構成されている
This secondary composite wire 17 includes a consolidated part 18 at the center obtained by consolidating the coated composite wire 14, a diffusion prevention layer 19 provided on the outside of this consolidation part 18, and an outside of the diffusion prevention fi 19. It is composed of a stabilizing layer 20 provided on. The internal structure of the compaction section 18 is as shown in FIG. That is, it is composed of a consolidated in-situ part 21 formed by consolidating the in-situ rod 10, a consolidated layer 22 provided surrounding this consolidated in-situ part 21, and a boundary layer 23 that partitions adjacent consolidated layers 22. .

前記圧密インサイチュ部21は、インサイチュロッドl
Oを圧密して形成されているので、CuあるいはCu合
金からなる基地の内部に極細のNbの繊維を分散させて
なる構造になっている。インサイチュ部21のNbの繊
維は、インサイチュロッドlOの内部に分散されたNb
の繊維よりも遥かに細径の1μm以下のNb繊維が分散
されている。
The consolidation in-situ portion 21 is an in-situ rod l.
Since it is formed by consolidating O, it has a structure in which ultrafine Nb fibers are dispersed inside a base made of Cu or Cu alloy. The Nb fibers in the in-situ part 21 are the Nb fibers dispersed inside the in-situ rod lO.
Nb fibers with a diameter of 1 μm or less, which is much smaller than the fibers in the above, are dispersed.

前記圧密層22は、管体11を圧密して形成されている
ので、CuあるいはCu合金から構成されている。また
、境界層23は、1次複合線12の周面に形成したSn
の被覆層13を圧密変形して形成されたものである。
The compacted layer 22 is formed by compacting the tubular body 11, and is therefore made of Cu or a Cu alloy. In addition, the boundary layer 23 is made of Sn formed on the peripheral surface of the primary composite wire 12
It is formed by compressing and deforming the covering layer 13 of.

前記管体15は、後工程で行う拡散熱処理時に、管体1
6側に不要な元素が拡散することを防止して管体16の
汚染を防止するために設けるものであり、その構成材料
としては融点が800°C以上の金属材料であって、C
uに対する反応性の低いTaやNbが好適に用いられる
The tubular body 15 is heated during the diffusion heat treatment performed in a subsequent process.
This is provided to prevent unnecessary elements from diffusing into the tube 16 side and contamination of the tube body 16, and its constituent material is a metal material with a melting point of 800°C or higher,
Ta and Nb, which have low reactivity toward u, are preferably used.

続いて前述の2次複合線17を500〜650℃で数十
時間〜数百時間加熱する拡散熱処理を行う。この拡散熱
処理によって境界層23のSnが圧密層22の内部側に
拡散し始め、Snが圧密インサイチュWI21に到達す
るとNbの繊維と反応してNb3Sn超電導繊維が生成
する。
Subsequently, the above-described secondary composite wire 17 is subjected to a diffusion heat treatment in which the secondary composite wire 17 is heated at 500 to 650° C. for several tens of hours to several hundreds of hours. Through this diffusion heat treatment, Sn in the boundary layer 23 begins to diffuse into the inside of the consolidated layer 22, and when the Sn reaches the consolidated in-situ WI 21, it reacts with the Nb fibers to generate Nb3Sn superconducting fibers.

以上のような拡散反応を進行さ什てNbzSn超電導繊
維を生成させることて第9図に示す構造のNb3Sn超
電導線25を得ることができる。
By proceeding with the above diffusion reaction and producing NbzSn superconducting fibers, an Nb3Sn superconducting wire 25 having the structure shown in FIG. 9 can be obtained.

この超電導線25にあっては、Nb3Sn超電導繊維を
金属基地内に分散してなる超電導部26を拡散防止51
9と安定化FW20で覆ってなる構成になっている。
In this superconducting wire 25, a superconducting portion 26 formed by dispersing Nb3Sn superconducting fibers in a metal base is provided with a diffusion prevention 51.
9 and a stabilizing FW 20.

前記のようにSnが拡散する場合、2次複合線17の圧
密インサイチュ部21においては、第8図に示すように
、Nbの極細繊維の外周側にSnの境界層23が形成さ
れているので、Snの拡散距離を従来よりも小さくする
ことができる。従ってNbの極細繊維とSnが十分に反
応する結果、NbsSn超電導繊維の生成率を十分に高
めることができる。
When Sn diffuses as described above, in the consolidated in-situ portion 21 of the secondary composite wire 17, as shown in FIG. , Sn diffusion distance can be made smaller than before. Therefore, as a result of the sufficient reaction between the Nb ultrafine fibers and Sn, the production rate of NbsSn superconducting fibers can be sufficiently increased.

なお、Snが拡散する場合、圧密インサイチュ部26の
外周に設けた拡散防止層19か安定化層20側へのSn
の拡散を防止するので安定化層20のSnによる汚染が
防止される。なお、安定化層20にSnが拡散するよう
では、極低温に冷却した場合に安定化層20の電気抵抗
が上昇するので好ましくない。
In addition, when Sn diffuses, the diffusion prevention layer 19 provided on the outer periphery of the consolidation in-situ portion 26 or the Sn to the stabilizing layer 20 side
Since diffusion of Sn is prevented, contamination of the stabilizing layer 20 by Sn is prevented. Incidentally, it is not preferable if Sn diffuses into the stabilizing layer 20 because the electrical resistance of the stabilizing layer 20 will increase when it is cooled to an extremely low temperature.

この超電導線25は液体ヘリウムなどの冷媒によって極
低温に冷却して使用する。超電導線25においては外周
部に設けた安定化層20に対するSnの汚染が防止され
ているので、安定化N20の極低温における電気抵抗は
十分に低い値になり、超電導線25の安定性は十分に高
いものとなる。
This superconducting wire 25 is used after being cooled to an extremely low temperature using a coolant such as liquid helium. In the superconducting wire 25, contamination of the stabilizing layer 20 provided on the outer periphery with Sn is prevented, so the electrical resistance of the stabilized N20 at extremely low temperatures becomes a sufficiently low value, and the stability of the superconducting wire 25 is sufficient. It will be expensive.

また、万が一超電導線25が常電導転移した場合でも、
安定化層20を備えているので、安定化層20を電流路
として使用することができ、超電導線25の焼損を防止
できる。
In addition, even if the superconducting wire 25 transitions to normal conductivity,
Since the stabilizing layer 20 is provided, the stabilizing layer 20 can be used as a current path, and burning of the superconducting wire 25 can be prevented.

更に、超電導線25の外周部に安定化層20を複合した
構造になっているので、外方に新たに安定化材を添設す
る必要があった従来の超電導線に比較してよりコンパク
トな構造にすることができる。そして、超電導線25は
その内部に安定化層20と拡散防止層!9を備えている
ので、これらが補強材的な役割を発揮し、従来の超電導
線よりも機械強度が高くなっている。
Furthermore, since it has a structure in which the stabilizing layer 20 is combined on the outer periphery of the superconducting wire 25, it is more compact than the conventional superconducting wire, which requires adding a new stabilizing material to the outside. It can be made into a structure. The superconducting wire 25 has a stabilizing layer 20 and a diffusion prevention layer inside it! 9, these act as reinforcing materials and have higher mechanical strength than conventional superconducting wires.

また、直径数μm〜数十μmc′)Nbの繊維を有する
第2図に示すインサイチュロッド10を複数本集合し、
縮径加工を施し、更に複数本集合して縮径加工して2次
複合線17を得、この2次複合線17を基にNb3Sn
の超電導繊維を生成させているので、超電導繊維を従来
よりも更に極細径にすることができる。従って超電導線
25は、基地の内部に従来よりも極細の超電導繊維を存
するので超電導特性に優れるとともに、電磁気的安定性
にも優れる。
In addition, a plurality of in-situ rods 10 shown in FIG.
A secondary composite wire 17 is obtained by performing diameter reduction processing, and then collecting a plurality of wires and performing diameter reduction processing, and based on this secondary composite wire 17, Nb3Sn
Since this method produces superconducting fibers, the diameter of the superconducting fibers can be made even smaller than that of the conventional method. Therefore, the superconducting wire 25 has superconducting fibers that are thinner than conventional ones inside the base, and therefore has excellent superconducting properties and excellent electromagnetic stability.

「実施例」 Cu−30vt%Nb合金(直径50mmのインゴット
)を誘導加熱溶解法によって作成し、この合金を、鍛造
加工して直径15mmのインサイチュロットを得た。次
にこのインサイチュロッドに外径17mm、内径16m
mの純銅の管体を被せ、線引加工して直径l。OLll
mの1次複合線を得た。
"Example" A Cu-30vt%Nb alloy (ingot with a diameter of 50 mm) was created by an induction heating melting method, and this alloy was forged to obtain an in situ lot with a diameter of 15 mm. Next, this in-situ rod has an outer diameter of 17 mm and an inner diameter of 16 m.
It is covered with a pipe made of pure copper with a diameter of l. OLll
A linear composite line of m was obtained.

次にこの1次複合線に、電気メツキにより厚さ30μm
のSnの被覆層を形成し、被覆複合線を得た。
Next, this primary composite wire is electroplated to a thickness of 30 μm.
A coating layer of Sn was formed to obtain a coated composite wire.

続いて被覆複合線を37本束ね、外径8.5mm、内径
7 、5 ff1mのTaからなる管体に挿入し、更に
全体を外径15mm、内径91の銅の管体に挿入し、縮
径加工を施して直径1.On+mの安定化銅つきの2次
複合線を得た。
Next, 37 coated composite wires were bundled and inserted into a Ta tube with an outer diameter of 8.5 mm and an inner diameter of 7.5 mm, and then the whole was inserted into a copper tube with an outer diameter of 15 mm and an inner diameter of 91 mm, and the wires were shrunk. The diameter is 1. A secondary composite wire with On+m stabilized copper was obtained.

次いでこの2次複合線を600℃で1・0日間加熱し、
Nbの極細繊維とSnを反応させて極細の超電導繊維を
生成さけてNbjSn超電導線を製造した。なお、前記
熱処理を行う雰囲気は、Arガス、N、ガスなどの不活
性ガス雰囲気あるいは真空雰囲気とした。
Next, this secondary composite wire was heated at 600°C for 1.0 days,
A NbjSn superconducting wire was produced by reacting Nb ultrafine fibers with Sn to avoid producing ultrafine superconducting fibers. The atmosphere in which the heat treatment was performed was an inert gas atmosphere such as Ar gas, N gas, or a vacuum atmosphere.

以上説明したように製造されたNb3Sn超電導m M
 1m III−m 7 m / Tハ九+ n 1M
 m [rh +−、a−て測定したところ、線材全体
において、Jc=約450A/mm’の優秀な値を示し
た。
Nb3Sn superconducting m M manufactured as explained above
1m III-m 7m / Tha9+n 1M
When m[rh +-, a- were measured, the entire wire showed an excellent value of Jc=about 450 A/mm'.

また、得られた超電導線の組織観察を行ったところ、イ
ンサイチュ超電導部のNbの極細の繊維は十分に反応し
てNba S nとなっていることが判明した。更に、
得られたNb3Sn超電導線においては、直径005μ
m以下で直径0.01μm以上の超電導繊維が主体とな
っていた。
Further, when the structure of the obtained superconducting wire was observed, it was found that the ultrafine Nb fibers in the in-situ superconducting portion were sufficiently reacted to become NbaSn. Furthermore,
The obtained Nb3Sn superconducting wire has a diameter of 005μ
The superconducting fibers were mainly composed of superconducting fibers with a diameter of 0.01 μm or less and a diameter of 0.01 μm or less.

更に比較のために、第1O図ないし第13図に示す従来
方法でNb3Sn超電導線を製造した。
Furthermore, for comparison, Nb3Sn superconducting wires were manufactured using the conventional method shown in FIGS. 10 to 13.

このNb、Sn超電導線の臨界電流密度をIOTの磁場
中において測定したところ、 Jc−約270A/mm’であった。
When the critical current density of this Nb, Sn superconducting wire was measured in the magnetic field of IOT, it was found to be Jc-about 270 A/mm'.

また、このi’it)+Sn超電導線においては、直径
0.5μm以下で0.1μm以上の超電導繊維が主体と
なっていた。
In addition, this i'it)+Sn superconducting wire was mainly composed of superconducting fibers with a diameter of 0.5 μm or less and 0.1 μm or more.

「発明の効果」 以上説明したように本発明によれば、内部にインサイチ
ュロットを複合し、外周部にSnの被覆て2次複合線を
形成してから拡散帖処理を行い、Snの被覆層とインサ
イチュロッド内のNbの繊維とを接近した状態にしてか
らSnの拡散を行うので、被覆層のSnとNbの極細繊
維との間の拡散距離を小さくすることができる。従って
拡散熱処理によりNbの極細繊維とSnを十分に反応さ
せることができ、十分に高い生成効率でNk13Sn超
電導繊維を生成させることができる。
"Effects of the Invention" As explained above, according to the present invention, an in-situ lot is composited inside, the outer periphery is coated with Sn to form a secondary composite wire, and then a diffusion process is performed to form a Sn coating layer. Since Sn is diffused after bringing the Nb fibers in the in-situ rod close to each other, the diffusion distance between the Sn and Nb ultrafine fibers of the coating layer can be reduced. Therefore, by the diffusion heat treatment, the Nb ultrafine fibers and Sn can be sufficiently reacted, and Nk13Sn superconducting fibers can be produced with sufficiently high production efficiency.

更に、直径数μm〜数十μmのNbの繊維を有するイン
サイチュロッドを複数本集合し、更に縮径する処理を行
ってNbの極細繊維を有する2次素線を形成し、この2
次素線に拡散熱処理することで超電導線を製造するので
、Nbの極細、繊維を十分に小さな径に加工することが
できる。従って得られた超電導線は金属基地内に、従来
よりも径の小さな極細のNb3Sn超電導繊維を有する
ので、1aWL気的安定性に優れる特徴を有する。
Furthermore, a plurality of in-situ rods having Nb fibers with a diameter of several μm to several tens of μm are assembled, and a diameter reduction process is performed to form a secondary wire having ultrafine Nb fibers.
Since superconducting wires are manufactured by subjecting strands to diffusion heat treatment, ultrafine Nb fibers can be processed into sufficiently small diameters. Therefore, the obtained superconducting wire has ultrafine Nb3Sn superconducting fibers with a diameter smaller than that of the conventional wire in the metal base, and therefore has excellent 1aWL chemical stability.

また、拡散防止層でSnの被覆層から隔離した状態の安
定化層を超電導線の外周部に設けるので、拡散熱処理時
のSnの拡散によって安定化層を汚染させてしまうこと
がなく、極低温時の安定化層の電気抵抗を低く維持する
ことができ、超電導特性の安定化の面で優れた超電導線
を得ることかできる。
In addition, since the stabilizing layer is separated from the Sn coating layer by the diffusion prevention layer and is provided on the outer periphery of the superconducting wire, the stabilizing layer is not contaminated by the diffusion of Sn during diffusion heat treatment, and the ultra-low temperature The electrical resistance of the stabilizing layer can be maintained low, and a superconducting wire with excellent stabilization of superconducting properties can be obtained.

更にまた、超電導線の外周部に安定化材を複合するので
、外部に別途に安定化材を添設する必要があった従来の
超電導線に比較し、小型軽量化した超電導線を得ること
ができ、安定化材と拡散防止層が補強材ともなるので、
機械強度の高い超電導線を得ることができる。
Furthermore, since the stabilizing material is compounded on the outer periphery of the superconducting wire, it is possible to obtain a superconducting wire that is smaller and lighter than conventional superconducting wires that require a separate external stabilizing material. The stabilizing material and anti-diffusion layer also serve as reinforcing materials.
A superconducting wire with high mechanical strength can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第9図は本発明方法の一例を説明するため
のもので、第1図はインサイチュ合金の断面図、第2図
はインサイチュロットの断面図、第3図はインサイチュ
ロッドと管体の複合状聾を示す断面図、第4図は1次複
合線を示す断面図、第5図は被覆複合線の断面図、第6
図は被覆複合線の集合状態を示す断面図、第7図は2次
複合線の断面図、第8図はインサイチュ圧密部を示す断
面図、第9図はNb3Sn超電導線の断面図、第10図
ないし第13図は従来方法を説明するためのもので、第
1O図はインサイチュ合金の断面図、第11図はインサ
イチュロッドの断面図、第12図は被覆複合線の断面図
、第13図は従来のNb。 Sn超電導線の断面図である。 19・・・インサイチュ合金、10・・インサイチュロ
ット、11・管体、12・ 1次複合線、13被覆層、
14・・・被覆複合線、15・・・管体、16管体、1
72次複合線、19 拡散防止層、20・・安定化層、
21・・・圧密インサイチュ部、23・境界層、25 
超電導線、26・インサイチュ超電導部。 出願人 超電導発電関連機器・材料技術研究組合第1図 F−10 第5図 第6図 第7図 第8図 第9図 第10図 第11図 第12図 第13図
Figures 1 to 9 are for explaining an example of the method of the present invention. Figure 1 is a sectional view of an in-situ alloy, Figure 2 is a sectional view of an in-situ rod, and Figure 3 is an in-situ rod and a tube body. Figure 4 is a cross-sectional view showing the primary composite wire, Figure 5 is a cross-sectional view of the covered composite wire, and Figure 6 is a cross-sectional diagram showing the composite deafness.
The figure is a sectional view showing the assembled state of the coated composite wire, FIG. 7 is a sectional view of the secondary composite wire, FIG. 8 is a sectional view showing the in-situ consolidation part, FIG. 9 is a sectional view of the Nb3Sn superconducting wire, and FIG. Figures 1 to 13 are for explaining the conventional method. Figure 1O is a cross-sectional view of the in-situ alloy, Figure 11 is a cross-sectional view of the in-situ rod, Figure 12 is a cross-sectional view of the coated composite wire, and Figure 13 is a cross-sectional view of the in-situ rod. is conventional Nb. FIG. 2 is a cross-sectional view of a Sn superconducting wire. 19... In-situ alloy, 10... In-situ lot, 11- Tube body, 12- Primary composite wire, 13 Covering layer,
14... Covered composite wire, 15... Tube body, 16 Tube body, 1
72nd order composite line, 19 diffusion prevention layer, 20... stabilization layer,
21... Consolidation in situ part, 23. Boundary layer, 25
Superconducting wire, 26. In-situ superconducting section. Applicant Superconducting Power Generation Related Equipment and Materials Technology Research Association Figure 1 F-10 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13

Claims (1)

【特許請求の範囲】[Claims] Nbの樹枝状晶をCuあるはCu合金からなる基地の内
部に分散してなるインサイチュ合金を用い、このインサ
イチュ合金を線引加工してCuあるいはCu合金からな
る基地の内部にNbの繊維を分散させたインサイチュロ
ッドを形成し、このインサイチュロッドを1本以上Cu
あるいはCu合金からなる管体に挿入し更に縮径加工を
施して1次複合線を形成するとともに、この1次複合線
にSnの被覆層を形成して被覆複合線を形成し、次いで
この被覆複合線を複数本集合してTaあるいはNbの管
体に挿入し、次に、CuあるいはCu合金からなる管体
に挿入して縮径加工する処理を1回以上行って2次複合
線を得るとともに、この2次複合線に拡散熱処理を施し
て被覆層のSnを基地の内部側に拡散させ、Nb_3S
n超電導繊維を生成させることを特徴とするNb_3S
n超電導線の製造方法。
Using an in-situ alloy in which Nb dendrites are dispersed inside a base made of Cu or a Cu alloy, this in-situ alloy is wire-drawn to disperse Nb fibers inside the base made of Cu or a Cu alloy. one or more Cu in-situ rods.
Alternatively, the primary composite wire is formed by inserting it into a tube made of a Cu alloy and further reducing the diameter, and at the same time forming a coating layer of Sn on this primary composite wire to form a coated composite wire. A secondary composite wire is obtained by collecting a plurality of composite wires and inserting them into a tube made of Ta or Nb, and then inserting them into a tube made of Cu or Cu alloy and performing diameter reduction processing one or more times. At the same time, this secondary composite wire is subjected to diffusion heat treatment to diffuse Sn in the coating layer to the inside of the base, forming Nb_3S.
Nb_3S characterized by producing n superconducting fibers
A method for manufacturing n-superconducting wire.
JP2123677A 1990-05-14 1990-05-14 Method of manufacturing Nb (3) Sn superconducting wire for superconducting generator Expired - Lifetime JP2874955B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2123677A JP2874955B2 (en) 1990-05-14 1990-05-14 Method of manufacturing Nb (3) Sn superconducting wire for superconducting generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2123677A JP2874955B2 (en) 1990-05-14 1990-05-14 Method of manufacturing Nb (3) Sn superconducting wire for superconducting generator

Publications (2)

Publication Number Publication Date
JPH0419920A true JPH0419920A (en) 1992-01-23
JP2874955B2 JP2874955B2 (en) 1999-03-24

Family

ID=14866572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2123677A Expired - Lifetime JP2874955B2 (en) 1990-05-14 1990-05-14 Method of manufacturing Nb (3) Sn superconducting wire for superconducting generator

Country Status (1)

Country Link
JP (1) JP2874955B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007187234A (en) * 2006-01-13 2007-07-26 Nabtesco Corp Oil seal
JP2021069243A (en) * 2019-10-28 2021-04-30 株式会社オートネットワーク技術研究所 Fixed structure of wiring member and wiring member with heat generating layer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007187234A (en) * 2006-01-13 2007-07-26 Nabtesco Corp Oil seal
JP2021069243A (en) * 2019-10-28 2021-04-30 株式会社オートネットワーク技術研究所 Fixed structure of wiring member and wiring member with heat generating layer
US12009124B2 (en) 2019-10-28 2024-06-11 Autonetworks Technologies, Ltd. Fixing structure of wiring member, and wiring member with heat generation layer

Also Published As

Publication number Publication date
JP2874955B2 (en) 1999-03-24

Similar Documents

Publication Publication Date Title
US20050178472A1 (en) Method for producing (Nb, Ti)3Sn wire by use of Ti source rods
EP0054421A1 (en) Method of manufacture of multifilamentary intermetallic superconductors
US4094059A (en) Method for producing composite superconductors
US11653575B2 (en) Subelement based on Nb-containing rod elements with powder-filled core tube for an Nb3Sn-containing superconductor wire, and associated production method
JPH0419920A (en) Manufacture of nb3sn superconductor wire
Zeitlin et al. An overview of the IGC internal tin Nb 3 Sn conductor
JP2878390B2 (en) Method of manufacturing Nb (3) Sn superconducting wire for superconducting generator
JP4013335B2 (en) Nb3Sn compound superconductor precursor wire and method for manufacturing the same, Nb3Sn compound superconductor conductor manufacturing method, and Nb3Sn compound superconductor coil manufacturing method
JPS5827605B2 (en) 100% of the population
Otubo et al. Submicron multifilamentary high performance Nb3Sn produced by powder metallurgy processing of large powders
JP2742421B2 (en) Superconducting wire and its manufacturing method
JP2742437B2 (en) Method for producing compound superconducting stranded wire
JP3045517B2 (en) Compound based superconducting stranded wire and method for producing the same
JP2644854B2 (en) Method of manufacturing compound superconducting wire
JP2845905B2 (en) Compound conducting wire for alternating current
JP2742436B2 (en) Method for producing compound superconducting stranded wire
JPH02152118A (en) Manufacture of compound superconducting wire
JPH04301322A (en) Manufacture of niobium-tin superconducting wire
JPH02152119A (en) Manufacture of nb3al superconducting wire
JP2000036221A (en) Compression molded conductor of oxide superconductor and manufacture thereof
JPH02103811A (en) Compound superconducting wire
JPH02119014A (en) Manufacture of compound superconducting wire
JPS6025842B2 (en) Method for manufacturing compound superconducting wire
JP2874132B2 (en) Method for manufacturing Nb (3) Sn superconducting wire for AC
JPS62229720A (en) Manufacture of nb3 sn superconductor wire